1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
/*
* FFT/IFFT transforms
* Copyright (c) 2008 Loren Merritt
* Copyright (c) 2002 Fabrice Bellard
* Partly based on libdjbfft by D. J. Bernstein
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FFT/IFFT transforms.
*/
#include <stdlib.h>
#include <string.h>
#include "libavutil/mathematics.h"
#include "libavutil/thread.h"
#include "fft.h"
#include "fft-internal.h"
#if !FFT_FLOAT
#include "fft_table.h"
#else /* !FFT_FLOAT */
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
#if !CONFIG_HARDCODED_TABLES
COSTABLE(16);
COSTABLE(32);
COSTABLE(64);
COSTABLE(128);
COSTABLE(256);
COSTABLE(512);
COSTABLE(1024);
COSTABLE(2048);
COSTABLE(4096);
COSTABLE(8192);
COSTABLE(16384);
COSTABLE(32768);
COSTABLE(65536);
COSTABLE(131072);
static av_cold void init_ff_cos_tabs(int index)
{
int i;
int m = 1<<index;
double freq = 2*M_PI/m;
FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
for(i=0; i<=m/4; i++)
tab[i] = FIX15(cos(i*freq));
for(i=1; i<m/4; i++)
tab[m/2-i] = tab[i];
}
typedef struct CosTabsInitOnce {
void (*func)(void);
AVOnce control;
} CosTabsInitOnce;
#define INIT_FF_COS_TABS_FUNC(index, size) \
static av_cold void init_ff_cos_tabs_ ## size (void)\
{ \
init_ff_cos_tabs(index); \
}
INIT_FF_COS_TABS_FUNC(4, 16)
INIT_FF_COS_TABS_FUNC(5, 32)
INIT_FF_COS_TABS_FUNC(6, 64)
INIT_FF_COS_TABS_FUNC(7, 128)
INIT_FF_COS_TABS_FUNC(8, 256)
INIT_FF_COS_TABS_FUNC(9, 512)
INIT_FF_COS_TABS_FUNC(10, 1024)
INIT_FF_COS_TABS_FUNC(11, 2048)
INIT_FF_COS_TABS_FUNC(12, 4096)
INIT_FF_COS_TABS_FUNC(13, 8192)
INIT_FF_COS_TABS_FUNC(14, 16384)
INIT_FF_COS_TABS_FUNC(15, 32768)
INIT_FF_COS_TABS_FUNC(16, 65536)
INIT_FF_COS_TABS_FUNC(17, 131072)
static CosTabsInitOnce cos_tabs_init_once[] = {
{ NULL },
{ NULL },
{ NULL },
{ NULL },
{ init_ff_cos_tabs_16, AV_ONCE_INIT },
{ init_ff_cos_tabs_32, AV_ONCE_INIT },
{ init_ff_cos_tabs_64, AV_ONCE_INIT },
{ init_ff_cos_tabs_128, AV_ONCE_INIT },
{ init_ff_cos_tabs_256, AV_ONCE_INIT },
{ init_ff_cos_tabs_512, AV_ONCE_INIT },
{ init_ff_cos_tabs_1024, AV_ONCE_INIT },
{ init_ff_cos_tabs_2048, AV_ONCE_INIT },
{ init_ff_cos_tabs_4096, AV_ONCE_INIT },
{ init_ff_cos_tabs_8192, AV_ONCE_INIT },
{ init_ff_cos_tabs_16384, AV_ONCE_INIT },
{ init_ff_cos_tabs_32768, AV_ONCE_INIT },
{ init_ff_cos_tabs_65536, AV_ONCE_INIT },
{ init_ff_cos_tabs_131072, AV_ONCE_INIT },
};
av_cold void ff_init_ff_cos_tabs(int index)
{
ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func);
}
#endif
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
NULL, NULL, NULL, NULL,
FFT_NAME(ff_cos_16),
FFT_NAME(ff_cos_32),
FFT_NAME(ff_cos_64),
FFT_NAME(ff_cos_128),
FFT_NAME(ff_cos_256),
FFT_NAME(ff_cos_512),
FFT_NAME(ff_cos_1024),
FFT_NAME(ff_cos_2048),
FFT_NAME(ff_cos_4096),
FFT_NAME(ff_cos_8192),
