aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/dcadec.c
blob: 741f2f766dd176b9172a36e4a6e56802db711468 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
/*
 * DCA compatible decoder
 * Copyright (C) 2004 Gildas Bazin
 * Copyright (C) 2004 Benjamin Zores
 * Copyright (C) 2006 Benjamin Larsson
 * Copyright (C) 2007 Konstantin Shishkov
 * Copyright (C) 2012 Paul B Mahol
 * Copyright (C) 2014 Niels Möller
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

#include "libavutil/attributes.h"
#include "libavutil/channel_layout.h"
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"

#include "avcodec.h"
#include "dca.h"
#include "dca_syncwords.h"
#include "dcadata.h"
#include "dcadsp.h"
#include "dcahuff.h"
#include "fft.h"
#include "fmtconvert.h"
#include "get_bits.h"
#include "internal.h"
#include "mathops.h"
#include "synth_filter.h"

#if ARCH_ARM
#   include "arm/dca.h"
#endif

enum DCAMode {
    DCA_MONO = 0,
    DCA_CHANNEL,
    DCA_STEREO,
    DCA_STEREO_SUMDIFF,
    DCA_STEREO_TOTAL,
    DCA_3F,
    DCA_2F1R,
    DCA_3F1R,
    DCA_2F2R,
    DCA_3F2R,
    DCA_4F2R
};


enum DCAXxchSpeakerMask {
    DCA_XXCH_FRONT_CENTER          = 0x0000001,
    DCA_XXCH_FRONT_LEFT            = 0x0000002,
    DCA_XXCH_FRONT_RIGHT           = 0x0000004,
    DCA_XXCH_SIDE_REAR_LEFT        = 0x0000008,
    DCA_XXCH_SIDE_REAR_RIGHT       = 0x0000010,
    DCA_XXCH_LFE1                  = 0x0000020,
    DCA_XXCH_REAR_CENTER           = 0x0000040,
    DCA_XXCH_SURROUND_REAR_LEFT    = 0x0000080,
    DCA_XXCH_SURROUND_REAR_RIGHT   = 0x0000100,
    DCA_XXCH_SIDE_SURROUND_LEFT    = 0x0000200,
    DCA_XXCH_SIDE_SURROUND_RIGHT   = 0x0000400,
    DCA_XXCH_FRONT_CENTER_LEFT     = 0x0000800,
    DCA_XXCH_FRONT_CENTER_RIGHT    = 0x0001000,
    DCA_XXCH_FRONT_HIGH_LEFT       = 0x0002000,
    DCA_XXCH_FRONT_HIGH_CENTER     = 0x0004000,
    DCA_XXCH_FRONT_HIGH_RIGHT      = 0x0008000,
    DCA_XXCH_LFE2                  = 0x0010000,
    DCA_XXCH_SIDE_FRONT_LEFT       = 0x0020000,
    DCA_XXCH_SIDE_FRONT_RIGHT      = 0x0040000,
    DCA_XXCH_OVERHEAD              = 0x0080000,
    DCA_XXCH_SIDE_HIGH_LEFT        = 0x0100000,
    DCA_XXCH_SIDE_HIGH_RIGHT       = 0x0200000,
    DCA_XXCH_REAR_HIGH_CENTER      = 0x0400000,
    DCA_XXCH_REAR_HIGH_LEFT        = 0x0800000,
    DCA_XXCH_REAR_HIGH_RIGHT       = 0x1000000,
    DCA_XXCH_REAR_LOW_CENTER       = 0x2000000,
    DCA_XXCH_REAR_LOW_LEFT         = 0x4000000,
    DCA_XXCH_REAR_LOW_RIGHT        = 0x8000000,
};

#define DCA_DOLBY                  101           /* FIXME */

#define DCA_CHANNEL_BITS             6
#define DCA_CHANNEL_MASK          0x3F

#define DCA_LFE                   0x80

#define HEADER_SIZE                 14

#define DCA_NSYNCAUX        0x9A1105A0


/** Bit allocation */
typedef struct BitAlloc {
    int offset;                 ///< code values offset
    int maxbits[8];             ///< max bits in VLC
    int wrap;                   ///< wrap for get_vlc2()
    VLC vlc[8];                 ///< actual codes
} BitAlloc;

static BitAlloc dca_bitalloc_index;    ///< indexes for samples VLC select
static BitAlloc dca_tmode;             ///< transition mode VLCs
static BitAlloc dca_scalefactor;       ///< scalefactor VLCs
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs

static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
                                         int idx)
{
    return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
           ba->offset;
}

static float dca_dmix_code(unsigned code);

static av_cold void dca_init_vlcs(void)
{
    static int vlcs_initialized = 0;
    int i, j, c = 14;
    static VLC_TYPE dca_table[23622][2];

    if (vlcs_initialized)
        return;

    dca_bitalloc_index.offset = 1;
    dca_bitalloc_index.wrap   = 2;
    for (i = 0; i < 5; i++) {
        dca_bitalloc_index.vlc[i].table           = &dca_table[ff_dca_vlc_offs[i]];
        dca_bitalloc_index.vlc[i].table_allocated = ff_dca_vlc_offs[i + 1] - ff_dca_vlc_offs[i];
        init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
                 bitalloc_12_bits[i], 1, 1,
                 bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }
    dca_scalefactor.offset = -64;
    dca_scalefactor.wrap   = 2;
    for (i = 0; i < 5; i++) {
        dca_scalefactor.vlc[i].table           = &dca_table[ff_dca_vlc_offs[i + 5]];
        dca_scalefactor.vlc[i].table_allocated = ff_dca_vlc_offs[i + 6] - ff_dca_vlc_offs[i + 5];
        init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
                 scales_bits[i], 1, 1,
                 scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }
    dca_tmode.offset = 0;
    dca_tmode.wrap   = 1;
    for (i = 0; i < 4; i++) {
        dca_tmode.vlc[i].table           = &dca_table[ff_dca_vlc_offs[i + 10]];
        dca_tmode.vlc[i].table_allocated = ff_dca_vlc_offs[i + 11] - ff_dca_vlc_offs[i + 10];
        init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
                 tmode_bits[i], 1, 1,
                 tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }

    for (i = 0; i < 10; i++)
        for (j = 0; j < 7; j++) {
            if (!bitalloc_codes[i][j])
                break;
            dca_smpl_bitalloc[i + 1].offset                 = bitalloc_offsets[i];
            dca_smpl_bitalloc[i + 1].wrap                   = 1 + (j > 4);
            dca_smpl_bitalloc[i + 1].vlc[j].table           = &dca_table[ff_dca_vlc_offs[c]];
            dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = ff_dca_vlc_offs[c + 1] - ff_dca_vlc_offs[c];

            init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
                     bitalloc_sizes[i],
                     bitalloc_bits[i][j], 1, 1,
                     bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
            c++;
        }
    vlcs_initialized = 1;
}

static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
{
    while (len--)
        *dst++ = get_bits(gb, bits);
}

static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
{
    int i, base, mask;

    /* locate channel set containing the channel */
    for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
         i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
        base += av_popcount(mask);

    return base + av_popcount(mask & (xxch_ch - 1));
}

static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
                                         int xxch)
{
    int i, j;
    static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
    static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
    static const int thr[11]    = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
    int hdr_pos = 0, hdr_size = 0;
    float scale_factor;
    int this_chans, acc_mask;
    int embedded_downmix;
    int nchans, mask[8];
    int coeff, ichan;

    /* xxch has arbitrary sized audio coding headers */
    if (xxch) {
        hdr_pos  = get_bits_count(&s->gb);
        hdr_size = get_bits(&s->gb, 7) + 1;
    }

    nchans = get_bits(&s->gb, 3) + 1;
    if (xxch && nchans >= 3) {
        av_log(s->avctx, AV_LOG_ERROR, "nchans %d is too large\n", nchans);
        return AVERROR_INVALIDDATA;
    } else if (nchans + base_channel > DCA_PRIM_CHANNELS_MAX) {
        av_log(s->avctx, AV_LOG_ERROR, "channel sum %d + %d is too large\n", nchans, base_channel);
        return AVERROR_INVALIDDATA;
    }

    s->total_channels = nchans + base_channel;
    s->prim_channels  = s->total_channels;

