aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/dcadec.c
blob: ce8660d2b0f1b1d3fef24020404bbbfeea4abfde (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
/*
 * DCA compatible decoder
 * Copyright (C) 2004 Gildas Bazin
 * Copyright (C) 2004 Benjamin Zores
 * Copyright (C) 2006 Benjamin Larsson
 * Copyright (C) 2007 Konstantin Shishkov
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

#include "libavutil/channel_layout.h"
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "avcodec.h"
#include "fft.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dca.h"
#include "mathops.h"
#include "synth_filter.h"
#include "dcadsp.h"
#include "fmtconvert.h"
#include "internal.h"

#if ARCH_ARM
#   include "arm/dca.h"
#endif
#if ARCH_X86
#   include "x86/dca.h"
#endif

//#define TRACE

#define DCA_PRIM_CHANNELS_MAX  (7)
#define DCA_SUBBANDS          (32)
#define DCA_ABITS_MAX         (32)      /* Should be 28 */
#define DCA_SUBSUBFRAMES_MAX   (4)
#define DCA_SUBFRAMES_MAX     (16)
#define DCA_BLOCKS_MAX        (16)
#define DCA_LFE_MAX            (3)

enum DCAMode {
    DCA_MONO = 0,
    DCA_CHANNEL,
    DCA_STEREO,
    DCA_STEREO_SUMDIFF,
    DCA_STEREO_TOTAL,
    DCA_3F,
    DCA_2F1R,
    DCA_3F1R,
    DCA_2F2R,
    DCA_3F2R,
    DCA_4F2R
};

/* these are unconfirmed but should be mostly correct */
enum DCAExSSSpeakerMask {
    DCA_EXSS_FRONT_CENTER          = 0x0001,
    DCA_EXSS_FRONT_LEFT_RIGHT      = 0x0002,
    DCA_EXSS_SIDE_REAR_LEFT_RIGHT  = 0x0004,
    DCA_EXSS_LFE                   = 0x0008,
    DCA_EXSS_REAR_CENTER           = 0x0010,
    DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
    DCA_EXSS_REAR_LEFT_RIGHT       = 0x0040,
    DCA_EXSS_FRONT_HIGH_CENTER     = 0x0080,
    DCA_EXSS_OVERHEAD              = 0x0100,
    DCA_EXSS_CENTER_LEFT_RIGHT     = 0x0200,
    DCA_EXSS_WIDE_LEFT_RIGHT       = 0x0400,
    DCA_EXSS_SIDE_LEFT_RIGHT       = 0x0800,
    DCA_EXSS_LFE2                  = 0x1000,
    DCA_EXSS_SIDE_HIGH_LEFT_RIGHT  = 0x2000,
    DCA_EXSS_REAR_HIGH_CENTER      = 0x4000,
    DCA_EXSS_REAR_HIGH_LEFT_RIGHT  = 0x8000,
};

enum DCAExtensionMask {
    DCA_EXT_CORE       = 0x001, ///< core in core substream
    DCA_EXT_XXCH       = 0x002, ///< XXCh channels extension in core substream
    DCA_EXT_X96        = 0x004, ///< 96/24 extension in core substream
    DCA_EXT_XCH        = 0x008, ///< XCh channel extension in core substream
    DCA_EXT_EXSS_CORE  = 0x010, ///< core in ExSS (extension substream)
    DCA_EXT_EXSS_XBR   = 0x020, ///< extended bitrate extension in ExSS
    DCA_EXT_EXSS_XXCH  = 0x040, ///< XXCh channels extension in ExSS
    DCA_EXT_EXSS_X96   = 0x080, ///< 96/24 extension in ExSS
    DCA_EXT_EXSS_LBR   = 0x100, ///< low bitrate component in ExSS
    DCA_EXT_EXSS_XLL   = 0x200, ///< lossless extension in ExSS
};

/* -1 are reserved or unknown */
static const int dca_ext_audio_descr_mask[] = {
    DCA_EXT_XCH,
    -1,
    DCA_EXT_X96,
    DCA_EXT_XCH | DCA_EXT_X96,
    -1,
    -1,
    DCA_EXT_XXCH,
    -1,
};

/* extensions that reside in core substream */
#define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)

/* Tables for mapping dts channel configurations to libavcodec multichannel api.
 * Some compromises have been made for special configurations. Most configurations
 * are never used so complete accuracy is not needed.
 *
 * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
 * S  -> side, when both rear and back are configured move one of them to the side channel
 * OV -> center back
 * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
 */
static const uint64_t dca_core_channel_layout[] = {
    AV_CH_FRONT_CENTER,                                                     ///< 1, A
    AV_CH_LAYOUT_STEREO,                                                    ///< 2, A + B (dual mono)
    AV_CH_LAYOUT_STEREO,                                                    ///< 2, L + R (stereo)
    AV_CH_LAYOUT_STEREO,                                                    ///< 2, (L + R) + (L - R) (sum-difference)
    AV_CH_LAYOUT_STEREO,                                                    ///< 2, LT + RT (left and right total)
    AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER,                               ///< 3, C + L + R
    AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER,                                ///< 3, L + R + S
    AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER,           ///< 4, C + L + R + S
    AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,               ///< 4, L + R + SL + SR

    AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
    AV_CH_SIDE_RIGHT,                                                       ///< 5, C + L + R + SL + SR

    AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
    AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER,               ///< 6, CL + CR + L + R + SL + SR

    AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
    AV_CH_FRONT_CENTER  | AV_CH_BACK_CENTER,                                ///< 6, C + L + R + LR + RR + OV

    AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
    AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER   |
    AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT,                                     ///< 6, CF + CR + LF + RF + LR + RR

    AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER   |
    AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
    AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,                                     ///< 7, CL + C + CR + L + R + SL + SR

    AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
    AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
    AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT,                                     ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2

    AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER   |
    AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
    AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT,                 ///< 8, CL + C + CR + L + R + SL + S + SR
};

static const int8_t dca_lfe_index[] = {
    1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
};

static const int8_t dca_channel_reorder_lfe[][9] = {
    { 0, -1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1,  3, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1,  4, -1, -1, -1, -1, -1},
    { 0,  1,  3,  4, -1, -1, -1, -1, -1},
    { 2,  0,  1,  4,  5, -1, -1, -1, -1},
    { 3,  4,  0,  1,  5,  6, -1, -1, -1},
    { 2,  0,  1,  4,  5,  6, -1, -1, -1},
    { 0,  6,  4,  5,  2,  3, -1, -1, -1},
    { 4,  2,  5,  0,  1,  6,  7, -1, -1},
    { 5,  6,  0,  1,  7,  3,  8,  4, -1},
    { 4,  2,  5,  0,  1,  6,  8,  7, -1},
};

static const int8_t dca_channel_reorder_lfe_xch[][9] = {
    { 0,  2, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1,  3, -1, -1, -1, -1, -1, -1},
    { 0,  1,  3, -1, -1, -1, -1, -1, -1},
    { 0,  1,  3, -1, -1, -1, -1, -1, -1},
    { 0,  1,  3, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1,  4, -1, -1, -1, -1, -1},
    { 0,  1,  3,  4, -1, -1, -1, -1, -1},
    { 2,  0,  1,  4,  5, -1, -1, -1, -1},
    { 0,  1,  4,  5,  3, -1, -1, -1, -1},
    { 2,  0,  1,  5,  6,  4, -1, -1, -1},
    { 3,  4,  0,  1,  6,  7,  5, -1, -1},
    { 2,  0,  1,  4,  5,  6,  7, -1, -1},
    { 0,  6,  4,  5,  2,  3,  7, -1, -1},
    { 4,  2,  5,  0,  1,  7,  8,  6, -1},
    { 5,  6,  0,  1,  8,  3,  9,  4,  7},
    { 4,  2,  5,  0,  1,  6,  9,  8,  7},
};

