aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ffwavesynth.c
blob: c99bac90eaffea3093851f31d0ea46aced77051f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*
 * Wavesynth pseudo-codec
 * Copyright (c) 2011 Nicolas George
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/intreadwrite.h"
#include "libavutil/log.h"
#include "avcodec.h"
#include "internal.h"


#define SIN_BITS 14
#define WS_MAX_CHANNELS 32
#define INF_TS 0x7FFFFFFFFFFFFFFF

#define PINK_UNIT 128

/*
   Format of the extradata and packets

   THIS INFORMATION IS NOT PART OF THE PUBLIC API OR ABI.
   IT CAN CHANGE WITHOUT NOTIFICATION.

   All numbers are in little endian.

   The codec extradata define a set of intervals with uniform content.
   Overlapping intervals are added together.

   extradata:
       uint32      number of intervals
       ...         intervals

   interval:
       int64       start timestamp; time_base must be 1/sample_rate;
                   start timestamps must be in ascending order
       int64       end timestamp
       uint32      type
       uint32      channels mask
       ...         additional information, depends on type

   sine interval (type fourcc "SINE"):
       int32       start frequency, in 1/(1<<16) Hz
       int32       end frequency
       int32       start amplitude, 1<<16 is the full amplitude
       int32       end amplitude
       uint32      start phase, 0 is sin(0), 0x20000000 is sin(pi/2), etc.;
                   n | (1<<31) means to match the phase of previous channel #n

   pink noise interval (type fourcc "NOIS"):
       int32       start amplitude
       int32       end amplitude

   The input packets encode the time and duration of the requested segment.

   packet:
       int64       start timestamp
       int32       duration

*/

enum ws_interval_type {
    WS_SINE  = MKTAG('S','I','N','E'),
    WS_NOISE = MKTAG('N','O','I','S'),
};

struct ws_interval {
    int64_t ts_start, ts_end;
    uint64_t phi0, dphi0, ddphi;
    uint64_t amp0, damp;
    uint64_t phi, dphi, amp;
    uint32_t channels;
    enum ws_interval_type type;
    int next;
};

struct wavesynth_context {
    int64_t cur_ts;
    int64_t next_ts;
    int32_t *sin;
    struct ws_interval *inter;
    uint32_t dither_state;
    uint32_t pink_state;
    int32_t pink_pool[PINK_UNIT];
    unsigned pink_need, pink_pos;
    int nb_inter;
    int cur_inter;
    int next_inter;
};

#define LCG_A 1284865837
#define LCG_C 4150755663
#define LCG_AI 849225893 /* A*AI = 1 [mod 1<<32] */

static uint32_t lcg_next(uint32_t *s)
{
    *s = *s * LCG_A + LCG_C;
    return *s;
}

static void lcg_seek(uint32_t *s, uint32_t dt)
{
    uint32_t a, c, t = *s;

    a = LCG_A;
    c = LCG_C;
    while (dt) {
        if (dt & 1)
            t = a * t + c;
        c *= a + 1; /* coefficients for a double step */
        a *= a;
        dt >>= 1;
    }
    *s = t;
}

/* Emulate pink noise by summing white noise at the sampling frequency,
 * white noise at half the sampling frequency (each value taken twice),
 * etc., with a total of 8 octaves.
 * This is known as the Voss-McCartney algorithm. */

static void pink_fill(struct wavesynth_context *ws)
{
    int32_t vt[7] = { 0 }, v = 0;
    int i, j;

    ws->pink_pos = 0;
    if (!ws->pink_need)
        return;
    for (i = 0; i < PINK_UNIT; i++) {
        for (j = 0; j < 7; j++) {
            if ((i >> j) & 1)
                break;
            v -= vt[j];
            vt[j] = (int32_t)lcg_next(&ws->pink_state) >> 3;
            v += vt[j];
        }
        ws->pink_pool[i] = v + ((int32_t)lcg_next(&ws->pink_state) >> 3);
    }
    lcg_next(&ws->pink_state); /* so we use exactly 256 steps */
}