    /* obtain speaker layout mask & downmix coefficients for XXCH */
    if (xxch) {
        acc_mask = s->xxch_core_spkmask;

        this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
        s->xxch_spk_masks[s->xxch_chset] = this_chans;
        s->xxch_chset_nch[s->xxch_chset] = nchans;

        for (i = 0; i <= s->xxch_chset; i++)
            acc_mask |= s->xxch_spk_masks[i];

        /* check for downmixing information */
        if (get_bits1(&s->gb)) {
            embedded_downmix = get_bits1(&s->gb);
            coeff            = get_bits(&s->gb, 6);

            if (coeff<1 || coeff>61) {
                av_log(s->avctx, AV_LOG_ERROR, "6bit coeff %d is out of range\n", coeff);
                return AVERROR_INVALIDDATA;
            }

            scale_factor     = -1.0f / dca_dmix_code((coeff<<2)-3);

            s->xxch_dmix_sf[s->xxch_chset] = scale_factor;

            for (i = base_channel; i < s->prim_channels; i++) {
                mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
            }

            for (j = base_channel; j < s->prim_channels; j++) {
                memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
                s->xxch_dmix_embedded |= (embedded_downmix << j);
                for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
                    if (mask[j] & (1 << i)) {
                        if ((1 << i) == DCA_XXCH_LFE1) {
                            av_log(s->avctx, AV_LOG_WARNING,
                                   "DCA-XXCH: dmix to LFE1 not supported.\n");
                            continue;
                        }

                        coeff = get_bits(&s->gb, 7);
                        ichan = dca_xxch2index(s, 1 << i);
                        if ((coeff&63)<1 || (coeff&63)>61) {
                            av_log(s->avctx, AV_LOG_ERROR, "7bit coeff %d is out of range\n", coeff);
                            return AVERROR_INVALIDDATA;
                        }
                        s->xxch_dmix_coeff[j][ichan] = dca_dmix_code((coeff<<2)-3);
                    }
                }
            }
        }
    }

    if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
        s->prim_channels = DCA_PRIM_CHANNELS_MAX;

    for (i = base_channel; i < s->prim_channels; i++) {
        s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
        if (s->subband_activity[i] > DCA_SUBBANDS)
            s->subband_activity[i] = DCA_SUBBANDS;
    }
    for (i = base_channel; i < s->prim_channels; i++) {
        s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
        if (s->vq_start_subband[i] > DCA_SUBBANDS)
            s->vq_start_subband[i] = DCA_SUBBANDS;
    }
    get_array(&s->gb, s->joint_intensity + base_channel,     s->prim_channels - base_channel, 3);
    get_array(&s->gb, s->transient_huffman + base_channel,   s->prim_channels - base_channel, 2);
    get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
    get_array(&s->gb, s->bitalloc_huffman + base_channel,    s->prim_channels - base_channel, 3);

    /* Get codebooks quantization indexes */
    if (!base_channel)
        memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
    for (j = 1; j < 11; j++)
        for (i = base_channel; i < s->prim_channels; i++)
            s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);

    /* Get scale factor adjustment */
    for (j = 0; j < 11; j++)
        for (i = base_channel; i < s->prim_channels; i++)
            s->scalefactor_adj[i][j] = 1;

    for (j = 1; j < 11; j++)
        for (i = base_channel; i < s->prim_channels; i++)
            if (s->quant_index_huffman[i][j] < thr[j])
                s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];

    if (!xxch) {
        if (s->crc_present) {
            /* Audio header CRC check */
            get_bits(&s->gb, 16);
        }
    } else {
        /* Skip to the end of the header, also ignore CRC if present  */
        i = get_bits_count(&s->gb);
        if (hdr_pos + 8 * hdr_size > i)
            skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
    }

    s->current_subframe    = 0;
    s->current_subsubframe = 0;

    return 0;
}

static int dca_parse_frame_header(DCAContext *s)
{
    init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);

    /* Sync code */
    skip_bits_long(&s->gb, 32);

    /* Frame header */
    s->frame_type        = get_bits(&s->gb, 1);
    s->samples_deficit   = get_bits(&s->gb, 5) + 1;
    s->crc_present       = get_bits(&s->gb, 1);
    s->sample_blocks     = get_bits(&s->gb, 7) + 1;
    s->frame_size        = get_bits(&s->gb, 14) + 1;
    if (s->frame_size < 95)
        return AVERROR_INVALIDDATA;
    s->amode             = get_bits(&s->gb, 6);
    s->sample_rate       = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
    if (!s->sample_rate)
        return AVERROR_INVALIDDATA;
    s->bit_rate_index    = get_bits(&s->gb, 5);
    s->bit_rate          = ff_dca_bit_rates[s->bit_rate_index];
    if (!s->bit_rate)
        return AVERROR_INVALIDDATA;

    skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
    s->dynrange          = get_bits(&s->gb, 1);
    s->timestamp         = get_bits(&s->gb, 1);
    s->aux_data          = get_bits(&s->gb, 1);
    s->hdcd              = get_bits(&s->gb, 1);
    s->ext_descr         = get_bits(&s->gb, 3);
    s->ext_coding        = get_bits(&s->gb, 1);
    s->aspf              = get_bits(&s->gb, 1);
    s->lfe               = get_bits(&s->gb, 2);
    s->predictor_history = get_bits(&s->gb, 1);

    if (s->lfe > 2) {
        s->lfe = 0;
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
        return AVERROR_INVALIDDATA;
    }

    /* TODO: check CRC */
    if (s->crc_present)
        s->header_crc    = get_bits(&s->gb, 16);

    s->multirate_inter   = get_bits(&s->gb, 1);
    s->version           = get_bits(&s->gb, 4);
    s->copy_history      = get_bits(&s->gb, 2);
    s->source_pcm_res    = get_bits(&s->gb, 3);
    s->front_sum         = get_bits(&s->gb, 1);
    s->surround_sum      = get_bits(&s->gb, 1);
    s->dialog_norm       = get_bits(&s->gb, 4);

    /* FIXME: channels mixing levels */
    s->output = s->amode;
    if (s->lfe)
        s->output |= DCA_LFE;

    /* Primary audio coding header */
    s->subframes = get_bits(&s->gb, 4) + 1;

    return dca_parse_audio_coding_header(s, 0, 0);
}

static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
{
    if (level < 5) {
        /* huffman encoded */
        value += get_bitalloc(gb, &dca_scalefactor, level);
        value  = av_clip(value, 0, (1 << log2range) - 1);
    } else if (level < 8) {
        if (level + 1 > log2range) {
            skip_bits(gb, level + 1 - log2range);
            value = get_bits(gb, log2range);
        } else {
            value = get_bits(gb, level + 1);
        }
    }
    return value;
}

static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
{
    /* Primary audio coding side information */
    int j, k;

    if (get_bits_left(&s->gb) < 0)
        return AVERROR_INVALIDDATA;

    if (!base_channel) {
        s->subsubframes[s->current_subframe]    = get_bits(&s->gb, 2) + 1;
        if (block_index + s->subsubframes[s->current_subframe] > s->sample_blocks/8) {
            s->subsubframes[s->current_subframe] = 1;
            return AVERROR_INVALIDDATA;
        }
        s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
    }

    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++)
            s->prediction_mode[j][k] = get_bits(&s->gb, 1);
    }

    /* Get prediction codebook */
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++) {
            if (s->prediction_mode[j][k] > 0) {
                /* (Prediction coefficient VQ address) */
                s->prediction_vq[j][k] = get_bits(&s->gb, 12);
            }
        }
    }

    /* Bit allocation index */
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->vq_start_subband[j]; k++) {
            if (s->bitalloc_huffman[j] == 6)
                s->bitalloc[j][k] = get_bits(&s->gb, 5);
            else if (s->bitalloc_huffman[j] == 5)
                s->bitalloc[j][k] = get_bits(&s->gb, 4);
            else if (s->bitalloc_huffman[j] == 7) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "Invalid bit allocation index\n");
                return AVERROR_INVALIDDATA;
            } else {
                s->bitalloc[j][k] =
                    get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
            }

            if (s->bitalloc[j][k] > 26) {
                ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
                        j, k, s->bitalloc[j][k]);
                return AVERROR_INVALIDDATA;
            }
        }
    }