static const int8_t dca_channel_reorder_nolfe[][9] = {
    { 0, -1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1, -1, -1, -1, -1, -1, -1},
    { 0,  1,  2, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1,  3, -1, -1, -1, -1, -1},
    { 0,  1,  2,  3, -1, -1, -1, -1, -1},
    { 2,  0,  1,  3,  4, -1, -1, -1, -1},
    { 2,  3,  0,  1,  4,  5, -1, -1, -1},
    { 2,  0,  1,  3,  4,  5, -1, -1, -1},
    { 0,  5,  3,  4,  1,  2, -1, -1, -1},
    { 3,  2,  4,  0,  1,  5,  6, -1, -1},
    { 4,  5,  0,  1,  6,  2,  7,  3, -1},
    { 3,  2,  4,  0,  1,  5,  7,  6, -1},
};

static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
    { 0,  1, -1, -1, -1, -1, -1, -1, -1},
    { 0,  1,  2, -1, -1, -1, -1, -1, -1},
    { 0,  1,  2, -1, -1, -1, -1, -1, -1},
    { 0,  1,  2, -1, -1, -1, -1, -1, -1},
    { 0,  1,  2, -1, -1, -1, -1, -1, -1},
    { 2,  0,  1,  3, -1, -1, -1, -1, -1},
    { 0,  1,  2,  3, -1, -1, -1, -1, -1},
    { 2,  0,  1,  3,  4, -1, -1, -1, -1},
    { 0,  1,  3,  4,  2, -1, -1, -1, -1},
    { 2,  0,  1,  4,  5,  3, -1, -1, -1},
    { 2,  3,  0,  1,  5,  6,  4, -1, -1},
    { 2,  0,  1,  3,  4,  5,  6, -1, -1},
    { 0,  5,  3,  4,  1,  2,  6, -1, -1},
    { 3,  2,  4,  0,  1,  6,  7,  5, -1},
    { 4,  5,  0,  1,  7,  2,  8,  3,  6},
    { 3,  2,  4,  0,  1,  5,  8,  7,  6},
};

#define DCA_DOLBY                  101           /* FIXME */

#define DCA_CHANNEL_BITS             6
#define DCA_CHANNEL_MASK          0x3F

#define DCA_LFE                   0x80

#define HEADER_SIZE                 14

#define DCA_MAX_FRAME_SIZE       16384
#define DCA_MAX_EXSS_HEADER_SIZE  4096

#define DCA_BUFFER_PADDING_SIZE   1024

#define DCA_NSYNCAUX        0x9A1105A0

/** Bit allocation */
typedef struct {
    int offset;                 ///< code values offset
    int maxbits[8];             ///< max bits in VLC
    int wrap;                   ///< wrap for get_vlc2()
    VLC vlc[8];                 ///< actual codes
} BitAlloc;

static BitAlloc dca_bitalloc_index;    ///< indexes for samples VLC select
static BitAlloc dca_tmode;             ///< transition mode VLCs
static BitAlloc dca_scalefactor;       ///< scalefactor VLCs
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs

static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
                                         int idx)
{
    return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
           ba->offset;
}

typedef struct {
    AVClass *class;             ///< class for AVOptions
    AVCodecContext *avctx;
    /* Frame header */
    int frame_type;             ///< type of the current frame
    int samples_deficit;        ///< deficit sample count
    int crc_present;            ///< crc is present in the bitstream
    int sample_blocks;          ///< number of PCM sample blocks
    int frame_size;             ///< primary frame byte size
    int amode;                  ///< audio channels arrangement
    int sample_rate;            ///< audio sampling rate
    int bit_rate;               ///< transmission bit rate
    int bit_rate_index;         ///< transmission bit rate index

    int dynrange;               ///< embedded dynamic range flag
    int timestamp;              ///< embedded time stamp flag
    int aux_data;               ///< auxiliary data flag
    int hdcd;                   ///< source material is mastered in HDCD
    int ext_descr;              ///< extension audio descriptor flag
    int ext_coding;             ///< extended coding flag
    int aspf;                   ///< audio sync word insertion flag
    int lfe;                    ///< low frequency effects flag
    int predictor_history;      ///< predictor history flag
    int header_crc;             ///< header crc check bytes
    int multirate_inter;        ///< multirate interpolator switch
    int version;                ///< encoder software revision
    int copy_history;           ///< copy history
    int source_pcm_res;         ///< source pcm resolution
    int front_sum;              ///< front sum/difference flag
    int surround_sum;           ///< surround sum/difference flag
    int dialog_norm;            ///< dialog normalisation parameter

    /* Primary audio coding header */
    int subframes;              ///< number of subframes
    int total_channels;         ///< number of channels including extensions
    int prim_channels;          ///< number of primary audio channels
    int subband_activity[DCA_PRIM_CHANNELS_MAX];    ///< subband activity count
    int vq_start_subband[DCA_PRIM_CHANNELS_MAX];    ///< high frequency vq start subband
    int joint_intensity[DCA_PRIM_CHANNELS_MAX];     ///< joint intensity coding index
    int transient_huffman[DCA_PRIM_CHANNELS_MAX];   ///< transient mode code book
    int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
    int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX];    ///< bit allocation quantizer select
    int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
    float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX];   ///< scale factor adjustment

    /* Primary audio coding side information */
    int subsubframes[DCA_SUBFRAMES_MAX];                         ///< number of subsubframes
    int partial_samples[DCA_SUBFRAMES_MAX];                      ///< partial subsubframe samples count
    int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< prediction mode (ADPCM used or not)
    int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];      ///< prediction VQ coefs
    int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];           ///< bit allocation index
    int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< transition mode (transients)
    int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];    ///< scale factors (2 if transient)
    int joint_huff[DCA_PRIM_CHANNELS_MAX];                       ///< joint subband scale factors codebook
    int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
    float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2];            ///< stereo downmix coefficients
    int dynrange_coef;                                           ///< dynamic range coefficient

    /* Core substream's embedded downmix coefficients (cf. ETSI TS 102 114 V1.4.1)
     * Input:  primary audio channels (incl. LFE if present)
     * Output: downmix audio channels (up to 4, no LFE) */
    uint8_t  core_downmix;                                       ///< embedded downmix coefficients available
    uint8_t  core_downmix_amode;                                 ///< audio channel arrangement of embedded downmix
    uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4];   ///< embedded downmix coefficients (9-bit codes)

    int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];       ///< VQ encoded high frequency subbands

    float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)];      ///< Low frequency effect data
    int lfe_scale_factor;

    /* Subband samples history (for ADPCM) */
    DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
    DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
    DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
    int hist_index[DCA_PRIM_CHANNELS_MAX];
    DECLARE_ALIGNED(32, float, raXin)[32];

    int output;                 ///< type of output

    DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
    float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
    float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
    uint8_t *extra_channels_buffer;
    unsigned int extra_channels_buffer_size;

    uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
    int dca_buffer_size;        ///< how much data is in the dca_buffer

    const int8_t *channel_order_tab;  ///< channel reordering table, lfe and non lfe
    GetBitContext gb;
    /* Current position in DCA frame */
    int current_subframe;
    int current_subsubframe;

    int core_ext_mask;          ///< present extensions in the core substream

    /* XCh extension information */
    int xch_present;            ///< XCh extension present and valid
    int xch_base_channel;       ///< index of first (only) channel containing XCH data
    int xch_disable;            ///< whether the XCh extension should be decoded or not

