1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/*
* FFT/IFFT transforms
* Copyright (c) 2002 Fabrice Bellard.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "dsputil.h"
/**
* The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
* done
*/
int fft_init(FFTContext *s, int nbits, int inverse)
{
int i, j, m, n;
float alpha, c1, s1, s2;
s->nbits = nbits;
n = 1 << nbits;
s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
if (!s->exptab)
goto fail;
s->revtab = av_malloc(n * sizeof(uint16_t));
if (!s->revtab)
goto fail;
s->inverse = inverse;
s2 = inverse ? 1.0 : -1.0;
for(i=0;i<(n/2);i++) {
alpha = 2 * M_PI * (float)i / (float)n;
c1 = cos(alpha);
s1 = sin(alpha) * s2;
s->exptab[i].re = c1;
s->exptab[i].im = s1;
}
s->fft_calc = fft_calc_c;
s->exptab1 = NULL;
/* compute constant table for HAVE_SSE version */
#if defined(HAVE_MMX) && 0
if (mm_flags & MM_SSE) {
int np, nblocks, np2, l;
FFTComplex *q;
np = 1 << nbits;
nblocks = np >> 3;
np2 = np >> 1;
s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
if (!s->exptab1)
goto fail;
q = s->exptab1;
do {
for(l = 0; l < np2; l += 2 * nblocks) {
*q++ = s->exptab[l];
*q++ = s->exptab[l + nblocks];
q->re = -s->exptab[l].im;
q->im = s->exptab[l].re;
q++;
q->re = -s->exptab[l + nblocks].im;
q->im = s->exptab[l + nblocks].re;
q++;
}
nblocks = nblocks >> 1;
} while (nblocks != 0);
av_freep(&s->exptab);
}
#endif
/* compute bit reverse table */
for(i=0;i<n;i++) {
m=0;
for(j=0;j<nbits;j++) {
m |= ((i >> j) & 1) << (nbits-j-1);
}
s->revtab[i]=m;
}
return 0;
fail:
av_freep(&s->revtab);
av_freep(&s->exptab);
av_freep(&s->exptab1);
return -1;
}
/* butter fly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{\
FFTSample ax, ay, bx, by;\
bx=pre1;\
by=pim1;\
ax=qre1;\
ay=qim1;\
pre = (bx + ax);\
pim = (by + ay);\
qre = (bx - ax);\
qim = (by - ay);\
}
#define MUL16(a,b) ((a) * (b))
#define CMUL(pre, pim, are, aim, bre, bim) \
{\
pre = (MUL16(are, bre) - MUL16(aim, bim));\
pim = (MUL16(are, bim) + MUL16(bre, aim));\
}
/**
* Do a complex FFT with the parameters defined in fft_init(). The
* input data must be permuted before with s->revtab table. No
* 1.0/sqrt(n) normalization is done.
*/
void fft_calc_c(FFTContext *s, FFTComplex *z)
{
int ln = s->nbits;
int j, np, np2;
int nblocks, nloops;
register FFTComplex *p, *q;
FFTComplex *exptab = s->exptab;
int l;
FFTSample tmp_re, tmp_im;
np = 1 << ln;
/* pass 0 */
p=&z[0];
j=(np >> 1);
do {
BF(p[0].re, p[0].im, p[1].re, p[1].im,
p[0].re, p[0].im, p[1].re, p[1].im);
p+=2;
} while (--j != 0);
/* pass 1 */
p=&z[0];
j=np >> 2;
if (s->inverse) {
do {
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, -p[3].im, p[3].re);
p+=4;
} while (--j != 0);
} else {
do {
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, p[3].im, -p[3].re);
p+=4;
} while (--j != 0);
}
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
do {
p = z;
q = z + nloops;
for (j = 0; j < nblocks; ++j) {
BF(p->re, p->im, q->re, q->im,
p->re, p->im, q->re, q->im);
p++;
q++;
for(l = nblocks; l < np2; l += nblocks) {
CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
BF(p->re, p->im, q->re, q->im,
p->re, p->im, tmp_re, tmp_im);
p++;
q++;
}
p += nloops;
q += nloops;
}
nblocks = nblocks >> 1;
nloops = nloops << 1;
} while (nblocks != 0);
}
/**
* Do the permutation needed BEFORE calling fft_calc()
*/
void fft_permute(FFTContext *s, FFTComplex *z)
{
int j, k, np;
FFTComplex tmp;
const uint16_t *revtab = s->revtab;
/* reverse */
np = 1 << s->nbits;
for(j=0;j<np;j++) {
k = revtab[j];
if (k < j) {
tmp = z[k];
z[k] = z[j];
z[j] = tmp;
}
}
}
void fft_end(FFTContext *s)
{
av_freep(&s->revtab);
av_freep(&s->exptab);
av_freep(&s->exptab1);
}
|