/**
 * @return  (1<<64) * a / b, without overflow, if a < b
 */
static uint64_t frac64(uint64_t a, uint64_t b)
{
    uint64_t r = 0;
    int i;

    if (b < (uint64_t)1 << 32) { /* b small, use two 32-bits steps */
        a <<= 32;
        return ((a / b) << 32) | ((a % b) << 32) / b;
    }
    if (b < (uint64_t)1 << 48) { /* b medium, use four 16-bits steps */
        for (i = 0; i < 4; i++) {
            a <<= 16;
            r = (r << 16) | (a / b);
            a %= b;
        }
        return r;
    }
    for (i = 63; i >= 0; i--) {
        if (a >= (uint64_t)1 << 63 || a << 1 >= b) {
            r |= (uint64_t)1 << i;
            a = (a << 1) - b;
        } else {
            a <<= 1;
        }
    }
    return r;
}

static uint64_t phi_at(struct ws_interval *in, int64_t ts)
{
    uint64_t dt = ts - in->ts_start;
    uint64_t dt2 = dt & 1 ? /* dt * (dt - 1) / 2 without overflow */
                   dt * ((dt - 1) >> 1) : (dt >> 1) * (dt - 1);
    return in->phi0 + dt * in->dphi0 + dt2 * in->ddphi;
}

static void wavesynth_seek(struct wavesynth_context *ws, int64_t ts)
{
    int *last, i;
    struct ws_interval *in;

    last = &ws->cur_inter;
    for (i = 0; i < ws->nb_inter; i++) {
        in = &ws->inter[i];
        if (ts < in->ts_start)
            break;
        if (ts >= in->ts_end)
            continue;
        *last = i;
        last = &in->next;
        in->phi  = phi_at(in, ts);
        in->dphi = in->dphi0 + (ts - in->ts_start) * in->ddphi;
        in->amp  = in->amp0  + (ts - in->ts_start) * in->damp;
    }
    ws->next_inter = i;
    ws->next_ts = i < ws->nb_inter ? ws->inter[i].ts_start : INF_TS;
    *last = -1;
    lcg_seek(&ws->dither_state, (uint32_t)ts - (uint32_t)ws->cur_ts);
    if (ws->pink_need) {
        uint64_t pink_ts_cur  = (ws->cur_ts + (uint64_t)PINK_UNIT - 1) & ~(PINK_UNIT - 1);
        uint64_t pink_ts_next = ts & ~(PINK_UNIT - 1);
        int pos = ts & (PINK_UNIT - 1);
        lcg_seek(&ws->pink_state, (uint32_t)(pink_ts_next - pink_ts_cur) * 2);
        if (pos) {
            pink_fill(ws);
            ws->pink_pos = pos;
        } else {
            ws->pink_pos = PINK_UNIT;
        }
    }
    ws->cur_ts = ts;
}

static int wavesynth_parse_extradata(AVCodecContext *avc)
{
    struct wavesynth_context *ws = avc->priv_data;
    struct ws_interval *in;
    uint8_t *edata, *edata_end;
    int32_t f1, f2, a1, a2;
    uint32_t phi;
    int64_t dphi1, dphi2, dt, cur_ts = -0x8000000000000000;
    int i;