    /* ExSS header parser */
    int static_fields;          ///< static fields present
    int mix_metadata;           ///< mixing metadata present
    int num_mix_configs;        ///< number of mix out configurations
    int mix_config_num_ch[4];   ///< number of channels in each mix out configuration

    int profile;

    int debug_flag;             ///< used for suppressing repeated error messages output
    AVFloatDSPContext fdsp;
    FFTContext imdct;
    SynthFilterContext synth;
    DCADSPContext dcadsp;
    FmtConvertContext fmt_conv;
} DCAContext;

static const uint16_t dca_vlc_offs[] = {
        0,   512,   640,   768,  1282,  1794,  2436,  3080,  3770,  4454,  5364,
     5372,  5380,  5388,  5392,  5396,  5412,  5420,  5428,  5460,  5492,  5508,
     5572,  5604,  5668,  5796,  5860,  5892,  6412,  6668,  6796,  7308,  7564,
     7820,  8076,  8620,  9132,  9388,  9910, 10166, 10680, 11196, 11726, 12240,
    12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
    18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
};

static av_cold void dca_init_vlcs(void)
{
    static int vlcs_initialized = 0;
    int i, j, c = 14;
    static VLC_TYPE dca_table[23622][2];

    if (vlcs_initialized)
        return;

    dca_bitalloc_index.offset = 1;
    dca_bitalloc_index.wrap = 2;
    for (i = 0; i < 5; i++) {
        dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
        dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
        init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
                 bitalloc_12_bits[i], 1, 1,
                 bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }
    dca_scalefactor.offset = -64;
    dca_scalefactor.wrap = 2;
    for (i = 0; i < 5; i++) {
        dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
        dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
        init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
                 scales_bits[i], 1, 1,
                 scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }
    dca_tmode.offset = 0;
    dca_tmode.wrap = 1;
    for (i = 0; i < 4; i++) {
        dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
        dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
        init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
                 tmode_bits[i], 1, 1,
                 tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }

    for (i = 0; i < 10; i++)
        for (j = 0; j < 7; j++) {
            if (!bitalloc_codes[i][j])
                break;
            dca_smpl_bitalloc[i + 1].offset                 = bitalloc_offsets[i];
            dca_smpl_bitalloc[i + 1].wrap                   = 1 + (j > 4);
            dca_smpl_bitalloc[i + 1].vlc[j].table           = &dca_table[dca_vlc_offs[c]];
            dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];

            init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
                     bitalloc_sizes[i],
                     bitalloc_bits[i][j], 1, 1,
                     bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
            c++;
        }
    vlcs_initialized = 1;
}

static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
{
    while (len--)
        *dst++ = get_bits(gb, bits);
}

static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
{
    int i, j;
    static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
    static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
    static const int thr[11]    = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };

    s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
    s->prim_channels  = s->total_channels;

    if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
        s->prim_channels = DCA_PRIM_CHANNELS_MAX;


    for (i = base_channel; i < s->prim_channels; i++) {
        s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
        if (s->subband_activity[i] > DCA_SUBBANDS)
            s->subband_activity[i] = DCA_SUBBANDS;
    }
    for (i = base_channel; i < s->prim_channels; i++) {
        s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
        if (s->vq_start_subband[i] > DCA_SUBBANDS)
            s->vq_start_subband[i] = DCA_SUBBANDS;
    }
    get_array(&s->gb, s->joint_intensity + base_channel,     s->prim_channels - base_channel, 3);
    get_array(&s->gb, s->transient_huffman + base_channel,   s->prim_channels - base_channel, 2);
    get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
    get_array(&s->gb, s->bitalloc_huffman + base_channel,    s->prim_channels - base_channel, 3);

    /* Get codebooks quantization indexes */
    if (!base_channel)
        memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
    for (j = 1; j < 11; j++)
        for (i = base_channel; i < s->prim_channels; i++)
            s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);

    /* Get scale factor adjustment */
    for (j = 0; j < 11; j++)
        for (i = base_channel; i < s->prim_channels; i++)
            s->scalefactor_adj[i][j] = 1;

    for (j = 1; j < 11; j++)
        for (i = base_channel; i < s->prim_channels; i++)
            if (s->quant_index_huffman[i][j] < thr[j])
                s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];

    if (s->crc_present) {
        /* Audio header CRC check */
        get_bits(&s->gb, 16);
    }

    s->current_subframe    = 0;
    s->current_subsubframe = 0;

#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
    av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
    for (i = base_channel; i < s->prim_channels; i++) {
        av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
               s->subband_activity[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
               s->vq_start_subband[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
               s->joint_intensity[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
               s->transient_huffman[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
               s->scalefactor_huffman[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
               s->bitalloc_huffman[i]);
        av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
        for (j = 0; j < 11; j++)
            av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
        av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
        for (j = 0; j < 11; j++)
            av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
#endif

    return 0;
}

static int dca_parse_frame_header(DCAContext *s)
{
    init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);

    /* Sync code */
    skip_bits_long(&s->gb, 32);

    /* Frame header */
    s->frame_type        = get_bits(&s->gb, 1);
    s->samples_deficit   = get_bits(&s->gb, 5) + 1;
    s->crc_present       = get_bits(&s->gb, 1);
    s->sample_blocks     = get_bits(&s->gb, 7) + 1;
    s->frame_size        = get_bits(&s->gb, 14) + 1;
    if (s->frame_size < 95)
        return AVERROR_INVALIDDATA;
    s->amode             = get_bits(&s->gb, 6);
    s->sample_rate       = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
    if (!s->sample_rate)
        return AVERROR_INVALIDDATA;
    s->bit_rate_index    = get_bits(&s->gb, 5);
    s->bit_rate          = dca_bit_rates[s->bit_rate_index];
    if (!s->bit_rate)
        return AVERROR_INVALIDDATA;

    skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
    s->dynrange          = get_bits(&s->gb, 1);
    s->timestamp         = get_bits(&s->gb, 1);
    s->aux_data          = get_bits(&s->gb, 1);
    s->hdcd              = get_bits(&s->gb, 1);
    s->ext_descr         = get_bits(&s->gb, 3);
    s->ext_coding        = get_bits(&s->gb, 1);
    s->aspf              = get_bits(&s->gb, 1);
    s->lfe               = get_bits(&s->gb, 2);
    s->predictor_history = get_bits(&s->gb, 1);

    if (s->lfe > 2) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
        return AVERROR_INVALIDDATA;
    }

    /* TODO: check CRC */
    if (s->crc_present)
        s->header_crc    = get_bits(&s->gb, 16);

    s->multirate_inter   = get_bits(&s->gb, 1);
    s->version           = get_bits(&s->gb, 4);
    s->copy_history      = get_bits(&s->gb, 2);
    s->source_pcm_res    = get_bits(&s->gb, 3);
    s->front_sum         = get_bits(&s->gb, 1);
    s->surround_sum      = get_bits(&s->gb, 1);
    s->dialog_norm       = get_bits(&s->gb, 4);

    /* FIXME: channels mixing levels */
    s->output = s->amode;
    if (s->lfe)
        s->output |= DCA_LFE;

#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
    av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
    av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
    av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
           s->sample_blocks, s->sample_blocks * 32);
    av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
    av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
           s->amode, dca_channels[s->amode]);
    av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
           s->sample_rate);
    av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
           s->bit_rate);
    av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
    av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
    av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
    av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
    av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
    av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
    av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
    av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
    av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
           s->predictor_history);
    av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
    av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
           s->multirate_inter);
    av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
    av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
    av_log(s->avctx, AV_LOG_DEBUG,
           "source pcm resolution: %i (%i bits/sample)\n",
           s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
    av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
    av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
    av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
    av_log(s->avctx, AV_LOG_DEBUG, "\n");
#endif

    /* Primary audio coding header */
    s->subframes         = get_bits(&s->gb, 4) + 1;

    return dca_parse_audio_coding_header(s, 0);
}


static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
{
    if (level < 5) {
        /* huffman encoded */
        value += get_bitalloc(gb, &dca_scalefactor, level);
        value = av_clip(value, 0, (1 << log2range) - 1);
    } else if (level < 8) {
        if (level + 1 > log2range) {
            skip_bits(gb, level + 1 - log2range);
            value = get_bits(gb, log2range);
        } else {
            value = get_bits(gb, level + 1);
        }
    }
    return value;
}

static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
{
    /* Primary audio coding side information */
    int j, k;

    if (get_bits_left(&s->gb) < 0)
        return AVERROR_INVALIDDATA;

    if (!base_channel) {
        s->subsubframes[s->current_subframe]    = get_bits(&s->gb, 2) + 1;
        s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
    }