    /* Transition mode */
    for (j = base_channel; j < s->prim_channels; j++) {
        for (k = 0; k < s->subband_activity[j]; k++) {
            s->transition_mode[j][k] = 0;
            if (s->subsubframes[s->current_subframe] > 1 &&
                k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
                s->transition_mode[j][k] =
                    get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
            }
        }
    }

    if (get_bits_left(&s->gb) < 0)
        return AVERROR_INVALIDDATA;

    for (j = base_channel; j < s->prim_channels; j++) {
        const uint32_t *scale_table;
        int scale_sum, log_size;

        memset(s->scale_factor[j], 0,
               s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);

        if (s->scalefactor_huffman[j] == 6) {
            scale_table = ff_dca_scale_factor_quant7;
            log_size    = 7;
        } else {
            scale_table = ff_dca_scale_factor_quant6;
            log_size    = 6;
        }

        /* When huffman coded, only the difference is encoded */
        scale_sum = 0;

        for (k = 0; k < s->subband_activity[j]; k++) {
            if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
                s->scale_factor[j][k][0] = scale_table[scale_sum];
            }

            if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
                /* Get second scale factor */
                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
                s->scale_factor[j][k][1] = scale_table[scale_sum];
            }
        }
    }

    /* Joint subband scale factor codebook select */
    for (j = base_channel; j < s->prim_channels; j++) {
        /* Transmitted only if joint subband coding enabled */
        if (s->joint_intensity[j] > 0)
            s->joint_huff[j] = get_bits(&s->gb, 3);
    }

    if (get_bits_left(&s->gb) < 0)
        return AVERROR_INVALIDDATA;

    /* Scale factors for joint subband coding */
    for (j = base_channel; j < s->prim_channels; j++) {
        int source_channel;

        /* Transmitted only if joint subband coding enabled */
        if (s->joint_intensity[j] > 0) {
            int scale = 0;
            source_channel = s->joint_intensity[j] - 1;

            /* When huffman coded, only the difference is encoded
             * (is this valid as well for joint scales ???) */

            for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
                scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
                s->joint_scale_factor[j][k] = scale;    /*joint_scale_table[scale]; */
            }

            if (!(s->debug_flag & 0x02)) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "Joint stereo coding not supported\n");
                s->debug_flag |= 0x02;
            }
        }
    }

    /* Dynamic range coefficient */
    if (!base_channel && s->dynrange)
        s->dynrange_coef = get_bits(&s->gb, 8);

    /* Side information CRC check word */
    if (s->crc_present) {
        get_bits(&s->gb, 16);
    }

    /*
     * Primary audio data arrays
     */

    /* VQ encoded high frequency subbands */
    for (j = base_channel; j < s->prim_channels; j++)
        for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
            /* 1 vector -> 32 samples */
            s->high_freq_vq[j][k] = get_bits(&s->gb, 10);

    /* Low frequency effect data */
    if (!base_channel && s->lfe) {
        int quant7;
        /* LFE samples */
        int lfe_samples    = 2 * s->lfe * (4 + block_index);
        int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
        float lfe_scale;

        for (j = lfe_samples; j < lfe_end_sample; j++) {
            /* Signed 8 bits int */
            s->lfe_data[j] = get_sbits(&s->gb, 8);
        }

        /* Scale factor index */
        quant7 = get_bits(&s->gb, 8);
        if (quant7 > 127) {
            avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
            return AVERROR_INVALIDDATA;
        }
        s->lfe_scale_factor = ff_dca_scale_factor_quant7[quant7];

        /* Quantization step size * scale factor */
        lfe_scale = 0.035 * s->lfe_scale_factor;

        for (j = lfe_samples; j < lfe_end_sample; j++)
            s->lfe_data[j] *= lfe_scale;
    }

    return 0;
}

static void qmf_32_subbands(DCAContext *s, int chans,
                            float samples_in[32][8], float *samples_out,
                            float scale)
{
    const float *prCoeff;

    int sb_act = s->subband_activity[chans];

    scale *= sqrt(1 / 8.0);

    /* Select filter */
    if (!s->multirate_inter)    /* Non-perfect reconstruction */
        prCoeff = ff_dca_fir_32bands_nonperfect;
    else                        /* Perfect reconstruction */
        prCoeff = ff_dca_fir_32bands_perfect;

    s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
                              s->subband_fir_hist[chans],
                              &s->hist_index[chans],
                              s->subband_fir_noidea[chans], prCoeff,
                              samples_out, s->raXin, scale);
}

static QMF64_table *qmf64_precompute(void)
{
    unsigned i, j;
    QMF64_table *table = av_malloc(sizeof(*table));
    if (!table)
        return NULL;

    for (i = 0; i < 32; i++)
        for (j = 0; j < 32; j++)
            table->dct4_coeff[i][j] = cos((2 * i + 1) * (2 * j + 1) * M_PI / 128);
    for (i = 0; i < 32; i++)
        for (j = 0; j < 32; j++)
            table->dct2_coeff[i][j] = cos((2 * i + 1) *      j      * M_PI /  64);

    /* FIXME: Is the factor 0.125 = 1/8 right? */
    for (i = 0; i < 32; i++)
        table->rcos[i] =  0.125 / cos((2 * i + 1) * M_PI / 256);
    for (i = 0; i < 32; i++)
        table->rsin[i] = -0.125 / sin((2 * i + 1) * M_PI / 256);

    return table;
}

/* FIXME: Totally unoptimized. Based on the reference code and
 * http://multimedia.cx/mirror/dca-transform.pdf, with guessed tweaks
 * for doubling the size. */
static void qmf_64_subbands(DCAContext *s, int chans, float samples_in[64][8],
                            float *samples_out, float scale)
{
    float raXin[64];
    float A[32], B[32];
    float *raX = s->subband_fir_hist[chans];
    float *raZ = s->subband_fir_noidea[chans];
    unsigned i, j, k, subindex;

    for (i = s->subband_activity[chans]; i < 64; i++)
        raXin[i] = 0.0;
    for (subindex = 0; subindex < 8; subindex++) {
        for (i = 0; i < s->subband_activity[chans]; i++)
            raXin[i] = samples_in[i][subindex];

        for (k = 0; k < 32; k++) {
            A[k] = 0.0;
            for (i = 0; i < 32; i++)
                A[k] += (raXin[2 * i] + raXin[2 * i + 1]) * s->qmf64_table->dct4_coeff[k][i];
        }
        for (k = 0; k < 32; k++) {
            B[k] = raXin[0] * s->qmf64_table->dct2_coeff[k][0];
            for (i = 1; i < 32; i++)
                B[k] += (raXin[2 * i] + raXin[2 * i - 1]) * s->qmf64_table->dct2_coeff[k][i];
        }
        for (k = 0; k < 32; k++) {
            raX[k]      = s->qmf64_table->rcos[k] * (A[k] + B[k]);
            raX[63 - k] = s->qmf64_table->rsin[k] * (A[k] - B[k]);
        }

        for (i = 0; i < 64; i++) {
            float out = raZ[i];
            for (j = 0; j < 1024; j += 128)
                out += ff_dca_fir_64bands[j + i] * (raX[j + i] - raX[j + 63 - i]);
            *samples_out++ = out * scale;
        }

        for (i = 0; i < 64; i++) {
            float hist = 0.0;
            for (j = 0; j < 1024; j += 128)
                hist += ff_dca_fir_64bands[64 + j + i] * (-raX[i + j] - raX[j + 63 - i]);

            raZ[i] = hist;
        }

        /* FIXME: Make buffer circular, to avoid this move. */
        memmove(raX + 64, raX, (1024 - 64) * sizeof(*raX));
    }
}

static void lfe_interpolation_fir(DCAContext *s, const float *samples_in,
                                  float *samples_out)
{
    /* samples_in: An array holding decimated samples.
     *   Samples in current subframe starts from samples_in[0],
     *   while samples_in[-1], samples_in[-2], ..., stores samples
     *   from last subframe as history.
     *
     * samples_out: An array holding interpolated samples
     */

    int idx;
    const float *prCoeff;
    int deciindex;

