1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
|
/*
* Enhanced Variable Rate Codec, Service Option 3 decoder
* Copyright (c) 2013 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Enhanced Variable Rate Codec, Service Option 3 decoder
* @author Paul B Mahol
*/
#include "libavutil/channel_layout.h"
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "evrcdata.h"
#include "acelp_vectors.h"
#include "lsp.h"
#define MIN_LSP_SEP (0.05 / (2.0 * M_PI))
#define MIN_DELAY 20
#define MAX_DELAY 120
#define NB_SUBFRAMES 3
#define SUBFRAME_SIZE 54
#define FILTER_ORDER 10
#define ACB_SIZE 128
typedef enum {
RATE_ERRS = -1,
SILENCE,
RATE_QUANT,
RATE_QUARTER,
RATE_HALF,
RATE_FULL,
} evrc_packet_rate;
/**
* EVRC-A unpacked data frame
*/
typedef struct EVRCAFrame {
uint8_t lpc_flag; ///< spectral change indicator
uint16_t lsp[4]; ///< index into LSP codebook
uint8_t pitch_delay; ///< pitch delay for entire frame
uint8_t delay_diff; ///< delay difference for entire frame
uint8_t acb_gain[3]; ///< adaptive codebook gain
uint16_t fcb_shape[3][4]; ///< fixed codebook shape
uint8_t fcb_gain[3]; ///< fixed codebook gain index
uint8_t energy_gain; ///< frame energy gain index
uint8_t tty; ///< tty baud rate bit
} EVRCAFrame;
typedef struct EVRCContext {
AVClass *class;
int postfilter;
GetBitContext gb;
evrc_packet_rate bitrate;
evrc_packet_rate last_valid_bitrate;
EVRCAFrame frame;
float lspf[FILTER_ORDER];
float prev_lspf[FILTER_ORDER];
float synthesis[FILTER_ORDER];
float postfilter_fir[FILTER_ORDER];
float postfilter_iir[FILTER_ORDER];
float postfilter_residual[ACB_SIZE + SUBFRAME_SIZE];
float pitch_delay;
float prev_pitch_delay;
float avg_acb_gain; ///< average adaptive codebook gain
float avg_fcb_gain; ///< average fixed codebook gain
float pitch[ACB_SIZE + FILTER_ORDER + SUBFRAME_SIZE];
float pitch_back[ACB_SIZE];
float interpolation_coeffs[136];
float energy_vector[NB_SUBFRAMES];
float fade_scale;
float last;
uint8_t prev_energy_gain;
uint8_t prev_error_flag;
uint8_t warned_buf_mismatch_bitrate;
} EVRCContext;
/**
* Frame unpacking for RATE_FULL, RATE_HALF and RATE_QUANT
*
* @param e the context
*
* TIA/IS-127 Table 4.21-1
*/
static void unpack_frame(EVRCContext *e)
{
EVRCAFrame *frame = &e->frame;
GetBitContext *gb = &e->gb;
switch (e->bitrate) {
case RATE_FULL:
frame->lpc_flag = get_bits1(gb);
frame->lsp[0] = get_bits(gb, 6);
frame->lsp[1] = get_bits(gb, 6);
frame->lsp[2] = get_bits(gb, 9);
frame->lsp[3] = get_bits(gb, 7);
frame->pitch_delay = get_bits(gb, 7);
frame->delay_diff = get_bits(gb, 5);
frame->acb_gain[0] = get_bits(gb, 3);
frame->fcb_shape[0][0] = get_bits(gb, 8);
frame->fcb_shape[0][1] = get_bits(gb, 8);
frame->fcb_shape[0][2] = get_bits(gb, 8);
frame->fcb_shape[0][3] = get_bits(gb, 11);