    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++)
            s->prediction_mode[j][k] = get_bits(&s->gb, 1);
    }

    /* Get prediction codebook */
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++) {
            if (s->prediction_mode[j][k] > 0) {
                /* (Prediction coefficient VQ address) */
                s->prediction_vq[j][k] = get_bits(&s->gb, 12);
            }
        }
    }

    /* Bit allocation index */
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->vq_start_subband[j]; k++) {
            if (s->bitalloc_huffman[j] == 6)
                s->bitalloc[j][k] = get_bits(&s->gb, 5);
            else if (s->bitalloc_huffman[j] == 5)
                s->bitalloc[j][k] = get_bits(&s->gb, 4);
            else if (s->bitalloc_huffman[j] == 7) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "Invalid bit allocation index\n");
                return AVERROR_INVALIDDATA;
            } else {
                s->bitalloc[j][k] =
                    get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
            }

            if (s->bitalloc[j][k] > 26) {
                av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
                        j, k, s->bitalloc[j][k]);
                return AVERROR_INVALIDDATA;
            }
        }
    }

    /* Transition mode */
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++) {
            s->transition_mode[j][k] = 0;
            if (s->subsubframes[s->current_subframe] > 1 &&
                k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
                s->transition_mode[j][k] =
                    get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
            }
        }
    }

    if (get_bits_left(&s->gb) < 0)
        return AVERROR_INVALIDDATA;

    for (j = base_channel; j < s->prim_channels; j++) {
        const uint32_t *scale_table;
        int scale_sum, log_size;

        memset(s->scale_factor[j], 0,
               s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);

        if (s->scalefactor_huffman[j] == 6) {
            scale_table = scale_factor_quant7;
            log_size = 7;
        } else {
            scale_table = scale_factor_quant6;
            log_size = 6;
        }

        /* When huffman coded, only the difference is encoded */
        scale_sum = 0;

        for (k = 0; k < s->subband_activity[j]; k++) {
            if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
                s->scale_factor[j][k][0] = scale_table[scale_sum];
            }

            if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
                /* Get second scale factor */
                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
                s->scale_factor[j][k][1] = scale_table[scale_sum];
            }
        }
    }

    /* Joint subband scale factor codebook select */
    for (j = base_channel; j < s->prim_channels; j++) {
        /* Transmitted only if joint subband coding enabled */
        if (s->joint_intensity[j] > 0)
            s->joint_huff[j] = get_bits(&s->gb, 3);
    }

    if (get_bits_left(&s->gb) < 0)
        return AVERROR_INVALIDDATA;

    /* Scale factors for joint subband coding */
    for (j = base_channel; j < s->prim_channels; j++) {
        int source_channel;

        /* Transmitted only if joint subband coding enabled */
        if (s->joint_intensity[j] > 0) {
            int scale = 0;
            source_channel = s->joint_intensity[j] - 1;

            /* When huffman coded, only the difference is encoded
             * (is this valid as well for joint scales ???) */

            for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
                scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
                s->joint_scale_factor[j][k] = scale;    /*joint_scale_table[scale]; */
            }

            if (!(s->debug_flag & 0x02)) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "Joint stereo coding not supported\n");
                s->debug_flag |= 0x02;
            }
        }
    }

    /* Dynamic range coefficient */
    if (!base_channel && s->dynrange)
        s->dynrange_coef = get_bits(&s->gb, 8);

    /* Side information CRC check word */
    if (s->crc_present) {
        get_bits(&s->gb, 16);
    }

    /*
     * Primary audio data arrays
     */

    /* VQ encoded high frequency subbands */
    for (j = base_channel; j < s->prim_channels; j++)
        for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
            /* 1 vector -> 32 samples */
            s->high_freq_vq[j][k] = get_bits(&s->gb, 10);

    /* Low frequency effect data */
    if (!base_channel && s->lfe) {
        /* LFE samples */
        int lfe_samples = 2 * s->lfe * (4 + block_index);
        int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
        float lfe_scale;

        for (j = lfe_samples; j < lfe_end_sample; j++) {
            /* Signed 8 bits int */
            s->lfe_data[j] = get_sbits(&s->gb, 8);
        }

        /* Scale factor index */
        skip_bits(&s->gb, 1);
        s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 7)];

        /* Quantization step size * scale factor */
        lfe_scale = 0.035 * s->lfe_scale_factor;

        for (j = lfe_samples; j < lfe_end_sample; j++)
            s->lfe_data[j] *= lfe_scale;
    }

#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
           s->subsubframes[s->current_subframe]);
    av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
           s->partial_samples[s->current_subframe]);

    for (j = base_channel; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
        for (k = 0; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG,
                   "prediction coefs: %f, %f, %f, %f\n",
                   (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
                   (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
                   (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
                   (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
    }
    for (j = base_channel; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
        for (k = 0; k < s->vq_start_subband[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = base_channel; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
        for (k = 0; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = base_channel; j < s->prim_channels; j++) {
        av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
        for (k = 0; k < s->subband_activity[j]; k++) {
            if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
                av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
            if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
                av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
        }
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
    for (j = base_channel; j < s->prim_channels; j++) {
        if (s->joint_intensity[j] > 0) {
            int source_channel = s->joint_intensity[j] - 1;
            av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
            for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
                av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
            av_log(s->avctx, AV_LOG_DEBUG, "\n");
        }
    }
    for (j = base_channel; j < s->prim_channels; j++)
        for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
            av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
    if (!base_channel && s->lfe) {
        int lfe_samples = 2 * s->lfe * (4 + block_index);
        int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);

        av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
        for (j = lfe_samples; j < lfe_end_sample; j++)
            av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
        av_log(s->avctx, AV_LOG_DEBUG, "\n");
    }
#endif

    return 0;
}

static void qmf_32_subbands(DCAContext *s, int chans,
                            float samples_in[32][8], float *samples_out,
                            float scale)
{
    const float *prCoeff;

    int sb_act = s->subband_activity[chans];

    scale *= sqrt(1 / 8.0);

    /* Select filter */
    if (!s->multirate_inter)    /* Non-perfect reconstruction */
        prCoeff = fir_32bands_nonperfect;
    else                        /* Perfect reconstruction */
        prCoeff = fir_32bands_perfect;

    s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
                              s->subband_fir_hist[chans],
                              &s->hist_index[chans],
                              s->subband_fir_noidea[chans], prCoeff,
                              samples_out, s->raXin, scale);
}

static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
                                  int num_deci_sample, float *samples_in,
                                  float *samples_out, float scale)
{
    /* samples_in: An array holding decimated samples.
     *   Samples in current subframe starts from samples_in[0],
     *   while samples_in[-1], samples_in[-2], ..., stores samples
     *   from last subframe as history.
     *
     * samples_out: An array holding interpolated samples
     */

    int idx;
    const float *prCoeff;
    int deciindex;

    /* Select decimation filter */
    if (decimation_select == 1) {
        idx = 1;
        prCoeff = lfe_fir_128;
    } else {
        idx = 0;
        prCoeff = lfe_fir_64;
    }
    /* Interpolation */
    for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
        s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff, scale);
        samples_in++;
        samples_out += 2 * 32 * (1 + idx);
    }
}

/* downmixing routines */
#define MIX_REAR1(samples, s1, rs, coef)            \
    samples[0][i] += samples[s1][i] * coef[rs][0];  \
    samples[1][i] += samples[s1][i] * coef[rs][1];

#define MIX_REAR2(samples, s1, s2, rs, coef)                                          \
    samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
    samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];