    /* Select decimation filter */
    if (s->lfe == 1) {
        idx     = 1;
        prCoeff = ff_dca_lfe_fir_128;
    } else {
        idx = 0;
        if (s->exss_ext_mask & DCA_EXT_EXSS_XLL)
            prCoeff = ff_dca_lfe_xll_fir_64;
        else
            prCoeff = ff_dca_lfe_fir_64;
    }
    /* Interpolation */
    for (deciindex = 0; deciindex < 2 * s->lfe; deciindex++) {
        s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
        samples_in++;
        samples_out += 2 * 32 * (1 + idx);
    }
}

/* downmixing routines */
#define MIX_REAR1(samples, s1, rs, coef)            \
    samples[0][i] += samples[s1][i] * coef[rs][0];  \
    samples[1][i] += samples[s1][i] * coef[rs][1];

#define MIX_REAR2(samples, s1, s2, rs, coef)                                          \
    samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
    samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];

#define MIX_FRONT3(samples, coef)                                      \
    t = samples[c][i];                                                 \
    u = samples[l][i];                                                 \
    v = samples[r][i];                                                 \
    samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0];  \
    samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];

#define DOWNMIX_TO_STEREO(op1, op2)             \
    for (i = 0; i < 256; i++) {                 \
        op1                                     \
        op2                                     \
    }

static void dca_downmix(float **samples, int srcfmt, int lfe_present,
                        float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
                        const int8_t *channel_mapping)
{
    int c, l, r, sl, sr, s;
    int i;
    float t, u, v;

    switch (srcfmt) {
    case DCA_MONO:
    case DCA_4F2R:
        av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
        break;
    case DCA_CHANNEL:
    case DCA_STEREO:
    case DCA_STEREO_TOTAL:
    case DCA_STEREO_SUMDIFF:
        break;
    case DCA_3F:
        c = channel_mapping[0];
        l = channel_mapping[1];
        r = channel_mapping[2];
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
        break;
    case DCA_2F1R:
        s = channel_mapping[2];
        DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
        break;
    case DCA_3F1R:
        c = channel_mapping[0];
        l = channel_mapping[1];
        r = channel_mapping[2];
        s = channel_mapping[3];
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
                          MIX_REAR1(samples, s, 3, coef));
        break;
    case DCA_2F2R:
        sl = channel_mapping[2];
        sr = channel_mapping[3];
        DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
        break;
    case DCA_3F2R:
        c  = channel_mapping[0];
        l  = channel_mapping[1];
        r  = channel_mapping[2];
        sl = channel_mapping[3];
        sr = channel_mapping[4];
        DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
                          MIX_REAR2(samples, sl, sr, 3, coef));
        break;
    }
    if (lfe_present) {
        int lf_buf = ff_dca_lfe_index[srcfmt];
        int lf_idx =  ff_dca_channels[srcfmt];
        for (i = 0; i < 256; i++) {
            samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
            samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
        }
    }
}

#ifndef decode_blockcodes
/* Very compact version of the block code decoder that does not use table
 * look-up but is slightly slower */
static int decode_blockcode(int code, int levels, int32_t *values)
{
    int i;
    int offset = (levels - 1) >> 1;

    for (i = 0; i < 4; i++) {
        int div = FASTDIV(code, levels);
        values[i] = code - offset - div * levels;
        code      = div;
    }

    return code;
}

static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
{
    return decode_blockcode(code1, levels, values) |
           decode_blockcode(code2, levels, values + 4);
}
#endif

static const uint8_t abits_sizes[7]  = { 7, 10, 12, 13, 15, 17, 19 };
static const uint8_t abits_levels[7] = { 3,  5,  7,  9, 13, 17, 25 };

static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
{
    int k, l;
    int subsubframe = s->current_subsubframe;

    const float *quant_step_table;

    /* FIXME */
    float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
    LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);

    /*
     * Audio data
     */

    /* Select quantization step size table */
    if (s->bit_rate_index == 0x1f)
        quant_step_table = ff_dca_lossless_quant_d;
    else
        quant_step_table = ff_dca_lossy_quant_d;

    for (k = base_channel; k < s->prim_channels; k++) {
        float rscale[DCA_SUBBANDS];

        if (get_bits_left(&s->gb) < 0)
            return AVERROR_INVALIDDATA;

        for (l = 0; l < s->vq_start_subband[k]; l++) {
            int m;

            /* Select the mid-tread linear quantizer */
            int abits = s->bitalloc[k][l];

            float quant_step_size = quant_step_table[abits];

            /*
             * Determine quantization index code book and its type
             */

            /* Select quantization index code book */
            int sel = s->quant_index_huffman[k][abits];

            /*
             * Extract bits from the bit stream
             */
            if (!abits) {
                rscale[l] = 0;
                memset(block + 8 * l, 0, 8 * sizeof(block[0]));
            } else {
                /* Deal with transients */
                int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
                rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
                            s->scalefactor_adj[k][sel];

                if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
                    if (abits <= 7) {
                        /* Block code */
                        int block_code1, block_code2, size, levels, err;

                        size   = abits_sizes[abits - 1];
                        levels = abits_levels[abits - 1];

                        block_code1 = get_bits(&s->gb, size);
                        block_code2 = get_bits(&s->gb, size);
                        err         = decode_blockcodes(block_code1, block_code2,
                                                        levels, block + 8 * l);
                        if (err) {
                            av_log(s->avctx, AV_LOG_ERROR,
                                   "ERROR: block code look-up failed\n");
                            return AVERROR_INVALIDDATA;
                        }
                    } else {
                        /* no coding */
                        for (m = 0; m < 8; m++)
                            block[8 * l + m] = get_sbits(&s->gb, abits - 3);
                    }
                } else {
                    /* Huffman coded */
                    for (m = 0; m < 8; m++)
                        block[8 * l + m] = get_bitalloc(&s->gb,
                                                        &dca_smpl_bitalloc[abits], sel);
                }
            }
        }

        s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
                                               block, rscale, 8 * s->vq_start_subband[k]);

        for (l = 0; l < s->vq_start_subband[k]; l++) {
            int m;
            /*
             * Inverse ADPCM if in prediction mode
             */
            if (s->prediction_mode[k][l]) {
                int n;
                if (s->predictor_history)
                    subband_samples[k][l][0] += (ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
                                                 s->subband_samples_hist[k][l][3] +
                                                 ff_dca_adpcm_vb[s->prediction_vq[k][l]][1] *
                                                 s->subband_samples_hist[k][l][2] +
                                                 ff_dca_adpcm_vb[s->prediction_vq[k][l]][2] *
                                                 s->subband_samples_hist[k][l][1] +
                                                 ff_dca_adpcm_vb[s->prediction_vq[k][l]][3] *
                                                 s->subband_samples_hist[k][l][0]) *
                                                (1.0f / 8192);
                for (m = 1; m < 8; m++) {
                    float sum = ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
                                subband_samples[k][l][m - 1];
                    for (n = 2; n <= 4; n++)
                        if (m >= n)
                            sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
                                   subband_samples[k][l][m - n];
                        else if (s->predictor_history)
                            sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
                                   s->subband_samples_hist[k][l][m - n + 4];
                    subband_samples[k][l][m] += sum * (1.0f / 8192);
                }
            }
        }

        /*
         * Decode VQ encoded high frequencies
         */
        if (s->subband_activity[k] > s->vq_start_subband[k]) {
            if (!(s->debug_flag & 0x01)) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "Stream with high frequencies VQ coding\n");
                s->debug_flag |= 0x01;
            }
            s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
                                ff_dca_high_freq_vq, subsubframe * 8,
                                s->scale_factor[k], s->vq_start_subband[k],
                                s->subband_activity[k]);
        }
    }