frame->fcb_gain[0] = get_bits(gb, 5);
frame->acb_gain[1] = get_bits(gb, 3);
frame->fcb_shape[1][0] = get_bits(gb, 8);
frame->fcb_shape[1][1] = get_bits(gb, 8);
frame->fcb_shape[1][2] = get_bits(gb, 8);
frame->fcb_shape[1][3] = get_bits(gb, 11);
frame->fcb_gain [1] = get_bits(gb, 5);
frame->acb_gain [2] = get_bits(gb, 3);
frame->fcb_shape[2][0] = get_bits(gb, 8);
frame->fcb_shape[2][1] = get_bits(gb, 8);
frame->fcb_shape[2][2] = get_bits(gb, 8);
frame->fcb_shape[2][3] = get_bits(gb, 11);
frame->fcb_gain [2] = get_bits(gb, 5);
frame->tty = get_bits1(gb);
break;
case RATE_HALF:
frame->lsp [0] = get_bits(gb, 7);
frame->lsp [1] = get_bits(gb, 7);
frame->lsp [2] = get_bits(gb, 8);
frame->pitch_delay = get_bits(gb, 7);
frame->acb_gain [0] = get_bits(gb, 3);
frame->fcb_shape[0][0] = get_bits(gb, 10);
frame->fcb_gain [0] = get_bits(gb, 4);
frame->acb_gain [1] = get_bits(gb, 3);
frame->fcb_shape[1][0] = get_bits(gb, 10);
frame->fcb_gain [1] = get_bits(gb, 4);
frame->acb_gain [2] = get_bits(gb, 3);
frame->fcb_shape[2][0] = get_bits(gb, 10);
frame->fcb_gain [2] = get_bits(gb, 4);
break;
case RATE_QUANT:
frame->lsp [0] = get_bits(gb, 4);
frame->lsp [1] = get_bits(gb, 4);
frame->energy_gain = get_bits(gb, 8);
break;
}
}
static evrc_packet_rate buf_size2bitrate(const int buf_size)
{
switch (buf_size) {
case 23: return RATE_FULL;
case 11: return RATE_HALF;
case 6: return RATE_QUARTER;
case 3: return RATE_QUANT;
case 1: return SILENCE;
}
return RATE_ERRS;
}
/**
* Determine the bitrate from the frame size and/or the first byte of the frame.
*
* @param avctx the AV codec context
* @param buf_size length of the buffer
* @param buf the bufffer
*
* @return the bitrate on success,
* RATE_ERRS if the bitrate cannot be satisfactorily determined
*/
static evrc_packet_rate determine_bitrate(AVCodecContext *avctx,
int *buf_size,
const uint8_t **buf)
{
evrc_packet_rate bitrate;
if ((bitrate = buf_size2bitrate(*buf_size)) >= 0) {
if (bitrate > **buf) {
EVRCContext *e = avctx->priv_data;
if (!e->warned_buf_mismatch_bitrate) {
av_log(avctx, AV_LOG_WARNING,
"Claimed bitrate and buffer size mismatch.\n");
e->warned_buf_mismatch_bitrate = 1;
}
bitrate = **buf;
} else if (bitrate < **buf) {
av_log(avctx, AV_LOG_ERROR,
"Buffer is too small for the claimed bitrate.\n");
return RATE_ERRS;
}
(*buf)++;
*buf_size -= 1;
} else if ((bitrate = buf_size2bitrate(*buf_size + 1)) >= 0) {
av_log(avctx, AV_LOG_DEBUG,
"Bitrate byte is missing, guessing the bitrate from packet size.\n");
} else
return RATE_ERRS;
return bitrate;
}
static void warn_insufficient_frame_quality(AVCodecContext *avctx,
const char *message)
{
av_log(avctx, AV_LOG_WARNING, "Frame #%"PRId64", %s\n",
avctx->frame_num, message);
}
/**
* Initialize the speech codec according to the specification.