#define MIX_FRONT3(samples, coef)                                      \
    t = samples[c][i];                                                 \
    u = samples[l][i];                                                 \
    v = samples[r][i];                                                 \
    samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0];  \
    samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];

#define DOWNMIX_TO_STEREO(op1, op2)             \
    for (i = 0; i < 256; i++) {                 \
        op1                                     \
        op2                                     \
    }

static void dca_downmix(float **samples, int srcfmt, int lfe_present,
                        float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
                        const int8_t *channel_mapping)
{
    int c, l, r, sl, sr, s;
    int i;
    float t, u, v;

    switch (srcfmt) {
    case DCA_MONO:
    case DCA_4F2R:
        av_log(NULL, 0, "Not implemented!\n");
        break;
    case DCA_CHANNEL:
    case DCA_STEREO:
    case DCA_STEREO_TOTAL:
    case DCA_STEREO_SUMDIFF:
        break;
    case DCA_3F:
        c = channel_mapping[0];
        l = channel_mapping[1];
        r = channel_mapping[2];
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
        break;
    case DCA_2F1R:
        s = channel_mapping[2];
        DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
        break;
    case DCA_3F1R:
        c = channel_mapping[0];
        l = channel_mapping[1];
        r = channel_mapping[2];
        s = channel_mapping[3];
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
                          MIX_REAR1(samples, s, 3, coef));
        break;
    case DCA_2F2R:
        sl = channel_mapping[2];
        sr = channel_mapping[3];
        DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
        break;
    case DCA_3F2R:
        c  = channel_mapping[0];
        l  = channel_mapping[1];
        r  = channel_mapping[2];
        sl = channel_mapping[3];
        sr = channel_mapping[4];
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
                          MIX_REAR2(samples, sl, sr, 3, coef));
        break;
    }
    if (lfe_present) {
        int lf_buf = dca_lfe_index[srcfmt];
        int lf_idx = dca_channels [srcfmt];
        for (i = 0; i < 256; i++) {
            samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
            samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
        }
    }
}


#ifndef decode_blockcodes
/* Very compact version of the block code decoder that does not use table
 * look-up but is slightly slower */
static int decode_blockcode(int code, int levels, int32_t *values)
{
    int i;
    int offset = (levels - 1) >> 1;

    for (i = 0; i < 4; i++) {
        int div = FASTDIV(code, levels);
        values[i] = code - offset - div * levels;
        code = div;
    }

    return code;
}

static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
{
    return decode_blockcode(code1, levels, values) |
           decode_blockcode(code2, levels, values + 4);
}
#endif

static const uint8_t abits_sizes[7]  = { 7, 10, 12, 13, 15, 17, 19 };
static const uint8_t abits_levels[7] = { 3,  5,  7,  9, 13, 17, 25 };

#ifndef int8x8_fmul_int32
static inline void int8x8_fmul_int32(DCADSPContext *dsp, float *dst,
                                     const int8_t *src, int scale)
{
    dsp->int8x8_fmul_int32(dst, src, scale);
}
#endif

static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
{
    int k, l;
    int subsubframe = s->current_subsubframe;

    const float *quant_step_table;

    /* FIXME */
    float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
    LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);

    /*
     * Audio data
     */

    /* Select quantization step size table */
    if (s->bit_rate_index == 0x1f)
        quant_step_table = lossless_quant_d;
    else
        quant_step_table = lossy_quant_d;

    for (k = base_channel; k < s->prim_channels; k++) {
        float rscale[DCA_SUBBANDS];

        if (get_bits_left(&s->gb) < 0)
            return AVERROR_INVALIDDATA;

        for (l = 0; l < s->vq_start_subband[k]; l++) {
            int m;

            /* Select the mid-tread linear quantizer */
            int abits = s->bitalloc[k][l];

            float quant_step_size = quant_step_table[abits];

            /*
             * Determine quantization index code book and its type
             */

            /* Select quantization index code book */
            int sel = s->quant_index_huffman[k][abits];

            /*
             * Extract bits from the bit stream
             */
            if (!abits) {
                rscale[l] = 0;
                memset(block + 8 * l, 0, 8 * sizeof(block[0]));
            } else {
                /* Deal with transients */
                int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
                rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
                               s->scalefactor_adj[k][sel];

                if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
                    if (abits <= 7) {
                        /* Block code */
                        int block_code1, block_code2, size, levels, err;

                        size   = abits_sizes[abits - 1];
                        levels = abits_levels[abits - 1];

                        block_code1 = get_bits(&s->gb, size);
                        block_code2 = get_bits(&s->gb, size);
                        err = decode_blockcodes(block_code1, block_code2,
                                                levels, block + 8 * l);
                        if (err) {
                            av_log(s->avctx, AV_LOG_ERROR,
                                   "ERROR: block code look-up failed\n");
                            return AVERROR_INVALIDDATA;
                        }
                    } else {
                        /* no coding */
                        for (m = 0; m < 8; m++)
                            block[8 * l + m] = get_sbits(&s->gb, abits - 3);
                    }
                } else {
                    /* Huffman coded */
                    for (m = 0; m < 8; m++)
                        block[8 * l + m] = get_bitalloc(&s->gb,
                                                &dca_smpl_bitalloc[abits], sel);
                }

            }
        }

        s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
                                               block, rscale, 8 * s->vq_start_subband[k]);

        for (l = 0; l < s->vq_start_subband[k]; l++) {
            int m;
            /*
             * Inverse ADPCM if in prediction mode
             */
            if (s->prediction_mode[k][l]) {
                int n;
                for (m = 0; m < 8; m++) {
                    for (n = 1; n <= 4; n++)
                        if (m >= n)
                            subband_samples[k][l][m] +=
                                (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
                                 subband_samples[k][l][m - n] / 8192);
                        else if (s->predictor_history)
                            subband_samples[k][l][m] +=
                                (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
                                 s->subband_samples_hist[k][l][m - n + 4] / 8192);
                }
            }
        }

        /*
         * Decode VQ encoded high frequencies
         */
        for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
            /* 1 vector -> 32 samples but we only need the 8 samples
             * for this subsubframe. */
            int hfvq = s->high_freq_vq[k][l];

            if (!s->debug_flag & 0x01) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "Stream with high frequencies VQ coding\n");
                s->debug_flag |= 0x01;
            }

            int8x8_fmul_int32(&s->dcadsp, subband_samples[k][l],
                              &high_freq_vq[hfvq][subsubframe * 8],
                              s->scale_factor[k][l][0]);
        }
    }

    /* Check for DSYNC after subsubframe */
    if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
        if (0xFFFF == get_bits(&s->gb, 16)) {   /* 0xFFFF */
#ifdef TRACE
            av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
#endif
        } else {
            av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
            return AVERROR_INVALIDDATA;
        }
    }

    /* Backup predictor history for adpcm */
    for (k = base_channel; k < s->prim_channels; k++)
        for (l = 0; l < s->vq_start_subband[k]; l++)
            AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);

    return 0;
}

static int dca_filter_channels(DCAContext *s, int block_index)
{
    float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
    int k;

    /* 32 subbands QMF */
    for (k = 0; k < s->prim_channels; k++) {
/*        static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
                                            0, 8388608.0, 8388608.0 };*/
        if (s->channel_order_tab[k] >= 0)
            qmf_32_subbands(s, k, subband_samples[k],
                            s->samples_chanptr[s->channel_order_tab[k]],
                            M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
    }

    /* Generate LFE samples for this subsubframe FIXME!!! */
    if (s->lfe) {
        lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
                              s->lfe_data + 2 * s->lfe * (block_index + 4),
                              s->samples_chanptr[dca_lfe_index[s->amode]],
                              1.0 / (256.0 * 32768.0));
        /* Outputs 20bits pcm samples */
    }