FFT_NAME(ff_cos_16384),
FFT_NAME(ff_cos_32768),
FFT_NAME(ff_cos_65536),
FFT_NAME(ff_cos_131072),
};
#endif /* FFT_FLOAT */
static void fft_permute_c(FFTContext *s, FFTComplex *z);
static void fft_calc_c(FFTContext *s, FFTComplex *z);
static int split_radix_permutation(int i, int n, int inverse)
{
int m;
if(n <= 2) return i&1;
m = n >> 1;
if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
m >>= 1;
if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
else return split_radix_permutation(i, m, inverse)*4 - 1;
}
static const int avx_tab[] = {
0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
};
static int is_second_half_of_fft32(int i, int n)
{
if (n <= 32)
return i >= 16;
else if (i < n/2)
return is_second_half_of_fft32(i, n/2);
else if (i < 3*n/4)
return is_second_half_of_fft32(i - n/2, n/4);
else
return is_second_half_of_fft32(i - 3*n/4, n/4);
}
static av_cold void fft_perm_avx(FFTContext *s)
{
int i;
int n = 1 << s->nbits;
for (i = 0; i < n; i += 16) {
int k;
if (is_second_half_of_fft32(i, n)) {
for (k = 0; k < 16; k++)
s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
i + avx_tab[k];
} else {
for (k = 0; k < 16; k++) {
int j = i + k;
j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
}
}
}
}
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
{
int i, j, n;
s->revtab = NULL;
s->revtab32 = NULL;
if (nbits < 2 || nbits > 17)
goto fail;
s->nbits = nbits;
n = 1 << nbits;
if (nbits <= 16) {
s->revtab = av_malloc(n * sizeof(uint16_t));
if (!s->revtab)
goto fail;
} else {
s->revtab32 = av_malloc(n * sizeof(uint32_t));
if (!s->revtab32)
goto fail;
}
s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
if (!s->tmp_buf)
goto fail;
s->inverse = inverse;
s->fft_permutation = FF_FFT_PERM_DEFAULT;
s->fft_permute = fft_permute_c;
s->fft_calc = fft_calc_c;
#if CONFIG_MDCT
s->imdct_calc = ff_imdct_calc_c;
s->imdct_half = ff_imdct_half_c;
s->mdct_calc = ff_mdct_calc_c;
#endif
#if FFT_FLOAT
#if ARCH_AARCH64
ff_fft_init_aarch64(s);
#elif ARCH_ARM
ff_fft_init_arm(s);
#elif ARCH_PPC
ff_fft_init_ppc(s);
#elif ARCH_X86
ff_fft_init_x86(s);
#endif
#if HAVE_MIPSFPU
ff_fft_init_mips(s);
#endif
for(j=4; j<=nbits; j++) {
ff_init_ff_cos_tabs(j);
}
#else /* FFT_FLOAT */
ff_fft_lut_init();
#endif
if (ARCH_X86 && FFT_FLOAT && s->fft_permutation == FF_FFT_PERM_AVX) {
fft_perm_avx(s);
} else {
#define PROCESS_FFT_PERM_SWAP_LSBS(num) do {\
for(i = 0; i < n; i++) {\
int k;\
j = i;\
j = (j & ~3) | ((j >> 1) & 1) | ((j << 1) & 2);\
k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
s->revtab##num[k] = j;\
} \
} while(0);
#define PROCESS_FFT_PERM_DEFAULT(num) do {\
for(i = 0; i < n; i++) {\
int k;\
j = i;\
k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
s->revtab##num[k] = j;\
} \
} while(0);
#define SPLIT_RADIX_PERMUTATION(num) do { \