    /* Check for DSYNC after subsubframe */
    if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
        if (get_bits(&s->gb, 16) != 0xFFFF) {
            av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
            return AVERROR_INVALIDDATA;
        }
    }

    /* Backup predictor history for adpcm */
    for (k = base_channel; k < s->prim_channels; k++)
        for (l = 0; l < s->vq_start_subband[k]; l++)
            AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);

    return 0;
}

static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
{
    float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
    int k;

    if (upsample) {
        if (!s->qmf64_table) {
            s->qmf64_table = qmf64_precompute();
            if (!s->qmf64_table)
                return AVERROR(ENOMEM);
        }

        /* 64 subbands QMF */
        for (k = 0; k < s->prim_channels; k++) {
            if (s->channel_order_tab[k] >= 0)
                qmf_64_subbands(s, k, subband_samples[k],
                                s->samples_chanptr[s->channel_order_tab[k]],
                                /* Upsampling needs a factor 2 here. */
                                M_SQRT2 / 32768.0);
        }
    } else {
        /* 32 subbands QMF */
        for (k = 0; k < s->prim_channels; k++) {
            if (s->channel_order_tab[k] >= 0)
                qmf_32_subbands(s, k, subband_samples[k],
                                s->samples_chanptr[s->channel_order_tab[k]],
                                M_SQRT1_2 / 32768.0);
        }
    }

    /* Generate LFE samples for this subsubframe FIXME!!! */
    if (s->lfe) {
        float *samples = s->samples_chanptr[s->lfe_index];
        lfe_interpolation_fir(s,
                              s->lfe_data + 2 * s->lfe * (block_index + 4),
                              samples);
        if (upsample) {
            unsigned i;
            /* Should apply the filter in Table 6-11 when upsampling. For
             * now, just duplicate. */
            for (i = 255; i > 0; i--) {
                samples[2 * i]     =
                samples[2 * i + 1] = samples[i];
            }
            samples[1] = samples[0];
        }
    }

    /* FIXME: This downmixing is probably broken with upsample.
     * Probably totally broken also with XLL in general. */
    /* Downmixing to Stereo */
    if (s->prim_channels + !!s->lfe > 2 &&
        s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
        dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
                    s->channel_order_tab);
    }

    return 0;
}

static int dca_subframe_footer(DCAContext *s, int base_channel)
{
    int in, out, aux_data_count, aux_data_end, reserved;
    uint32_t nsyncaux;

    /*
     * Unpack optional information
     */

    /* presumably optional information only appears in the core? */
    if (!base_channel) {
        if (s->timestamp)
            skip_bits_long(&s->gb, 32);

        if (s->aux_data) {
            aux_data_count = get_bits(&s->gb, 6);

            // align (32-bit)
            skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);

            aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);

            if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
                av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
                       nsyncaux);
                return AVERROR_INVALIDDATA;
            }

            if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
                avpriv_request_sample(s->avctx,
                                      "Auxiliary Decode Time Stamp Flag");
                // align (4-bit)
                skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
                // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
                skip_bits_long(&s->gb, 44);
            }

            if ((s->core_downmix = get_bits1(&s->gb))) {
                int am = get_bits(&s->gb, 3);
                switch (am) {
                case 0:
                    s->core_downmix_amode = DCA_MONO;
                    break;
                case 1:
                    s->core_downmix_amode = DCA_STEREO;
                    break;
                case 2:
                    s->core_downmix_amode = DCA_STEREO_TOTAL;
                    break;
                case 3:
                    s->core_downmix_amode = DCA_3F;
                    break;
                case 4:
                    s->core_downmix_amode = DCA_2F1R;
                    break;
                case 5:
                    s->core_downmix_amode = DCA_2F2R;
                    break;
                case 6:
                    s->core_downmix_amode = DCA_3F1R;
                    break;
                default:
                    av_log(s->avctx, AV_LOG_ERROR,
                           "Invalid mode %d for embedded downmix coefficients\n",
                           am);
                    return AVERROR_INVALIDDATA;
                }
                for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) {
                    for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
                        uint16_t tmp = get_bits(&s->gb, 9);
                        if ((tmp & 0xFF) > 241) {
                            av_log(s->avctx, AV_LOG_ERROR,
                                   "Invalid downmix coefficient code %"PRIu16"\n",
                                   tmp);
                            return AVERROR_INVALIDDATA;
                        }
                        s->core_downmix_codes[in][out] = tmp;
                    }
                }
            }

            align_get_bits(&s->gb); // byte align
            skip_bits(&s->gb, 16);  // nAUXCRC16

            // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
            if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "Overread auxiliary data by %d bits\n", -reserved);
                return AVERROR_INVALIDDATA;
            } else if (reserved) {
                avpriv_request_sample(s->avctx,
                                      "Core auxiliary data reserved content");
                skip_bits_long(&s->gb, reserved);
            }
        }

        if (s->crc_present && s->dynrange)
            get_bits(&s->gb, 16);
    }

    return 0;
}

/**
 * Decode a dca frame block
 *
 * @param s     pointer to the DCAContext
 */

static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
{
    int ret;

    /* Sanity check */
    if (s->current_subframe >= s->subframes) {
        av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
               s->current_subframe, s->subframes);
        return AVERROR_INVALIDDATA;
    }

    if (!s->current_subsubframe) {
        /* Read subframe header */
        if ((ret = dca_subframe_header(s, base_channel, block_index)))
            return ret;
    }

    /* Read subsubframe */
    if ((ret = dca_subsubframe(s, base_channel, block_index)))
        return ret;

    /* Update state */
    s->current_subsubframe++;
    if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
        s->current_subsubframe = 0;
        s->current_subframe++;
    }
    if (s->current_subframe >= s->subframes) {
        /* Read subframe footer */
        if ((ret = dca_subframe_footer(s, base_channel)))
            return ret;
    }

    return 0;
}

int ff_dca_xbr_parse_frame(DCAContext *s)
{
    int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
    int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
    int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
    int anctemp[DCA_CHSET_CHANS_MAX];
    int chset_fsize[DCA_CHSETS_MAX];
    int n_xbr_ch[DCA_CHSETS_MAX];
    int hdr_size, num_chsets, xbr_tmode, hdr_pos;
    int i, j, k, l, chset, chan_base;

    av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");

    /* get bit position of sync header */
    hdr_pos = get_bits_count(&s->gb) - 32;

    hdr_size = get_bits(&s->gb, 6) + 1;
    num_chsets = get_bits(&s->gb, 2) + 1;

    for(i = 0; i < num_chsets; i++)
        chset_fsize[i] = get_bits(&s->gb, 14) + 1;

    xbr_tmode = get_bits1(&s->gb);

    for(i = 0; i < num_chsets; i++) {
        n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
        k = get_bits(&s->gb, 2) + 5;
        for(j = 0; j < n_xbr_ch[i]; j++) {
            active_bands[i][j] = get_bits(&s->gb, k) + 1;
            if (active_bands[i][j] > DCA_SUBBANDS) {
                av_log(s->avctx, AV_LOG_ERROR, "too many active subbands (%d)\n", active_bands[i][j]);
                return AVERROR_INVALIDDATA;
            }
        }
    }

    /* skip to the end of the header */
    i = get_bits_count(&s->gb);
    if(hdr_pos + hdr_size * 8 > i)
        skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);

    /* loop over the channel data sets */
    /* only decode as many channels as we've decoded base data for */
    for(chset = 0, chan_base = 0;
        chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
        chan_base += n_xbr_ch[chset++]) {
        int start_posn = get_bits_count(&s->gb);
        int subsubframe = 0;
        int subframe = 0;

        /* loop over subframes */
        for (k = 0; k < (s->sample_blocks / 8); k++) {
            /* parse header if we're on first subsubframe of a block */
            if(subsubframe == 0) {
                /* Parse subframe header */
                for(i = 0; i < n_xbr_ch[chset]; i++) {
                    anctemp[i] = get_bits(&s->gb, 2) + 2;
                }

                for(i = 0; i < n_xbr_ch[chset]; i++) {
                    get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
                }

                for(i = 0; i < n_xbr_ch[chset]; i++) {
                    anctemp[i] = get_bits(&s->gb, 3);
                    if(anctemp[i] < 1) {
                        av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
                        return AVERROR_INVALIDDATA;
                    }
                }