    /* Downmixing to Stereo */
    if (s->prim_channels + !!s->lfe > 2 &&
        s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
        dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
                    s->channel_order_tab);
    }

    return 0;
}


static int dca_subframe_footer(DCAContext *s, int base_channel)
{
    int in, out, aux_data_count, aux_data_end, reserved;
    uint32_t nsyncaux;

    /*
     * Unpack optional information
     */

    /* presumably optional information only appears in the core? */
    if (!base_channel) {
        if (s->timestamp)
            skip_bits_long(&s->gb, 32);

        if (s->aux_data) {
            aux_data_count = get_bits(&s->gb, 6);

            // align (32-bit)
            skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);

            aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);

            if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
                av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
                       nsyncaux);
                return AVERROR_INVALIDDATA;
            }

            if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
                avpriv_request_sample(s->avctx,
                                      "Auxiliary Decode Time Stamp Flag");
                // align (4-bit)
                skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
                // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
                skip_bits_long(&s->gb, 44);
            }

            if ((s->core_downmix = get_bits1(&s->gb))) {
                int am = get_bits(&s->gb, 3);
                switch (am) {
                case 0:
                    s->core_downmix_amode = DCA_MONO;
                    break;
                case 1:
                    s->core_downmix_amode = DCA_STEREO;
                    break;
                case 2:
                    s->core_downmix_amode = DCA_STEREO_TOTAL;
                    break;
                case 3:
                    s->core_downmix_amode = DCA_3F;
                    break;
                case 4:
                    s->core_downmix_amode = DCA_2F1R;
                    break;
                case 5:
                    s->core_downmix_amode = DCA_2F2R;
                    break;
                case 6:
                    s->core_downmix_amode = DCA_3F1R;
                    break;
                default:
                    av_log(s->avctx, AV_LOG_ERROR,
                           "Invalid mode %d for embedded downmix coefficients\n",
                           am);
                    return AVERROR_INVALIDDATA;
                }
                for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
                    for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
                        uint16_t tmp = get_bits(&s->gb, 9);
                        if ((tmp & 0xFF) > 241) {
                            av_log(s->avctx, AV_LOG_ERROR,
                                   "Invalid downmix coefficient code %"PRIu16"\n",
                                   tmp);
                            return AVERROR_INVALIDDATA;
                        }
                        s->core_downmix_codes[in][out] = tmp;
                    }
                }
            }

            align_get_bits(&s->gb); // byte align
            skip_bits(&s->gb, 16);  // nAUXCRC16

            // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
            if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
                 av_log(s->avctx, AV_LOG_ERROR,
                        "Overread auxiliary data by %d bits\n", -reserved);
                return AVERROR_INVALIDDATA;
            } else if (reserved) {
                avpriv_request_sample(s->avctx,
                                      "Core auxiliary data reserved content");
                skip_bits_long(&s->gb, reserved);
            }
        }

        if (s->crc_present && s->dynrange)
            get_bits(&s->gb, 16);
    }

    return 0;
}

/**
 * Decode a dca frame block
 *
 * @param s     pointer to the DCAContext
 */

static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
{
    int ret;

    /* Sanity check */
    if (s->current_subframe >= s->subframes) {
        av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
               s->current_subframe, s->subframes);
        return AVERROR_INVALIDDATA;
    }

    if (!s->current_subsubframe) {
#ifdef TRACE
        av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
#endif
        /* Read subframe header */
        if ((ret = dca_subframe_header(s, base_channel, block_index)))
            return ret;
    }

    /* Read subsubframe */
#ifdef TRACE
    av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
#endif
    if ((ret = dca_subsubframe(s, base_channel, block_index)))
        return ret;

    /* Update state */
    s->current_subsubframe++;
    if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
        s->current_subsubframe = 0;
        s->current_subframe++;
    }
    if (s->current_subframe >= s->subframes) {
#ifdef TRACE
        av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
#endif
        /* Read subframe footer */
        if ((ret = dca_subframe_footer(s, base_channel)))
            return ret;
    }

    return 0;
}

/**
 * Return the number of channels in an ExSS speaker mask (HD)
 */
static int dca_exss_mask2count(int mask)
{
    /* count bits that mean speaker pairs twice */
    return av_popcount(mask) +
           av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT      |
                               DCA_EXSS_FRONT_LEFT_RIGHT       |
                               DCA_EXSS_FRONT_HIGH_LEFT_RIGHT  |
                               DCA_EXSS_WIDE_LEFT_RIGHT        |
                               DCA_EXSS_SIDE_LEFT_RIGHT        |
                               DCA_EXSS_SIDE_HIGH_LEFT_RIGHT   |
                               DCA_EXSS_SIDE_REAR_LEFT_RIGHT   |
                               DCA_EXSS_REAR_LEFT_RIGHT        |
                               DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
}

/**
 * Skip mixing coefficients of a single mix out configuration (HD)
 */
static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
{
    int i;

    for (i = 0; i < channels; i++) {
        int mix_map_mask = get_bits(gb, out_ch);
        int num_coeffs = av_popcount(mix_map_mask);
        skip_bits_long(gb, num_coeffs * 6);
    }
}

/**
 * Parse extension substream asset header (HD)
 */
static int dca_exss_parse_asset_header(DCAContext *s)
{
    int header_pos = get_bits_count(&s->gb);
    int header_size;
    int channels;
    int embedded_stereo = 0;
    int embedded_6ch    = 0;
    int drc_code_present;
    int extensions_mask;
    int i, j;

    if (get_bits_left(&s->gb) < 16)
        return -1;

    /* We will parse just enough to get to the extensions bitmask with which
     * we can set the profile value. */

    header_size = get_bits(&s->gb, 9) + 1;
    skip_bits(&s->gb, 3); // asset index

    if (s->static_fields) {
        if (get_bits1(&s->gb))
            skip_bits(&s->gb, 4); // asset type descriptor
        if (get_bits1(&s->gb))
            skip_bits_long(&s->gb, 24); // language descriptor

        if (get_bits1(&s->gb)) {
            /* How can one fit 1024 bytes of text here if the maximum value
             * for the asset header size field above was 512 bytes? */
            int text_length = get_bits(&s->gb, 10) + 1;
            if (get_bits_left(&s->gb) < text_length * 8)
                return -1;
            skip_bits_long(&s->gb, text_length * 8); // info text
        }

        skip_bits(&s->gb, 5); // bit resolution - 1
        skip_bits(&s->gb, 4); // max sample rate code
        channels = get_bits(&s->gb, 8) + 1;

        if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
            int spkr_remap_sets;
            int spkr_mask_size = 16;
            int num_spkrs[7];

            if (channels > 2)
                embedded_stereo = get_bits1(&s->gb);
            if (channels > 6)
                embedded_6ch = get_bits1(&s->gb);

            if (get_bits1(&s->gb)) {
                spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
                skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
            }

            spkr_remap_sets = get_bits(&s->gb, 3);

            for (i = 0; i < spkr_remap_sets; i++) {
                /* std layout mask for each remap set */
                num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
            }

            for (i = 0; i < spkr_remap_sets; i++) {
                int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
                if (get_bits_left(&s->gb) < 0)
                    return -1;

                for (j = 0; j < num_spkrs[i]; j++) {
                    int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
                    int num_dec_ch = av_popcount(remap_dec_ch_mask);
                    skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
                }
            }