*
* TIA/IS-127 5.2
*/
static av_cold int evrc_decode_init(AVCodecContext *avctx)
{
EVRCContext *e = avctx->priv_data;
int i, n, idx = 0;
float denom = 2.0 / (2.0 * 8.0 + 1.0);
av_channel_layout_uninit(&avctx->ch_layout);
avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
for (i = 0; i < FILTER_ORDER; i++) {
e->prev_lspf[i] = (i + 1) * 0.048;
e->synthesis[i] = 0.0;
}
for (i = 0; i < ACB_SIZE; i++)
e->pitch[i] = e->pitch_back[i] = 0.0;
e->last_valid_bitrate = RATE_QUANT;
e->prev_pitch_delay = 40.0;
e->fade_scale = 1.0;
e->prev_error_flag = 0;
e->avg_acb_gain = e->avg_fcb_gain = 0.0;
for (i = 0; i < 8; i++) {
float tt = ((float)i - 8.0 / 2.0) / 8.0;
for (n = -8; n <= 8; n++, idx++) {
float arg1 = M_PI * 0.9 * (tt - n);
float arg2 = M_PI * (tt - n);
e->interpolation_coeffs[idx] = 0.9;
if (arg1)
e->interpolation_coeffs[idx] *= (0.54 + 0.46 * cos(arg2 * denom)) *
sin(arg1) / arg1;
}
}
return 0;
}
/**
* Decode the 10 vector quantized line spectral pair frequencies from the LSP
* transmission codes of any bitrate and check for badly received packets.
*
* @param e the context
*
* @return 0 on success, -1 if the packet is badly received
*
* TIA/IS-127 5.2.1, 5.7.1
*/
static int decode_lspf(EVRCContext *e)
{
const float * const *codebooks = evrc_lspq_codebooks[e->bitrate];
int i, j, k = 0;
for (i = 0; i < evrc_lspq_nb_codebooks[e->bitrate]; i++) {
int row_size = evrc_lspq_codebooks_row_sizes[e->bitrate][i];
const float *codebook = codebooks[i];
for (j = 0; j < row_size; j++)
e->lspf[k++] = codebook[e->frame.lsp[i] * row_size + j];
}
// check for monotonic LSPs
for (i = 1; i < FILTER_ORDER; i++)
if (e->lspf[i] <= e->lspf[i - 1])
return -1;
// check for minimum separation of LSPs at the splits
for (i = 0, k = 0; i < evrc_lspq_nb_codebooks[e->bitrate] - 1; i++) {
k += evrc_lspq_codebooks_row_sizes[e->bitrate][i];
if (e->lspf[k] - e->lspf[k - 1] <= MIN_LSP_SEP)
return -1;
}
return 0;
}
/*
* Interpolation of LSP parameters.
*
* TIA/IS-127 5.2.3.1, 5.7.3.2
*/
static void interpolate_lsp(float *ilsp, const float *lsp,
const float *prev, int index)
{
static const float lsp_interpolation_factors[] = { 0.1667, 0.5, 0.8333 };
ff_weighted_vector_sumf(ilsp, prev, lsp,
1.0 - lsp_interpolation_factors[index],
lsp_interpolation_factors[index], FILTER_ORDER);
}
/*
* Reconstruction of the delay contour.
*
* TIA/IS-127 5.2.2.3.2
*/
static void interpolate_delay(float *dst, float current, float prev, int index)
{
static const float d_interpolation_factors[] = { 0, 0.3313, 0.6625, 1, 1 };
dst[0] = (1.0 - d_interpolation_factors[index ]) * prev
+ d_interpolation_factors[index ] * current;
dst[1] = (1.0 - d_interpolation_factors[index + 1]) * prev
+ d_interpolation_factors[index + 1] * current;
dst[2] = (1.0 - d_interpolation_factors[index + 2]) * prev
+ d_interpolation_factors[index + 2] * current;
}
/*
* Convert the quantized, interpolated line spectral frequencies,
* to prediction coefficients.