    if (avc->extradata_size < 4)
        return AVERROR(EINVAL);
    edata = avc->extradata;
    edata_end = edata + avc->extradata_size;
    ws->nb_inter = AV_RL32(edata);
    edata += 4;
    if (ws->nb_inter < 0 || (edata_end - edata) / 24 < ws->nb_inter)
        return AVERROR(EINVAL);
    ws->inter = av_calloc(ws->nb_inter, sizeof(*ws->inter));
    if (!ws->inter)
        return AVERROR(ENOMEM);
    for (i = 0; i < ws->nb_inter; i++) {
        in = &ws->inter[i];
        if (edata_end - edata < 24)
            return AVERROR(EINVAL);
        in->ts_start = AV_RL64(edata +  0);
        in->ts_end   = AV_RL64(edata +  8);
        in->type     = AV_RL32(edata + 16);
        in->channels = AV_RL32(edata + 20);
        edata += 24;
        if (in->ts_start < cur_ts ||
            in->ts_end <= in->ts_start ||
            (uint64_t)in->ts_end - in->ts_start > INT64_MAX
        )
            return AVERROR(EINVAL);
        cur_ts = in->ts_start;
        dt = in->ts_end - in->ts_start;
        switch (in->type) {
            case WS_SINE:
                if (edata_end - edata < 20 || avc->sample_rate <= 0)
                    return AVERROR(EINVAL);
                f1  = AV_RL32(edata +  0);
                f2  = AV_RL32(edata +  4);
                a1  = AV_RL32(edata +  8);
                a2  = AV_RL32(edata + 12);
                phi = AV_RL32(edata + 16);
                edata += 20;
                dphi1 = frac64(f1, (int64_t)avc->sample_rate << 16);
                dphi2 = frac64(f2, (int64_t)avc->sample_rate << 16);
                in->dphi0 = dphi1;
                in->ddphi = (int64_t)(dphi2 - (uint64_t)dphi1) / dt;
                if (phi & 0x80000000) {
                    phi &= ~0x80000000;
                    if (phi >= i)
                        return AVERROR(EINVAL);
                    in->phi0 = phi_at(&ws->inter[phi], in->ts_start);
                } else {
                    in->phi0 = (uint64_t)phi << 33;
                }
                break;
            case WS_NOISE:
                if (edata_end - edata < 8)
                    return AVERROR(EINVAL);
                a1  = AV_RL32(edata +  0);
                a2  = AV_RL32(edata +  4);
                edata += 8;
                break;
            default:
                return AVERROR(EINVAL);
        }
        in->amp0 = (uint64_t)a1 << 32;
        in->damp = (int64_t)(((uint64_t)a2 << 32) - ((uint64_t)a1 << 32)) / dt;
    }
    if (edata != edata_end)
        return AVERROR(EINVAL);
    return 0;
}

static av_cold int wavesynth_init(AVCodecContext *avc)
{
    struct wavesynth_context *ws = avc->priv_data;
    int i, r;

    if (avc->channels > WS_MAX_CHANNELS) {
        av_log(avc, AV_LOG_ERROR,
               "This implementation is limited to %d channels.\n",
               WS_MAX_CHANNELS);
        return AVERROR(EINVAL);
    }
    r = wavesynth_parse_extradata(avc);
    if (r < 0) {
        av_log(avc, AV_LOG_ERROR, "Invalid intervals definitions.\n");
        return r;
    }
    ws->sin = av_malloc(sizeof(*ws->sin) << SIN_BITS);
    if (!ws->sin)
        return AVERROR(ENOMEM);
    for (i = 0; i < 1 << SIN_BITS; i++)
        ws->sin[i] = floor(32767 * sin(2 * M_PI * i / (1 << SIN_BITS)));
    ws->dither_state = MKTAG('D','I','T','H');
    for (i = 0; i < ws->nb_inter; i++)
        ws->pink_need += ws->inter[i].type == WS_NOISE;
    ws->pink_state = MKTAG('P','I','N','K');
    ws->pink_pos = PINK_UNIT;
    wavesynth_seek(ws, 0);
    avc->sample_fmt = AV_SAMPLE_FMT_S16;
    return 0;
}

static void wavesynth_synth_sample(struct wavesynth_context *ws, int64_t ts,
                                   int32_t *channels)
{
    int32_t amp, *cv;
    unsigned val;
    struct ws_interval *in;
    int i, *last, pink;
    uint32_t c, all_ch = 0;