                /* generate scale factors */
                for(i = 0; i < n_xbr_ch[chset]; i++) {
                    const uint32_t *scale_table;
                    int nbits;
                    int scale_table_size;

                    if (s->scalefactor_huffman[chan_base+i] == 6) {
                        scale_table = ff_dca_scale_factor_quant7;
                        scale_table_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7);
                    } else {
                        scale_table = ff_dca_scale_factor_quant6;
                        scale_table_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6);
                    }

                    nbits = anctemp[i];

                    for(j = 0; j < active_bands[chset][i]; j++) {
                        if(abits_high[i][j] > 0) {
                            int index = get_bits(&s->gb, nbits);
                            if (index >= scale_table_size) {
                                av_log(s->avctx, AV_LOG_ERROR, "scale table index %d invalid\n", index);
                                return AVERROR_INVALIDDATA;
                            }
                            scale_table_high[i][j][0] = scale_table[index];

                            if(xbr_tmode && s->transition_mode[i][j]) {
                                int index = get_bits(&s->gb, nbits);
                                if (index >= scale_table_size) {
                                    av_log(s->avctx, AV_LOG_ERROR, "scale table index %d invalid\n", index);
                                    return AVERROR_INVALIDDATA;
                                }
                                scale_table_high[i][j][1] = scale_table[index];
                            }
                        }
                    }
                }
            }

            /* decode audio array for this block */
            for(i = 0; i < n_xbr_ch[chset]; i++) {
                for(j = 0; j < active_bands[chset][i]; j++) {
                    const int xbr_abits = abits_high[i][j];
                    const float quant_step_size = ff_dca_lossless_quant_d[xbr_abits];
                    const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
                    const float rscale = quant_step_size * scale_table_high[i][j][sfi];
                    float *subband_samples = s->subband_samples[k][chan_base+i][j];
                    int block[8];

                    if(xbr_abits <= 0)
                        continue;

                    if(xbr_abits > 7) {
                        get_array(&s->gb, block, 8, xbr_abits - 3);
                    } else {
                        int block_code1, block_code2, size, levels, err;

                        size   = abits_sizes[xbr_abits - 1];
                        levels = abits_levels[xbr_abits - 1];

                        block_code1 = get_bits(&s->gb, size);
                        block_code2 = get_bits(&s->gb, size);
                        err = decode_blockcodes(block_code1, block_code2,
                                                levels, block);
                        if (err) {
                            av_log(s->avctx, AV_LOG_ERROR,
                                   "ERROR: DTS-XBR: block code look-up failed\n");
                            return AVERROR_INVALIDDATA;
                        }
                    }

                    /* scale & sum into subband */
                    for(l = 0; l < 8; l++)
                        subband_samples[l] += (float)block[l] * rscale;
                }
            }

            /* check DSYNC marker */
            if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
                if(get_bits(&s->gb, 16) != 0xffff) {
                    av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
                    return AVERROR_INVALIDDATA;
                }
            }

            /* advance sub-sub-frame index */
            if(++subsubframe >= s->subsubframes[subframe]) {
                subsubframe = 0;
                subframe++;
            }
        }

        /* skip to next channel set */
        i = get_bits_count(&s->gb);
        if(start_posn + chset_fsize[chset] * 8 != i) {
            j = start_posn + chset_fsize[chset] * 8 - i;
            if(j < 0 || j >= 8)
                av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
                       " skipping further than expected (%d bits)\n", j);
            skip_bits_long(&s->gb, j);
        }
    }

    return 0;
}


/* parse initial header for XXCH and dump details */
int ff_dca_xxch_decode_frame(DCAContext *s)
{
    int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
    int i, chset, base_channel, chstart, fsize[8];

    /* assume header word has already been parsed */
    hdr_pos     = get_bits_count(&s->gb) - 32;
    hdr_size    = get_bits(&s->gb, 6) + 1;
  /*chhdr_crc   =*/ skip_bits1(&s->gb);
    spkmsk_bits = get_bits(&s->gb, 5) + 1;
    num_chsets  = get_bits(&s->gb, 2) + 1;

    for (i = 0; i < num_chsets; i++)
        fsize[i] = get_bits(&s->gb, 14) + 1;

    core_spk               = get_bits(&s->gb, spkmsk_bits);
    s->xxch_core_spkmask   = core_spk;
    s->xxch_nbits_spk_mask = spkmsk_bits;
    s->xxch_dmix_embedded  = 0;

    /* skip to the end of the header */
    i = get_bits_count(&s->gb);
    if (hdr_pos + hdr_size * 8 > i)
        skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);

    for (chset = 0; chset < num_chsets; chset++) {
        chstart       = get_bits_count(&s->gb);
        base_channel  = s->prim_channels;
        s->xxch_chset = chset;

        /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
           5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
        dca_parse_audio_coding_header(s, base_channel, 1);

        /* decode channel data */
        for (i = 0; i < (s->sample_blocks / 8); i++) {
            if (dca_decode_block(s, base_channel, i)) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "Error decoding DTS-XXCH extension\n");
                continue;
            }
        }

        /* skip to end of this section */
        i = get_bits_count(&s->gb);
        if (chstart + fsize[chset] * 8 > i)
            skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
    }
    s->xxch_chset = num_chsets;

    return 0;
}

static float dca_dmix_code(unsigned code)
{
    int sign = (code >> 8) - 1;
    code &= 0xff;
    return ((ff_dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1 << 15));
}

/**
 * Main frame decoding function
 * FIXME add arguments
 */
static int dca_decode_frame(AVCodecContext *avctx, void *data,
                            int *got_frame_ptr, AVPacket *avpkt)
{
    AVFrame *frame     = data;
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    int channel_mask;
    int channel_layout;
    int lfe_samples;
    int num_core_channels = 0;
    int i, ret;
    float **samples_flt;
    float *src_chan;
    float *dst_chan;
    DCAContext *s = avctx->priv_data;
    int core_ss_end;
    int channels, full_channels;
    float scale;
    int achan;
    int chset;
    int mask;
    int lavc;
    int posn;
    int j, k;
    int endch;
    int upsample = 0;

    s->exss_ext_mask = 0;
    s->xch_present   = 0;

    s->dca_buffer_size = AVERROR_INVALIDDATA;
    for (i = 0; i < buf_size - 3 && s->dca_buffer_size == AVERROR_INVALIDDATA; i++)
        s->dca_buffer_size = avpriv_dca_convert_bitstream(buf + i, buf_size - i, s->dca_buffer,
                                                          DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);

    if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
        av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
        return AVERROR_INVALIDDATA;
    }

    if ((ret = dca_parse_frame_header(s)) < 0) {
        // seems like the frame is corrupt, try with the next one
        return ret;
    }
    // set AVCodec values with parsed data
    avctx->sample_rate = s->sample_rate;

    s->profile = FF_PROFILE_DTS;

    for (i = 0; i < (s->sample_blocks / 8); i++) {
        if ((ret = dca_decode_block(s, 0, i))) {
            av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
            return ret;
        }
    }