*
* TIA/IS-127 5.2.3.2, 4.7.2.2
*/
static void decode_predictor_coeffs(const float *ilspf, float *ilpc)
{
double lsp[FILTER_ORDER];
float a[FILTER_ORDER / 2 + 1], b[FILTER_ORDER / 2 + 1];
float a1[FILTER_ORDER / 2] = { 0 };
float a2[FILTER_ORDER / 2] = { 0 };
float b1[FILTER_ORDER / 2] = { 0 };
float b2[FILTER_ORDER / 2] = { 0 };
int i, k;
ff_acelp_lsf2lspd(lsp, ilspf, FILTER_ORDER);
for (k = 0; k <= FILTER_ORDER; k++) {
a[0] = k < 2 ? 0.25 : 0;
b[0] = k < 2 ? k < 1 ? 0.25 : -0.25 : 0;
for (i = 0; i < FILTER_ORDER / 2; i++) {
a[i + 1] = a[i] - 2 * lsp[i * 2 ] * a1[i] + a2[i];
b[i + 1] = b[i] - 2 * lsp[i * 2 + 1] * b1[i] + b2[i];
a2[i] = a1[i];
a1[i] = a[i];
b2[i] = b1[i];
b1[i] = b[i];
}
if (k)
ilpc[k - 1] = 2.0 * (a[FILTER_ORDER / 2] + b[FILTER_ORDER / 2]);
}
}
static void bl_intrp(EVRCContext *e, float *ex, float delay)
{
float *f;
int offset, i, coef_idx;
int16_t t;
offset = lrintf(delay);
t = (offset - delay + 0.5) * 8.0 + 0.5;
if (t == 8) {
t = 0;
offset--;
}
f = ex - offset - 8;
coef_idx = t * (2 * 8 + 1);
ex[0] = 0.0;
for (i = 0; i < 2 * 8 + 1; i++)
ex[0] += e->interpolation_coeffs[coef_idx + i] * f[i];
}
/*
* Adaptive codebook excitation.
*
* TIA/IS-127 5.2.2.3.3, 4.12.5.2
*/
static void acb_excitation(EVRCContext *e, float *excitation, float gain,
const float delay[3], int length)
{
float denom, locdelay, dpr, invl;
int i;
invl = 1.0 / ((float) length);
dpr = length;
/* first at-most extra samples */
denom = (delay[1] - delay[0]) * invl;
for (i = 0; i < dpr; i++) {
locdelay = delay[0] + i * denom;
bl_intrp(e, excitation + i, locdelay);
}
denom = (delay[2] - delay[1]) * invl;
/* interpolation */
for (i = dpr; i < dpr + 10; i++) {
locdelay = delay[1] + (i - dpr) * denom;
bl_intrp(e, excitation + i, locdelay);
}
for (i = 0; i < length; i++)
excitation[i] *= gain;
}
static void decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)
{
int i, pos1, pos2, offset;
offset = (fixed_index[3] >> 9) & 3;
for (i = 0; i < 3; i++) {
pos1 = ((fixed_index[i] & 0x7f) / 11) * 5 + ((i + offset) % 5);
pos2 = ((fixed_index[i] & 0x7f) % 11) * 5 + ((i + offset) % 5);
cod[pos1] = (fixed_index[i] & 0x80) ? -1.0 : 1.0;
if (pos2 < pos1)
cod[pos2] = -cod[pos1];
else
cod[pos2] += cod[pos1];
}
pos1 = ((fixed_index[3] & 0x7f) / 11) * 5 + ((3 + offset) % 5);
pos2 = ((fixed_index[3] & 0x7f) % 11) * 5 + ((4 + offset) % 5);
cod[pos1] = (fixed_index[3] & 0x100) ? -1.0 : 1.0;
cod[pos2] = (fixed_index[3] & 0x80 ) ? -1.0 : 1.0;
}
static void decode_3_pulses_10bits(uint16_t fixed_index, float *cod)
{
float sign;
int pos;
sign = (fixed_index & 0x200) ? -1.0 : 1.0;
pos = ((fixed_index & 0x7) * 7) + 4;
cod[pos] += sign;
pos = (((fixed_index >> 3) & 0x7) * 7) + 2;
cod[pos] -= sign;
pos = (((fixed_index >> 6) & 0x7) * 7);
cod[pos] += sign;
}
/*
* Reconstruction of ACELP fixed codebook excitation for full and half rate.