    i = ws->cur_inter;
    last = &ws->cur_inter;
    if (ws->pink_pos == PINK_UNIT)
        pink_fill(ws);
    pink = ws->pink_pool[ws->pink_pos++] >> 16;
    while (i >= 0) {
        in = &ws->inter[i];
        i = in->next;
        if (ts >= in->ts_end) {
            *last = i;
            continue;
        }
        last = &in->next;
        amp = in->amp >> 32;
        in->amp  += in->damp;
        switch (in->type) {
            case WS_SINE:
                val = amp * (unsigned)ws->sin[in->phi >> (64 - SIN_BITS)];
                in->phi  += in->dphi;
                in->dphi += in->ddphi;
                break;
            case WS_NOISE:
                val = amp * (unsigned)pink;
                break;
            default:
                val = 0;
        }
        all_ch |= in->channels;
        for (c = in->channels, cv = channels; c; c >>= 1, cv++)
            if (c & 1)
                *cv += (unsigned)val;
    }
    val = (int32_t)lcg_next(&ws->dither_state) >> 16;
    for (c = all_ch, cv = channels; c; c >>= 1, cv++)
        if (c & 1)
            *cv += val;
}

static void wavesynth_enter_intervals(struct wavesynth_context *ws, int64_t ts)
{
    int *last, i;
    struct ws_interval *in;

    last = &ws->cur_inter;
    for (i = ws->cur_inter; i >= 0; i = ws->inter[i].next)
        last = &ws->inter[i].next;
    for (i = ws->next_inter; i < ws->nb_inter; i++) {
        in = &ws->inter[i];
        if (ts < in->ts_start)
            break;
        if (ts >= in->ts_end)
            continue;
        *last = i;
        last = &in->next;
        in->phi = in->phi0;
        in->dphi = in->dphi0;
        in->amp = in->amp0;
    }
    ws->next_inter = i;
    ws->next_ts = i < ws->nb_inter ? ws->inter[i].ts_start : INF_TS;
    *last = -1;
}

static int wavesynth_decode(AVCodecContext *avc, void *rframe, int *rgot_frame,
                            AVPacket *packet)
{
    struct wavesynth_context *ws = avc->priv_data;
    AVFrame *frame = rframe;
    int64_t ts;
    int duration;
    int s, c, r;
    int16_t *pcm;
    int32_t channels[WS_MAX_CHANNELS];

    *rgot_frame = 0;
    if (packet->size != 12)
        return AVERROR_INVALIDDATA;
    ts = AV_RL64(packet->data);
    if (ts != ws->cur_ts)
        wavesynth_seek(ws, ts);
    duration = AV_RL32(packet->data + 8);
    if (duration <= 0)
        return AVERROR(EINVAL);
    frame->nb_samples = duration;
    r = ff_get_buffer(avc, frame, 0);
    if (r < 0)
        return r;
    pcm = (int16_t *)frame->data[0];
    for (s = 0; s < duration; s++, ts+=(uint64_t)1) {
        memset(channels, 0, avc->channels * sizeof(*channels));
        if (ts >= ws->next_ts)
            wavesynth_enter_intervals(ws, ts);
        wavesynth_synth_sample(ws, ts, channels);
        for (c = 0; c < avc->channels; c++)
            *(pcm++) = channels[c] >> 16;
    }
    ws->cur_ts += (uint64_t)duration;
    *rgot_frame = 1;
    return packet->size;
}

static av_cold int wavesynth_close(AVCodecContext *avc)
{
    struct wavesynth_context *ws = avc->priv_data;

    av_freep(&ws->sin);
    av_freep(&ws->inter);
    return 0;
}

AVCodec ff_ffwavesynth_decoder = {
    .name           = "wavesynth",
    .long_name      = NULL_IF_CONFIG_SMALL("Wave synthesis pseudo-codec"),
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = AV_CODEC_ID_FFWAVESYNTH,
    .priv_data_size = sizeof(struct wavesynth_context),
    .init           = wavesynth_init,
    .close          = wavesynth_close,
    .decode         = wavesynth_decode,
    .capabilities   = AV_CODEC_CAP_DR1,
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
};