if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS) {\
PROCESS_FFT_PERM_SWAP_LSBS(num) \
} else {\
PROCESS_FFT_PERM_DEFAULT(num) \
}\
} while(0);
if (s->revtab)
SPLIT_RADIX_PERMUTATION()
if (s->revtab32)
SPLIT_RADIX_PERMUTATION(32)
#undef PROCESS_FFT_PERM_DEFAULT
#undef PROCESS_FFT_PERM_SWAP_LSBS
#undef SPLIT_RADIX_PERMUTATION
}
return 0;
fail:
av_freep(&s->revtab);
av_freep(&s->revtab32);
av_freep(&s->tmp_buf);
return -1;
}
static void fft_permute_c(FFTContext *s, FFTComplex *z)
{
int j, np;
const uint16_t *revtab = s->revtab;
const uint32_t *revtab32 = s->revtab32;
np = 1 << s->nbits;
/* TODO: handle split-radix permute in a more optimal way, probably in-place */
if (revtab) {
for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
} else
for(j=0;j<np;j++) s->tmp_buf[revtab32[j]] = z[j];
memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
}
av_cold void ff_fft_end(FFTContext *s)
{
av_freep(&s->revtab);
av_freep(&s->revtab32);
av_freep(&s->tmp_buf);
}
#if !FFT_FLOAT
static void fft_calc_c(FFTContext *s, FFTComplex *z) {
int nbits, i, n, num_transforms, offset, step;
int n4, n2, n34;
unsigned tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
FFTComplex *tmpz;
const int fft_size = (1 << s->nbits);
int64_t accu;
num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
for (n=0; n<num_transforms; n++){
offset = ff_fft_offsets_lut[n] << 2;
tmpz = z + offset;
tmp1 = tmpz[0].re + (unsigned)tmpz[1].re;
tmp5 = tmpz[2].re + (unsigned)tmpz[3].re;
tmp2 = tmpz[0].im + (unsigned)tmpz[1].im;
tmp6 = tmpz[2].im + (unsigned)tmpz[3].im;
tmp3 = tmpz[0].re - (unsigned)tmpz[1].re;
tmp8 = tmpz[2].im - (unsigned)tmpz[3].im;
tmp4 = tmpz[0].im - (unsigned)tmpz[1].im;
tmp7 = tmpz[2].re - (unsigned)tmpz[3].re;
tmpz[0].re = tmp1 + tmp5;
tmpz[2].re = tmp1 - tmp5;
tmpz[0].im = tmp2 + tmp6;
tmpz[2].im = tmp2 - tmp6;
tmpz[1].re = tmp3 + tmp8;
tmpz[3].re = tmp3 - tmp8;
tmpz[1].im = tmp4 - tmp7;
tmpz[3].im = tmp4 + tmp7;
}
if (fft_size < 8)
return;
num_transforms = (num_transforms >> 1) | 1;
for (n=0; n<num_transforms; n++){
offset = ff_fft_offsets_lut[n] << 3;
tmpz = z + offset;
tmp1 = tmpz[4].re + (unsigned)tmpz[5].re;
tmp3 = tmpz[6].re + (unsigned)tmpz[7].re;
tmp2 = tmpz[4].im + (unsigned)tmpz[5].im;
tmp4 = tmpz[6].im + (unsigned)tmpz[7].im;
tmp5 = tmp1 + tmp3;
tmp7 = tmp1 - tmp3;
tmp6 = tmp2 + tmp4;
tmp8 = tmp2 - tmp4;
tmp1 = tmpz[4].re - (unsigned)tmpz[5].re;
tmp2 = tmpz[4].im - (unsigned)tmpz[5].im;
tmp3 = tmpz[6].re - (unsigned)tmpz[7].re;
tmp4 = tmpz[6].im - (unsigned)tmpz[7].im;
tmpz[4].re = tmpz[0].re - tmp5;
tmpz[0].re = tmpz[0].re + tmp5;
tmpz[4].im = tmpz[0].im - tmp6;
tmpz[0].im = tmpz[0].im + tmp6;
tmpz[6].re = tmpz[2].re - tmp8;
tmpz[2].re = tmpz[2].re + tmp8;
tmpz[6].im = tmpz[2].im + tmp7;
tmpz[2].im = tmpz[2].im - tmp7;
accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp1 + tmp2);
tmp5 = (int32_t)((accu + 0x40000000) >> 31);
accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 - tmp4);
tmp7 = (int32_t)((accu + 0x40000000) >> 31);
accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp2 - tmp1);
tmp6 = (int32_t)((accu + 0x40000000) >> 31);
accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 + tmp4);
tmp8 = (int32_t)((accu + 0x40000000) >> 31);
tmp1 = tmp5 + tmp7;
tmp3 = tmp5 - tmp7;
tmp2 = tmp6 + tmp8;
tmp4 = tmp6 - tmp8;
tmpz[5].re = tmpz[1].re - tmp1;
tmpz[1].re = tmpz[1].re + tmp1;
tmpz[5].im = tmpz[1].im - tmp2;
tmpz[1].im = tmpz[1].im + tmp2;
tmpz[7].re = tmpz[3].re - tmp4;
tmpz[3].re = tmpz[3].re + tmp4;
tmpz[7].im = tmpz[3].im + tmp3;
tmpz[3].im = tmpz[3].im - tmp3;
}
step = 1 << ((MAX_LOG2_NFFT-4) - 4);
n4 = 4;
for (nbits=4; nbits<=s->nbits; nbits++){
n2 = 2*n4;
n34 = 3*n4;
num_transforms = (num_transforms >> 1) | 1;
for (n=0; n<num_transforms; n++){
const FFTSample *w_re_ptr = ff_w_tab_sr + step;
const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
offset = ff_fft_offsets_lut[n] << nbits;
tmpz = z + offset;
tmp5 = tmpz[ n2].re + (unsigned)tmpz[n34].re;
tmp1 = tmpz[ n2].re - (unsigned)tmpz[n34].re;
tmp6 = tmpz[ n2].im + (unsigned)tmpz[n34].im;
tmp2 = tmpz[ n2].im - (unsigned)tmpz[n34].im;
tmpz[ n2].re = tmpz[ 0].re - tmp5;
tmpz[ 0].re = tmpz[ 0].re + tmp5;
tmpz[ n2].im = tmpz[ 0].im - tmp6;
tmpz[ 0].im = tmpz[ 0].im + tmp6;
tmpz[n34].re = tmpz[n4].re - tmp2;
tmpz[ n4].re = tmpz[n4].re + tmp2;
tmpz[n34].im = tmpz[n4].im + tmp1;
tmpz[ n4].im = tmpz[n4].im - tmp1;
for (i=1; i<n4; i++){
FFTSample w_re = w_re_ptr[0];
FFTSample w_im = w_im_ptr[0];
accu = (int64_t)w_re*tmpz[ n2+i].re;
accu += (int64_t)w_im*tmpz[ n2+i].im;
tmp1 = (int32_t)((accu + 0x40000000) >> 31);
accu = (int64_t)w_re*tmpz[ n2+i].im;
accu -= (int64_t)w_im*tmpz[ n2+i].re;
tmp2 = (int32_t)((accu + 0x40000000) >> 31);
accu = (int64_t)w_re*tmpz[n34+i].re;
accu -= (int64_t)w_im*tmpz[n34+i].im;
tmp3 = (int32_t)((accu + 0x40000000) >> 31);
accu = (int64_t)w_re*tmpz[n34+i].im;
accu += (int64_t)w_im*tmpz[n34+i].re;
tmp4 = (int32_t)((accu + 0x40000000) >> 31);
tmp5 = tmp1 + tmp3;
tmp1 = tmp1 - tmp3;
tmp6 = tmp2 + tmp4;
tmp2 = tmp2 - tmp4;
tmpz[ n2+i].re = tmpz[ i].re - tmp5;
tmpz[ i].re = tmpz[ i].re + tmp5;
tmpz[ n2+i].im = tmpz[ i].im - tmp6;
tmpz[ i].im = tmpz[ i].im + tmp6;
tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
w_re_ptr += step;
w_im_ptr -= step;
}
}
step >>= 1;
n4 <<= 1;
}
}
#else /* !FFT_FLOAT */
#define BUTTERFLIES(a0,a1,a2,a3) {\
BF(t3, t5, t5, t1);\
BF(a2.re, a0.re, a0.re, t5);\
BF(a3.im, a1.im, a1.im, t3);\
BF(t4, t6, t2, t6);\
BF(a3.re, a1.re, a1.re, t4);\
BF(a2.im, a0.im, a0.im, t6);\
}
// force loading all the inputs before storing any.