*
* TIA/IS-127 5.2.3.7
*/
static void fcb_excitation(EVRCContext *e, const uint16_t *codebook,
float *excitation, float pitch_gain,
int pitch_lag, int subframe_size)
{
int i;
if (e->bitrate == RATE_FULL)
decode_8_pulses_35bits(codebook, excitation);
else
decode_3_pulses_10bits(*codebook, excitation);
pitch_gain = av_clipf(pitch_gain, 0.2, 0.9);
for (i = pitch_lag; i < subframe_size; i++)
excitation[i] += pitch_gain * excitation[i - pitch_lag];
}
/**
* Synthesis of the decoder output signal.
*
* @param[in] in input signal
* @param[in] filter_coeffs LPC coefficients
* @param[in/out] memory synthesis filter memory
* @param buffer_length amount of data to process
* @param[out] samples output samples
*
* TIA/IS-127 5.2.3.15, 5.7.3.4
*/
static void synthesis_filter(const float *in, const float *filter_coeffs,
float *memory, int buffer_length, float *samples)
{
int i, j;
for (i = 0; i < buffer_length; i++) {
samples[i] = in[i];
for (j = FILTER_ORDER - 1; j > 0; j--) {
samples[i] -= filter_coeffs[j] * memory[j];
memory[j] = memory[j - 1];
}
samples[i] -= filter_coeffs[0] * memory[0];
memory[0] = samples[i];
}
}
static void bandwidth_expansion(float *coeff, const float *inbuf, float gamma)
{
double fac = gamma;
int i;
for (i = 0; i < FILTER_ORDER; i++) {
coeff[i] = inbuf[i] * fac;
fac *= gamma;
}
}
static void residual_filter(float *output, const float *input,
const float *coef, float *memory, int length)
{
float sum;
int i, j;
for (i = 0; i < length; i++) {
sum = input[i];
for (j = FILTER_ORDER - 1; j > 0; j--) {
sum += coef[j] * memory[j];
memory[j] = memory[j - 1];
}
sum += coef[0] * memory[0];
memory[0] = input[i];
output[i] = sum;
}
}
/*
* TIA/IS-127 Table 5.9.1-1.
*/
static const struct PfCoeff {
float tilt;
float ltgain;
float p1;
float p2;
} postfilter_coeffs[5] = {
{ 0.0 , 0.0 , 0.0 , 0.0 },
{ 0.0 , 0.0 , 0.57, 0.57 },
{ 0.0 , 0.0 , 0.0 , 0.0 },
{ 0.35, 0.50, 0.50, 0.75 },
{ 0.20, 0.50, 0.57, 0.75 },
};
/*
* Adaptive postfilter.