    /* record number of core channels incase less than max channels are requested */
    num_core_channels = s->prim_channels;

    if (s->prim_channels + !!s->lfe > 2 &&
        avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
            /* Stereo downmix coefficients
             *
             * The decoder can only downmix to 2-channel, so we need to ensure
             * embedded downmix coefficients are actually targeting 2-channel.
             */
            if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
                                    s->core_downmix_amode == DCA_STEREO_TOTAL)) {
                for (i = 0; i < num_core_channels + !!s->lfe; i++) {
                    /* Range checked earlier */
                    s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
                    s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
                }
                s->output = s->core_downmix_amode;
            } else {
                int am = s->amode & DCA_CHANNEL_MASK;
                if (am >= FF_ARRAY_ELEMS(ff_dca_default_coeffs)) {
                    av_log(s->avctx, AV_LOG_ERROR,
                           "Invalid channel mode %d\n", am);
                    return AVERROR_INVALIDDATA;
                }
                if (num_core_channels + !!s->lfe >
                    FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
                    avpriv_request_sample(s->avctx, "Downmixing %d channels",
                                          s->prim_channels + !!s->lfe);
                    return AVERROR_PATCHWELCOME;
                }
                for (i = 0; i < num_core_channels + !!s->lfe; i++) {
                    s->downmix_coef[i][0] = ff_dca_default_coeffs[am][i][0];
                    s->downmix_coef[i][1] = ff_dca_default_coeffs[am][i][1];
                }
            }
            ff_dlog(s->avctx, "Stereo downmix coeffs:\n");
            for (i = 0; i < num_core_channels + !!s->lfe; i++) {
                ff_dlog(s->avctx, "L, input channel %d = %f\n", i,
                        s->downmix_coef[i][0]);
                ff_dlog(s->avctx, "R, input channel %d = %f\n", i,
                        s->downmix_coef[i][1]);
            }
            ff_dlog(s->avctx, "\n");
    }

    if (s->ext_coding)
        s->core_ext_mask = ff_dca_ext_audio_descr_mask[s->ext_descr];
    else
        s->core_ext_mask = 0;

    core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;

    /* only scan for extensions if ext_descr was unknown or indicated a
     * supported XCh extension */
    if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
        /* if ext_descr was unknown, clear s->core_ext_mask so that the
         * extensions scan can fill it up */
        s->core_ext_mask = FFMAX(s->core_ext_mask, 0);

        /* extensions start at 32-bit boundaries into bitstream */
        skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);

        while (core_ss_end - get_bits_count(&s->gb) >= 32) {
            uint32_t bits = get_bits_long(&s->gb, 32);

            switch (bits) {
            case DCA_SYNCWORD_XCH: {
                int ext_amode, xch_fsize;

                s->xch_base_channel = s->prim_channels;

                /* validate sync word using XCHFSIZE field */
                xch_fsize = show_bits(&s->gb, 10);
                if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
                    (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
                    continue;

                /* skip length-to-end-of-frame field for the moment */
                skip_bits(&s->gb, 10);

                s->core_ext_mask |= DCA_EXT_XCH;

                /* extension amode(number of channels in extension) should be 1 */
                /* AFAIK XCh is not used for more channels */
                if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
                    av_log(avctx, AV_LOG_ERROR,
                           "XCh extension amode %d not supported!\n",
                           ext_amode);
                    continue;
                }

                if (s->xch_base_channel < 2) {
                    avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
                    continue;
                }

                /* much like core primary audio coding header */
                dca_parse_audio_coding_header(s, s->xch_base_channel, 0);

                for (i = 0; i < (s->sample_blocks / 8); i++)
                    if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
                        av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
                        continue;
                    }

                s->xch_present = 1;
                break;
            }
            case DCA_SYNCWORD_XXCH:
                /* XXCh: extended channels */
                /* usually found either in core or HD part in DTS-HD HRA streams,
                 * but not in DTS-ES which contains XCh extensions instead */
                s->core_ext_mask |= DCA_EXT_XXCH;
                ff_dca_xxch_decode_frame(s);
                break;

            case 0x1d95f262: {
                int fsize96 = show_bits(&s->gb, 12) + 1;
                if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
                    continue;

                av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
                       get_bits_count(&s->gb));
                skip_bits(&s->gb, 12);
                av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
                av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));

                s->core_ext_mask |= DCA_EXT_X96;
                break;
            }
            }

            skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
        }
    } else {
        /* no supported extensions, skip the rest of the core substream */
        skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
    }

    if (s->core_ext_mask & DCA_EXT_X96)
        s->profile = FF_PROFILE_DTS_96_24;
    else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
        s->profile = FF_PROFILE_DTS_ES;

    /* check for ExSS (HD part) */
    if (s->dca_buffer_size - s->frame_size > 32 &&
        get_bits_long(&s->gb, 32) == DCA_SYNCWORD_SUBSTREAM)
        ff_dca_exss_parse_header(s);

    avctx->profile = s->profile;

    full_channels = channels = s->prim_channels + !!s->lfe;

    /* If we have XXCH then the channel layout is managed differently */
    /* note that XLL will also have another way to do things */
    if (!(s->core_ext_mask & DCA_EXT_XXCH)) {
        /* xxx should also do MA extensions */
        if (s->amode < 16) {
            avctx->channel_layout = ff_dca_core_channel_layout[s->amode];

            if (s->prim_channels + !!s->lfe > 2 &&
                avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
                /*
                 * Neither the core's auxiliary data nor our default tables contain
                 * downmix coefficients for the additional channel coded in the XCh
                 * extension, so when we're doing a Stereo downmix, don't decode it.
                 */
                s->xch_disable = 1;
            }

            if (s->xch_present && !s->xch_disable) {
                if (avctx->channel_layout & AV_CH_BACK_CENTER) {
                    avpriv_request_sample(avctx, "XCh with Back center channel");
                    return AVERROR_INVALIDDATA;
                }
                avctx->channel_layout |= AV_CH_BACK_CENTER;
                if (s->lfe) {
                    avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
                    s->channel_order_tab = ff_dca_channel_reorder_lfe_xch[s->amode];
                } else {
                    s->channel_order_tab = ff_dca_channel_reorder_nolfe_xch[s->amode];
                }
                if (s->channel_order_tab[s->xch_base_channel] < 0)
                    return AVERROR_INVALIDDATA;
            } else {
                channels       = num_core_channels + !!s->lfe;
                s->xch_present = 0; /* disable further xch processing */
                if (s->lfe) {
                    avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
                    s->channel_order_tab = ff_dca_channel_reorder_lfe[s->amode];
                } else
                    s->channel_order_tab = ff_dca_channel_reorder_nolfe[s->amode];
            }

            if (channels > !!s->lfe &&
                s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
                return AVERROR_INVALIDDATA;

            if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
                av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
                return AVERROR_INVALIDDATA;
            }

            if (num_core_channels + !!s->lfe > 2 &&
                avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
                channels              = 2;
                s->output             = s->prim_channels == 2 ? s->amode : DCA_STEREO;
                avctx->channel_layout = AV_CH_LAYOUT_STEREO;
            }
            else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
                static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
                s->channel_order_tab = dca_channel_order_native;
            }
            s->lfe_index = ff_dca_lfe_index[s->amode];
        } else {
            av_log(avctx, AV_LOG_ERROR,
                   "Non standard configuration %d !\n", s->amode);
            return AVERROR_INVALIDDATA;
        }

        s->xxch_dmix_embedded = 0;
    } else {
        /* we only get here if an XXCH channel set can be added to the mix */
        channel_mask = s->xxch_core_spkmask;

        {
            channels = s->prim_channels + !!s->lfe;
            for (i = 0; i < s->xxch_chset; i++) {
                channel_mask |= s->xxch_spk_masks[i];
            }
        }

        /* Given the DTS spec'ed channel mask, generate an avcodec version */
        channel_layout = 0;
        for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
            if (channel_mask & (1 << i)) {
                channel_layout |= ff_dca_map_xxch_to_native[i];
            }
        }

        /* make sure that we have managed to get equivalent dts/avcodec channel
         * masks in some sense -- unfortunately some channels could overlap */
        if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
            av_log(avctx, AV_LOG_DEBUG,
                   "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
            return AVERROR_INVALIDDATA;
        }

        avctx->channel_layout = channel_layout;

        if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
            /* Estimate DTS --> avcodec ordering table */
            for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
                mask = chset >= 0 ? s->xxch_spk_masks[chset]
                                  : s->xxch_core_spkmask;
                for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
                    if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
                        lavc = ff_dca_map_xxch_to_native[i];
                        posn = av_popcount(channel_layout & (lavc - 1));
                        s->xxch_order_tab[j++] = posn;
                    }
                }