// this is slightly slower for small data, but avoids store->load aliasing
// for addresses separated by large powers of 2.
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
BF(t3, t5, t5, t1);\
BF(a2.re, a0.re, r0, t5);\
BF(a3.im, a1.im, i1, t3);\
BF(t4, t6, t2, t6);\
BF(a3.re, a1.re, r1, t4);\
BF(a2.im, a0.im, i0, t6);\
}
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
CMUL(t5, t6, a3.re, a3.im, wre, wim);\
BUTTERFLIES(a0,a1,a2,a3)\
}
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
t1 = a2.re;\
t2 = a2.im;\
t5 = a3.re;\
t6 = a3.im;\
BUTTERFLIES(a0,a1,a2,a3)\
}
/* z[0...8n-1], w[1...2n-1] */
#define PASS(name)\
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
{\
FFTDouble t1, t2, t3, t4, t5, t6;\
int o1 = 2*n;\
int o2 = 4*n;\
int o3 = 6*n;\
const FFTSample *wim = wre+o1;\
n--;\
\
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
do {\
z += 2;\
wre += 2;\
wim -= 2;\
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
} while(--n);\
}
PASS(pass)
#if !CONFIG_SMALL
#undef BUTTERFLIES
#define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)
#endif
#define DECL_FFT(n,n2,n4)\
static void fft##n(FFTComplex *z)\
{\
fft##n2(z);\
fft##n4(z+n4*2);\
fft##n4(z+n4*3);\
pass(z,FFT_NAME(ff_cos_##n),n4/2);\
}
static void fft4(FFTComplex *z)
{
FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
BF(t3, t1, z[0].re, z[1].re);
BF(t8, t6, z[3].re, z[2].re);
BF(z[2].re, z[0].re, t1, t6);
BF(t4, t2, z[0].im, z[1].im);
BF(t7, t5, z[2].im, z[3].im);
BF(z[3].im, z[1].im, t4, t8);
BF(z[3].re, z[1].re, t3, t7);
BF(z[2].im, z[0].im, t2, t5);
}
static void fft8(FFTComplex *z)
{
FFTDouble t1, t2, t3, t4, t5, t6;
fft4(z);
BF(t1, z[5].re, z[4].re, -z[5].re);
BF(t2, z[5].im, z[4].im, -z[5].im);
BF(t5, z[7].re, z[6].re, -z[7].re);
BF(t6, z[7].im, z[6].im, -z[7].im);
BUTTERFLIES(z[0],z[2],z[4],z[6]);
TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
}
#if !CONFIG_SMALL
static void fft16(FFTComplex *z)
{
FFTDouble t1, t2, t3, t4, t5, t6;
FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
fft8(z);
fft4(z+8);
fft4(z+12);
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
}
#else
DECL_FFT(16,8,4)
#endif
DECL_FFT(32,16,8)
DECL_FFT(64,32,16)
DECL_FFT(128,64,32)
DECL_FFT(256,128,64)
DECL_FFT(512,256,128)
#if !CONFIG_SMALL
#define pass pass_big
#endif
DECL_FFT(1024,512,256)
DECL_FFT(2048,1024,512)
DECL_FFT(4096,2048,1024)
DECL_FFT(8192,4096,2048)
DECL_FFT(16384,8192,4096)
DECL_FFT(32768,16384,8192)
DECL_FFT(65536,32768,16384)
DECL_FFT(131072,65536,32768)
static void (* const fft_dispatch[])(FFTComplex*) = {
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
};
static void fft_calc_c(FFTContext *s, FFTComplex *z)
{
fft_dispatch[s->nbits-2](z);
}
#endif /* !FFT_FLOAT */
|