*
* TIA/IS-127 5.9
*/
static void postfilter(EVRCContext *e, float *in, const float *coeff,
float *out, int idx, const struct PfCoeff *pfc,
int length)
{
float wcoef1[FILTER_ORDER], wcoef2[FILTER_ORDER],
scratch[SUBFRAME_SIZE], temp[SUBFRAME_SIZE],
mem[SUBFRAME_SIZE];
float sum1 = 0.0, sum2 = 0.0, gamma, gain;
float tilt = pfc->tilt;
int i, n, best;
bandwidth_expansion(wcoef1, coeff, pfc->p1);
bandwidth_expansion(wcoef2, coeff, pfc->p2);
/* Tilt compensation filter, TIA/IS-127 5.9.1 */
for (i = 0; i < length - 1; i++)
sum2 += in[i] * in[i + 1];
if (sum2 < 0.0)
tilt = 0.0;
for (i = 0; i < length; i++) {
scratch[i] = in[i] - tilt * e->last;
e->last = in[i];
}
/* Short term residual filter, TIA/IS-127 5.9.2 */
residual_filter(&e->postfilter_residual[ACB_SIZE], scratch, wcoef1, e->postfilter_fir, length);
/* Long term postfilter */
best = idx;
for (i = FFMIN(MIN_DELAY, idx - 3); i <= FFMAX(MAX_DELAY, idx + 3); i++) {
for (n = ACB_SIZE, sum2 = 0; n < ACB_SIZE + length; n++)
sum2 += e->postfilter_residual[n] * e->postfilter_residual[n - i];
if (sum2 > sum1) {
sum1 = sum2;
best = i;
}
}
for (i = ACB_SIZE, sum1 = 0; i < ACB_SIZE + length; i++)
sum1 += e->postfilter_residual[i - best] * e->postfilter_residual[i - best];
for (i = ACB_SIZE, sum2 = 0; i < ACB_SIZE + length; i++)
sum2 += e->postfilter_residual[i] * e->postfilter_residual[i - best];
if (sum2 * sum1 == 0 || e->bitrate == RATE_QUANT) {
memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
} else {
gamma = sum2 / sum1;
if (gamma < 0.5)
memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
else {
gamma = FFMIN(gamma, 1.0);
for (i = 0; i < length; i++) {
temp[i] = e->postfilter_residual[ACB_SIZE + i] + gamma *
pfc->ltgain * e->postfilter_residual[ACB_SIZE + i - best];
}
}
}
memcpy(scratch, temp, length * sizeof(float));
memcpy(mem, e->postfilter_iir, FILTER_ORDER * sizeof(float));
synthesis_filter(scratch, wcoef2, mem, length, scratch);
/* Gain computation, TIA/IS-127 5.9.4-2 */
for (i = 0, sum1 = 0, sum2 = 0; i < length; i++) {
sum1 += in[i] * in[i];
sum2 += scratch[i] * scratch[i];
}
gain = sum2 ? sqrt(sum1 / sum2) : 1.0;
for (i = 0; i < length; i++)
temp[i] *= gain;
/* Short term postfilter */
synthesis_filter(temp, wcoef2, e->postfilter_iir, length, out);
memmove(e->postfilter_residual,
e->postfilter_residual + length, ACB_SIZE * sizeof(float));
}
static void frame_erasure(EVRCContext *e, float *samples)
{
float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES],
tmp[SUBFRAME_SIZE + 6], f;
int i, j;
for (i = 0; i < FILTER_ORDER; i++) {
if (e->bitrate != RATE_QUANT)
e->lspf[i] = e->prev_lspf[i] * 0.875 + 0.125 * (i + 1) * 0.048;
else
e->lspf[i] = e->prev_lspf[i];
}
if (e->prev_error_flag)
e->avg_acb_gain *= 0.75;
if (e->bitrate == RATE_FULL)
memcpy(e->pitch_back, e->pitch, ACB_SIZE * sizeof(float));
if (e->last_valid_bitrate == RATE_QUANT)
e->bitrate = RATE_QUANT;
else
e->bitrate = RATE_FULL;
if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
e->pitch_delay = e->prev_pitch_delay;
} else {
float sum = 0;
idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
for (i = 0; i < NB_SUBFRAMES; i++)
sum += evrc_energy_quant[e->prev_energy_gain][i];
sum /= (float) NB_SUBFRAMES;
sum = pow(10, sum);
for (i = 0; i < NB_SUBFRAMES; i++)
e->energy_vector[i] = sum;
}
if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