        } else {
            skip_bits(&s->gb, 3); // representation type
        }
    }

    drc_code_present = get_bits1(&s->gb);
    if (drc_code_present)
        get_bits(&s->gb, 8); // drc code

    if (get_bits1(&s->gb))
        skip_bits(&s->gb, 5); // dialog normalization code

    if (drc_code_present && embedded_stereo)
        get_bits(&s->gb, 8); // drc stereo code

    if (s->mix_metadata && get_bits1(&s->gb)) {
        skip_bits(&s->gb, 1); // external mix
        skip_bits(&s->gb, 6); // post mix gain code

        if (get_bits(&s->gb, 2) != 3) // mixer drc code
            skip_bits(&s->gb, 3); // drc limit
        else
            skip_bits(&s->gb, 8); // custom drc code

        if (get_bits1(&s->gb)) // channel specific scaling
            for (i = 0; i < s->num_mix_configs; i++)
                skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
        else
            skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes

        for (i = 0; i < s->num_mix_configs; i++) {
            if (get_bits_left(&s->gb) < 0)
                return -1;
            dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
            if (embedded_6ch)
                dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
            if (embedded_stereo)
                dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
        }
    }

    switch (get_bits(&s->gb, 2)) {
    case 0: extensions_mask = get_bits(&s->gb, 12); break;
    case 1: extensions_mask = DCA_EXT_EXSS_XLL;     break;
    case 2: extensions_mask = DCA_EXT_EXSS_LBR;     break;
    case 3: extensions_mask = 0; /* aux coding */   break;
    }

    /* not parsed further, we were only interested in the extensions mask */

    if (get_bits_left(&s->gb) < 0)
        return -1;

    if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
        av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
        return -1;
    }
    skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));

    if (extensions_mask & DCA_EXT_EXSS_XLL)
        s->profile = FF_PROFILE_DTS_HD_MA;
    else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
                                DCA_EXT_EXSS_XXCH))
        s->profile = FF_PROFILE_DTS_HD_HRA;

    if (!(extensions_mask & DCA_EXT_CORE))
        av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
    if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
        av_log(s->avctx, AV_LOG_WARNING,
               "DTS extensions detection mismatch (%d, %d)\n",
               extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);

    return 0;
}

/**
 * Parse extension substream header (HD)
 */
static void dca_exss_parse_header(DCAContext *s)
{
    int ss_index;
    int blownup;
    int num_audiop = 1;
    int num_assets = 1;
    int active_ss_mask[8];
    int i, j;

    if (get_bits_left(&s->gb) < 52)
        return;

    skip_bits(&s->gb, 8); // user data
    ss_index = get_bits(&s->gb, 2);

    blownup = get_bits1(&s->gb);
    skip_bits(&s->gb,  8 + 4 * blownup); // header_size
    skip_bits(&s->gb, 16 + 4 * blownup); // hd_size

    s->static_fields = get_bits1(&s->gb);
    if (s->static_fields) {
        skip_bits(&s->gb, 2); // reference clock code
        skip_bits(&s->gb, 3); // frame duration code

        if (get_bits1(&s->gb))
            skip_bits_long(&s->gb, 36); // timestamp

        /* a single stream can contain multiple audio assets that can be
         * combined to form multiple audio presentations */

        num_audiop = get_bits(&s->gb, 3) + 1;
        if (num_audiop > 1) {
            avpriv_request_sample(s->avctx,
                                  "Multiple DTS-HD audio presentations");
            /* ignore such streams for now */
            return;
        }

        num_assets = get_bits(&s->gb, 3) + 1;
        if (num_assets > 1) {
            avpriv_request_sample(s->avctx, "Multiple DTS-HD audio assets");
            /* ignore such streams for now */
            return;
        }

        for (i = 0; i < num_audiop; i++)
            active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);

        for (i = 0; i < num_audiop; i++)
            for (j = 0; j <= ss_index; j++)
                if (active_ss_mask[i] & (1 << j))
                    skip_bits(&s->gb, 8); // active asset mask

        s->mix_metadata = get_bits1(&s->gb);
        if (s->mix_metadata) {
            int mix_out_mask_size;

            skip_bits(&s->gb, 2); // adjustment level
            mix_out_mask_size  = (get_bits(&s->gb, 2) + 1) << 2;
            s->num_mix_configs =  get_bits(&s->gb, 2) + 1;

            for (i = 0; i < s->num_mix_configs; i++) {
                int mix_out_mask        = get_bits(&s->gb, mix_out_mask_size);
                s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
            }
        }
    }

    for (i = 0; i < num_assets; i++)
        skip_bits_long(&s->gb, 16 + 4 * blownup);  // asset size

    for (i = 0; i < num_assets; i++) {
        if (dca_exss_parse_asset_header(s))
            return;
    }

    /* not parsed further, we were only interested in the extensions mask
     * from the asset header */
}

/**
 * Main frame decoding function
 * FIXME add arguments
 */
static int dca_decode_frame(AVCodecContext *avctx, void *data,
                            int *got_frame_ptr, AVPacket *avpkt)
{
    AVFrame *frame     = data;
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;

    int lfe_samples;
    int num_core_channels = 0;
    int i, ret;
    float  **samples_flt;
    DCAContext *s = avctx->priv_data;
    int channels, full_channels;
    int core_ss_end;


    s->xch_present = 0;

    s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
                                                  DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
    if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
        av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
        return AVERROR_INVALIDDATA;
    }

    init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
    if ((ret = dca_parse_frame_header(s)) < 0) {
        //seems like the frame is corrupt, try with the next one
        return ret;
    }
    //set AVCodec values with parsed data
    avctx->sample_rate = s->sample_rate;
    avctx->bit_rate    = s->bit_rate;

    s->profile = FF_PROFILE_DTS;

    for (i = 0; i < (s->sample_blocks / 8); i++) {
        if ((ret = dca_decode_block(s, 0, i))) {
            av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
            return ret;
        }
    }

    /* record number of core channels incase less than max channels are requested */
    num_core_channels = s->prim_channels;

    if (s->ext_coding)
        s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
    else
        s->core_ext_mask = 0;

    core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;

    /* only scan for extensions if ext_descr was unknown or indicated a
     * supported XCh extension */
    if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {

        /* if ext_descr was unknown, clear s->core_ext_mask so that the
         * extensions scan can fill it up */
        s->core_ext_mask = FFMAX(s->core_ext_mask, 0);

        /* extensions start at 32-bit boundaries into bitstream */
        skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);

        while (core_ss_end - get_bits_count(&s->gb) >= 32) {
            uint32_t bits = get_bits_long(&s->gb, 32);

            switch (bits) {
            case 0x5a5a5a5a: {
                int ext_amode, xch_fsize;

                s->xch_base_channel = s->prim_channels;

                /* validate sync word using XCHFSIZE field */
                xch_fsize = show_bits(&s->gb, 10);
                if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
                    (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
                    continue;

                /* skip length-to-end-of-frame field for the moment */
                skip_bits(&s->gb, 10);

                s->core_ext_mask |= DCA_EXT_XCH;

                /* extension amode(number of channels in extension) should be 1 */
                /* AFAIK XCh is not used for more channels */
                if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
                    av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
                           " supported!\n", ext_amode);
                    continue;
                }

                /* much like core primary audio coding header */
                dca_parse_audio_coding_header(s, s->xch_base_channel);

                for (i = 0; i < (s->sample_blocks / 8); i++)
                    if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
                        av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
                        continue;
                    }

                s->xch_present = 1;
                break;
            }
            case 0x47004a03:
                /* XXCh: extended channels */
                /* usually found either in core or HD part in DTS-HD HRA streams,
                 * but not in DTS-ES which contains XCh extensions instead */
                s->core_ext_mask |= DCA_EXT_XXCH;
                break;

            case 0x1d95f262: {
                int fsize96 = show_bits(&s->gb, 12) + 1;
                if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
                    continue;

                av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
                       get_bits_count(&s->gb));
                skip_bits(&s->gb, 12);
                av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
                av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));

                s->core_ext_mask |= DCA_EXT_X96;
                break;
            }
            }

            skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
        }
    } else {
        /* no supported extensions, skip the rest of the core substream */
        skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
    }

    if (s->core_ext_mask & DCA_EXT_X96)
        s->profile = FF_PROFILE_DTS_96_24;
    else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
        s->profile = FF_PROFILE_DTS_ES;