            }

            s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
        } else { /* native ordering */
            for (i = 0; i < channels; i++)
                s->xxch_order_tab[i] = i;

            s->lfe_index = channels - 1;
        }

        s->channel_order_tab = s->xxch_order_tab;
    }

    /* get output buffer */
    frame->nb_samples = 256 * (s->sample_blocks / 8);
    if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) {
        int xll_nb_samples = s->xll_segments * s->xll_smpl_in_seg;
        /* Check for invalid/unsupported conditions first */
        if (s->xll_residual_channels > channels) {
            av_log(s->avctx, AV_LOG_WARNING,
                   "DCA: too many residual channels (%d, core channels %d). Disabling XLL\n",
                   s->xll_residual_channels, channels);
            s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL;
        } else if (xll_nb_samples != frame->nb_samples &&
                   2 * frame->nb_samples != xll_nb_samples) {
            av_log(s->avctx, AV_LOG_WARNING,
                   "DCA: unsupported upsampling (%d XLL samples, %d core samples). Disabling XLL\n",
                   xll_nb_samples, frame->nb_samples);
            s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL;
        } else {
            if (2 * frame->nb_samples == xll_nb_samples) {
                av_log(s->avctx, AV_LOG_INFO,
                       "XLL: upsampling core channels by a factor of 2\n");
                upsample = 1;

                frame->nb_samples = xll_nb_samples;
                // FIXME: Is it good enough to copy from the first channel set?
                avctx->sample_rate = s->xll_chsets[0].sampling_frequency;
            }
            /* If downmixing to stereo, don't decode additional channels.
             * FIXME: Using the xch_disable flag for this doesn't seem right. */
            if (!s->xch_disable)
                channels = s->xll_channels;
        }
    }

    if (avctx->channels != channels) {
        if (avctx->channels)
            av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
        avctx->channels = channels;
    }

    /* FIXME: This is an ugly hack, to just revert to the default
     * layout if we have additional channels. Need to convert the XLL
     * channel masks to ffmpeg channel_layout mask. */
    if (av_get_channel_layout_nb_channels(avctx->channel_layout) != avctx->channels)
        avctx->channel_layout = 0;

    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;
    samples_flt = (float **) frame->extended_data;

    /* allocate buffer for extra channels if downmixing */
    if (avctx->channels < full_channels) {
        ret = av_samples_get_buffer_size(NULL, full_channels - channels,
                                         frame->nb_samples,
                                         avctx->sample_fmt, 0);
        if (ret < 0)
            return ret;

        av_fast_malloc(&s->extra_channels_buffer,
                       &s->extra_channels_buffer_size, ret);
        if (!s->extra_channels_buffer)
            return AVERROR(ENOMEM);

        ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
                                     s->extra_channels_buffer,
                                     full_channels - channels,
                                     frame->nb_samples, avctx->sample_fmt, 0);
        if (ret < 0)
            return ret;
    }

    /* filter to get final output */
    for (i = 0; i < (s->sample_blocks / 8); i++) {
        int ch;
        unsigned block = upsample ? 512 : 256;
        for (ch = 0; ch < channels; ch++)
            s->samples_chanptr[ch] = samples_flt[ch] + i * block;
        for (; ch < full_channels; ch++)
            s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * block;

        dca_filter_channels(s, i, upsample);

        /* If this was marked as a DTS-ES stream we need to subtract back- */
        /* channel from SL & SR to remove matrixed back-channel signal */
        if ((s->source_pcm_res & 1) && s->xch_present) {
            float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
            float *lt_chan   = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
            float *rt_chan   = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
            s->fdsp->vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
            s->fdsp->vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
        }

        /* If stream contains XXCH, we might need to undo an embedded downmix */
        if (s->xxch_dmix_embedded) {
            /* Loop over channel sets in turn */
            ch = num_core_channels;
            for (chset = 0; chset < s->xxch_chset; chset++) {
                endch = ch + s->xxch_chset_nch[chset];
                mask = s->xxch_dmix_embedded;

                /* undo downmix */
                for (j = ch; j < endch; j++) {
                    if (mask & (1 << j)) { /* this channel has been mixed-out */
                        src_chan = s->samples_chanptr[s->channel_order_tab[j]];
                        for (k = 0; k < endch; k++) {
                            achan = s->channel_order_tab[k];
                            scale = s->xxch_dmix_coeff[j][k];
                            if (scale != 0.0) {
                                dst_chan = s->samples_chanptr[achan];
                                s->fdsp->vector_fmac_scalar(dst_chan, src_chan,
                                                           -scale, 256);
                            }
                        }
                    }
                }

                /* if a downmix has been embedded then undo the pre-scaling */
                if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
                    scale = s->xxch_dmix_sf[chset];

                    for (j = 0; j < ch; j++) {
                        src_chan = s->samples_chanptr[s->channel_order_tab[j]];
                        for (k = 0; k < 256; k++)
                            src_chan[k] *= scale;
                    }

                    /* LFE channel is always part of core, scale if it exists */
                    if (s->lfe) {
                        src_chan = s->samples_chanptr[s->lfe_index];
                        for (k = 0; k < 256; k++)
                            src_chan[k] *= scale;
                    }
                }

                ch = endch;
            }

        }
    }

    /* update lfe history */
    lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
    for (i = 0; i < 2 * s->lfe * 4; i++)
        s->lfe_data[i] = s->lfe_data[i + lfe_samples];

    if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) {
        ret = ff_dca_xll_decode_audio(s, frame);
        if (ret < 0)
            return ret;
    }
    /* AVMatrixEncoding
     *
     * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
    ret = ff_side_data_update_matrix_encoding(frame,
                                              (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
                                              AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
    if (ret < 0)
        return ret;

    if (   avctx->profile != FF_PROFILE_DTS_HD_MA
        && avctx->profile != FF_PROFILE_DTS_HD_HRA)
        avctx->bit_rate = s->bit_rate;
    *got_frame_ptr = 1;

    return buf_size;
}

/**
 * DCA initialization
 *
 * @param avctx     pointer to the AVCodecContext
 */

static av_cold int dca_decode_init(AVCodecContext *avctx)
{
    DCAContext *s = avctx->priv_data;

    s->avctx = avctx;
    dca_init_vlcs();

    s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
    if (!s->fdsp)
        return AVERROR(ENOMEM);

    ff_mdct_init(&s->imdct, 6, 1, 1.0);
    ff_synth_filter_init(&s->synth);
    ff_dcadsp_init(&s->dcadsp);
    ff_fmt_convert_init(&s->fmt_conv, avctx);

    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;

    /* allow downmixing to stereo */
    if (avctx->channels > 2 &&
        avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
        avctx->channels = 2;

    return 0;
}

static av_cold int dca_decode_end(AVCodecContext *avctx)
{
    DCAContext *s = avctx->priv_data;
    ff_mdct_end(&s->imdct);
    av_freep(&s->extra_channels_buffer);
    av_freep(&s->fdsp);
    av_freep(&s->xll_sample_buf);
    av_freep(&s->qmf64_table);
    return 0;
}

static const AVProfile profiles[] = {
    { FF_PROFILE_DTS,        "DTS"        },
    { FF_PROFILE_DTS_ES,     "DTS-ES"     },
    { FF_PROFILE_DTS_96_24,  "DTS 96/24"  },
    { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
    { FF_PROFILE_DTS_HD_MA,  "DTS-HD MA"  },
    { FF_PROFILE_UNKNOWN },
};

static const AVOption options[] = {
    { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
    { "disable_xll", "disable decoding of the XLL extension", offsetof(DCAContext, xll_disable), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
    { NULL },
};

static const AVClass dca_decoder_class = {
    .class_name = "DCA decoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
    .category   = AV_CLASS_CATEGORY_DECODER,
};

AVCodec ff_dca_decoder = {
    .name            = "dca",
    .long_name       = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
    .type            = AVMEDIA_TYPE_AUDIO,
    .id              = AV_CODEC_ID_DTS,
    .priv_data_size  = sizeof(DCAContext),
    .init            = dca_decode_init,
    .decode          = dca_decode_frame,
    .close           = dca_decode_end,
    .capabilities    = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
    .sample_fmts     = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                       AV_SAMPLE_FMT_NONE },
    .profiles        = NULL_IF_CONFIG_SMALL(profiles),
    .priv_class      = &dca_decoder_class,
};