e->prev_pitch_delay = e->pitch_delay;
for (i = 0; i < NB_SUBFRAMES; i++) {
int subframe_size = subframe_sizes[i];
int pitch_lag;
interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
if (e->bitrate != RATE_QUANT) {
if (e->avg_acb_gain < 0.3) {
idelay[0] = estimation_delay[i];
idelay[1] = estimation_delay[i + 1];
idelay[2] = estimation_delay[i + 2];
} else {
interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
}
}
pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
decode_predictor_coeffs(ilspf, ilpc);
if (e->bitrate != RATE_QUANT) {
acb_excitation(e, e->pitch + ACB_SIZE,
e->avg_acb_gain, idelay, subframe_size);
for (j = 0; j < subframe_size; j++)
e->pitch[ACB_SIZE + j] *= e->fade_scale;
e->fade_scale = FFMAX(e->fade_scale - 0.05, 0.0);
} else {
for (j = 0; j < subframe_size; j++)
e->pitch[ACB_SIZE + j] = e->energy_vector[i];
}
memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
if (e->bitrate != RATE_QUANT && e->avg_acb_gain < 0.4) {
f = 0.1 * e->avg_fcb_gain;
for (j = 0; j < subframe_size; j++)
e->pitch[ACB_SIZE + j] += f;
} else if (e->bitrate == RATE_QUANT) {
for (j = 0; j < subframe_size; j++)
e->pitch[ACB_SIZE + j] = e->energy_vector[i];
}
synthesis_filter(e->pitch + ACB_SIZE, ilpc,
e->synthesis, subframe_size, tmp);
postfilter(e, tmp, ilpc, samples, pitch_lag,
&postfilter_coeffs[e->bitrate], subframe_size);
samples += subframe_size;
}
}
static int evrc_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
EVRCContext *e = avctx->priv_data;
int buf_size = avpkt->size;
float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES];
float *samples;
int i, j, ret, error_flag = 0;
frame->nb_samples = 160;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
samples = (float *)frame->data[0];
if ((e->bitrate = determine_bitrate(avctx, &buf_size, &buf)) == RATE_ERRS) {
warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
goto erasure;
}
if (e->bitrate <= SILENCE || e->bitrate == RATE_QUARTER)
goto erasure;
if (e->bitrate == RATE_QUANT && e->last_valid_bitrate == RATE_FULL
&& !e->prev_error_flag)
goto erasure;
if ((ret = init_get_bits8(&e->gb, buf, buf_size)) < 0)
return ret;
memset(&e->frame, 0, sizeof(EVRCAFrame));
unpack_frame(e);
if (e->bitrate != RATE_QUANT) {
uint8_t *p = (uint8_t *) &e->frame;
for (i = 0; i < sizeof(EVRCAFrame); i++) {
if (p[i])
break;
}
if (i == sizeof(EVRCAFrame))
goto erasure;
} else if (e->frame.lsp[0] == 0xf &&
e->frame.lsp[1] == 0xf &&
e->frame.energy_gain == 0xff) {
goto erasure;
}
if (decode_lspf(e) < 0)
goto erasure;
if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
/* Pitch delay parameter checking as per TIA/IS-127 5.1.5.1 */
if (e->frame.pitch_delay > MAX_DELAY - MIN_DELAY)
goto erasure;
e->pitch_delay = e->frame.pitch_delay + MIN_DELAY;
/* Delay diff parameter checking as per TIA/IS-127 5.1.5.2 */
if (e->frame.delay_diff) {
int p = e->pitch_delay - e->frame.delay_diff + 16;
if (p < MIN_DELAY || p > MAX_DELAY)
goto erasure;
}
/* Delay contour reconstruction as per TIA/IS-127 5.2.2.2 */
if (e->frame.delay_diff &&
e->bitrate == RATE_FULL && e->prev_error_flag) {
float delay;
memcpy(e->pitch, e->pitch_back, ACB_SIZE * sizeof(float));
delay = e->prev_pitch_delay;
e->prev_pitch_delay = delay - e->frame.delay_diff + 16.0;
if (fabs(e->pitch_delay - delay) > 15)