    /* check for ExSS (HD part) */
    if (s->dca_buffer_size - s->frame_size > 32 &&
        get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
        dca_exss_parse_header(s);

    avctx->profile = s->profile;

    full_channels = channels = s->prim_channels + !!s->lfe;

    if (s->amode < 16) {
        avctx->channel_layout = dca_core_channel_layout[s->amode];

        if (s->prim_channels + !!s->lfe > 2 &&
            avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
            /*
             * Neither the core's auxiliary data nor our default tables contain
             * downmix coefficients for the additional channel coded in the XCh
             * extension, so when we're doing a Stereo downmix, don't decode it.
             */
            s->xch_disable = 1;
        }

#if FF_API_REQUEST_CHANNELS
FF_DISABLE_DEPRECATION_WARNINGS
        if (s->xch_present && !s->xch_disable &&
            (!avctx->request_channels ||
             avctx->request_channels > num_core_channels + !!s->lfe)) {
FF_ENABLE_DEPRECATION_WARNINGS
#else
        if (s->xch_present && !s->xch_disable) {
#endif
            avctx->channel_layout |= AV_CH_BACK_CENTER;
            if (s->lfe) {
                avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
                s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
            } else {
                s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
            }
        } else {
            channels = num_core_channels + !!s->lfe;
            s->xch_present = 0; /* disable further xch processing */
            if (s->lfe) {
                avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
                s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
            } else
                s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
        }

        if (channels > !!s->lfe &&
            s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
            return AVERROR_INVALIDDATA;

        if (num_core_channels + !!s->lfe > 2 &&
            avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
            channels = 2;
            s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
            avctx->channel_layout = AV_CH_LAYOUT_STEREO;

            /* Stereo downmix coefficients
             *
             * The decoder can only downmix to 2-channel, so we need to ensure
             * embedded downmix coefficients are actually targeting 2-channel.
             */
            if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
                                    s->core_downmix_amode == DCA_STEREO_TOTAL)) {
                int sign, code;
                for (i = 0; i < num_core_channels + !!s->lfe; i++) {
                    sign = s->core_downmix_codes[i][0] & 0x100 ? 1 : -1;
                    code = s->core_downmix_codes[i][0] & 0x0FF;
                    s->downmix_coef[i][0] = (!code ? 0.0f :
                                             sign * dca_dmixtable[code - 1]);
                    sign = s->core_downmix_codes[i][1] & 0x100 ? 1 : -1;
                    code = s->core_downmix_codes[i][1] & 0x0FF;
                    s->downmix_coef[i][1] = (!code ? 0.0f :
                                             sign * dca_dmixtable[code - 1]);
                }
                s->output = s->core_downmix_amode;
            } else {
                int am = s->amode & DCA_CHANNEL_MASK;
                if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
                    av_log(s->avctx, AV_LOG_ERROR,
                           "Invalid channel mode %d\n", am);
                    return AVERROR_INVALIDDATA;
                }
                if (num_core_channels + !!s->lfe >
                    FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
                    avpriv_request_sample(s->avctx, "Downmixing %d channels",
                                          s->prim_channels + !!s->lfe);
                    return AVERROR_PATCHWELCOME;
                }
                for (i = 0; i < num_core_channels + !!s->lfe; i++) {
                    s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
                    s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
                }
            }
            av_dlog(s->avctx, "Stereo downmix coeffs:\n");
            for (i = 0; i < num_core_channels + !!s->lfe; i++) {
                av_dlog(s->avctx, "L, input channel %d = %f\n", i,
                        s->downmix_coef[i][0]);
                av_dlog(s->avctx, "R, input channel %d = %f\n", i,
                        s->downmix_coef[i][1]);
            }
            av_dlog(s->avctx, "\n");
        }
    } else {
        av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
        return AVERROR_INVALIDDATA;
    }
    avctx->channels = channels;

    /* get output buffer */
    frame->nb_samples = 256 * (s->sample_blocks / 8);
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
        return ret;
    }
    samples_flt = (float **)frame->extended_data;

    /* allocate buffer for extra channels if downmixing */
    if (avctx->channels < full_channels) {
        ret = av_samples_get_buffer_size(NULL, full_channels - channels,
                                         frame->nb_samples,
                                         avctx->sample_fmt, 0);
        if (ret < 0)
            return ret;

        av_fast_malloc(&s->extra_channels_buffer,
                       &s->extra_channels_buffer_size, ret);
        if (!s->extra_channels_buffer)
            return AVERROR(ENOMEM);

        ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
                                     s->extra_channels_buffer,
                                     full_channels - channels,
                                     frame->nb_samples, avctx->sample_fmt, 0);
        if (ret < 0)
            return ret;
    }

    /* filter to get final output */
    for (i = 0; i < (s->sample_blocks / 8); i++) {
        int ch;

        for (ch = 0; ch < channels; ch++)
            s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
        for (; ch < full_channels; ch++)
            s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;

        dca_filter_channels(s, i);

        /* If this was marked as a DTS-ES stream we need to subtract back- */
        /* channel from SL & SR to remove matrixed back-channel signal */
        if ((s->source_pcm_res & 1) && s->xch_present) {
            float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
            float *lt_chan   = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
            float *rt_chan   = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
            s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
            s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
        }
    }

    /* update lfe history */
    lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
    for (i = 0; i < 2 * s->lfe * 4; i++)
        s->lfe_data[i] = s->lfe_data[i + lfe_samples];

    /* AVMatrixEncoding
     *
     * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
    ret = ff_side_data_update_matrix_encoding(frame,
                                              (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
                                              AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
    if (ret < 0)
        return ret;

    *got_frame_ptr = 1;

    return buf_size;
}



/**
 * DCA initialization
 *
 * @param avctx     pointer to the AVCodecContext
 */

static av_cold int dca_decode_init(AVCodecContext *avctx)
{
    DCAContext *s = avctx->priv_data;

    s->avctx = avctx;
    dca_init_vlcs();

    avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
    ff_mdct_init(&s->imdct, 6, 1, 1.0);
    ff_synth_filter_init(&s->synth);
    ff_dcadsp_init(&s->dcadsp);
    ff_fmt_convert_init(&s->fmt_conv, avctx);

    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;

    /* allow downmixing to stereo */
#if FF_API_REQUEST_CHANNELS
FF_DISABLE_DEPRECATION_WARNINGS
    if (avctx->request_channels == 2)
        avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
    if (avctx->channels > 2 &&
        avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
        avctx->channels = 2;

    return 0;
}

static av_cold int dca_decode_end(AVCodecContext *avctx)
{
    DCAContext *s = avctx->priv_data;
    ff_mdct_end(&s->imdct);
    av_freep(&s->extra_channels_buffer);
    return 0;
}

static const AVProfile profiles[] = {
    { FF_PROFILE_DTS,        "DTS"        },
    { FF_PROFILE_DTS_ES,     "DTS-ES"     },
    { FF_PROFILE_DTS_96_24,  "DTS 96/24"  },
    { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
    { FF_PROFILE_DTS_HD_MA,  "DTS-HD MA"  },
    { FF_PROFILE_UNKNOWN },
};

static const AVOption options[] = {
    { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM|AV_OPT_FLAG_AUDIO_PARAM },
    { NULL },
};

static const AVClass dca_decoder_class = {
    .class_name = "DCA decoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

AVCodec ff_dca_decoder = {
    .name            = "dca",
    .long_name       = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
    .type            = AVMEDIA_TYPE_AUDIO,
    .id              = AV_CODEC_ID_DTS,
    .priv_data_size  = sizeof(DCAContext),
    .init            = dca_decode_init,
    .decode          = dca_decode_frame,
    .close           = dca_decode_end,
    .capabilities    = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
    .sample_fmts     = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                       AV_SAMPLE_FMT_NONE },
    .profiles        = NULL_IF_CONFIG_SMALL(profiles),
    .priv_class      = &dca_decoder_class,
};