delay = e->pitch_delay;
for (i = 0; i < NB_SUBFRAMES; i++) {
int subframe_size = subframe_sizes[i];
interpolate_delay(idelay, delay, e->prev_pitch_delay, i);
acb_excitation(e, e->pitch + ACB_SIZE, e->avg_acb_gain, idelay, subframe_size);
memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
}
}
/* Smoothing of the decoded delay as per TIA/IS-127 5.2.2.5 */
if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
e->prev_pitch_delay = e->pitch_delay;
e->avg_acb_gain = e->avg_fcb_gain = 0.0;
} else {
idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
/* Decode frame energy vectors as per TIA/IS-127 5.7.2 */
for (i = 0; i < NB_SUBFRAMES; i++)
e->energy_vector[i] = pow(10, evrc_energy_quant[e->frame.energy_gain][i]);
e->prev_energy_gain = e->frame.energy_gain;
}
for (i = 0; i < NB_SUBFRAMES; i++) {
float tmp[SUBFRAME_SIZE + 6] = { 0 };
int subframe_size = subframe_sizes[i];
int pitch_lag;
interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
if (e->bitrate != RATE_QUANT)
interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
decode_predictor_coeffs(ilspf, ilpc);
/* Bandwidth expansion as per TIA/IS-127 5.2.3.3 */
if (e->frame.lpc_flag && e->prev_error_flag)
bandwidth_expansion(ilpc, ilpc, 0.75);
if (e->bitrate != RATE_QUANT) {
float acb_sum, f;
f = exp((e->bitrate == RATE_HALF ? 0.5 : 0.25)
* (e->frame.fcb_gain[i] + 1));
acb_sum = pitch_gain_vq[e->frame.acb_gain[i]];
e->avg_acb_gain += acb_sum / NB_SUBFRAMES;
e->avg_fcb_gain += f / NB_SUBFRAMES;
acb_excitation(e, e->pitch + ACB_SIZE,
acb_sum, idelay, subframe_size);
fcb_excitation(e, e->frame.fcb_shape[i], tmp,
acb_sum, pitch_lag, subframe_size);
/* Total excitation generation as per TIA/IS-127 5.2.3.9 */
for (j = 0; j < subframe_size; j++)
e->pitch[ACB_SIZE + j] += f * tmp[j];
e->fade_scale = FFMIN(e->fade_scale + 0.2, 1.0);
} else {
for (j = 0; j < subframe_size; j++)
e->pitch[ACB_SIZE + j] = e->energy_vector[i];
}
memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
synthesis_filter(e->pitch + ACB_SIZE, ilpc,
e->synthesis, subframe_size,
e->postfilter ? tmp : samples);
if (e->postfilter)
postfilter(e, tmp, ilpc, samples, pitch_lag,
&postfilter_coeffs[e->bitrate], subframe_size);
samples += subframe_size;
}
if (error_flag) {
erasure:
error_flag = 1;
av_log(avctx, AV_LOG_WARNING, "frame erasure\n");
frame_erasure(e, samples);
}
memcpy(e->prev_lspf, e->lspf, sizeof(e->prev_lspf));
e->prev_error_flag = error_flag;
e->last_valid_bitrate = e->bitrate;
if (e->bitrate != RATE_QUANT)
e->prev_pitch_delay = e->pitch_delay;
samples = (float *)frame->data[0];
for (i = 0; i < 160; i++)
samples[i] /= 32768;
*got_frame_ptr = 1;
return avpkt->size;
}
#define OFFSET(x) offsetof(EVRCContext, x)
#define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
static const AVOption options[] = {
{ "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, AD },
{ NULL }
};
static const AVClass evrcdec_class = {
.class_name = "evrc",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_evrc_decoder = {
.p.name = "evrc",
CODEC_LONG_NAME("EVRC (Enhanced Variable Rate Codec)"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_EVRC,
.init = evrc_decode_init,
FF_CODEC_DECODE_CB(evrc_decode_frame),
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
.priv_data_size = sizeof(EVRCContext),
.p.priv_class = &evrcdec_class,
};
|