1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
|
/*
* DCA compatible decoder
* Copyright (C) 2004 Gildas Bazin
* Copyright (C) 2004 Benjamin Zores
* Copyright (C) 2006 Benjamin Larsson
* Copyright (C) 2007 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/dca.c
*/
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "dsputil.h"
#include "fft.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dca.h"
#include "synth_filter.h"
//#define TRACE
#define DCA_PRIM_CHANNELS_MAX (5)
#define DCA_SUBBANDS (32)
#define DCA_ABITS_MAX (32) /* Should be 28 */
#define DCA_SUBSUBFAMES_MAX (4)
#define DCA_LFE_MAX (3)
enum DCAMode {
DCA_MONO = 0,
DCA_CHANNEL,
DCA_STEREO,
DCA_STEREO_SUMDIFF,
DCA_STEREO_TOTAL,
DCA_3F,
DCA_2F1R,
DCA_3F1R,
DCA_2F2R,
DCA_3F2R,
DCA_4F2R
};
/* Tables for mapping dts channel configurations to libavcodec multichannel api.
* Some compromises have been made for special configurations. Most configurations
* are never used so complete accuracy is not needed.
*
* L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
* S -> side, when both rear and back are configured move one of them to the side channel
* OV -> center back
* All 2 channel configurations -> CH_LAYOUT_STEREO
*/
static const int64_t dca_core_channel_layout[] = {
CH_FRONT_CENTER, ///< 1, A
CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
CH_LAYOUT_STEREO, ///< 2, (L+R) + (L-R) (sum-difference)
CH_LAYOUT_STEREO, ///< 2, LT +RT (left and right total)
CH_LAYOUT_STEREO|CH_FRONT_CENTER, ///< 3, C+L+R
CH_LAYOUT_STEREO|CH_BACK_CENTER, ///< 3, L+R+S
CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_BACK_CENTER, ///< 4, C + L + R+ S
CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 4, L + R +SL+ SR
CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 5, C + L + R+ SL+SR
CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
CH_LAYOUT_STEREO|CH_BACK_LEFT|CH_BACK_RIGHT|CH_FRONT_CENTER|CH_BACK_CENTER, ///< 6, C + L + R+ LR + RR + OV
CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_FRONT_LEFT_OF_CENTER|CH_BACK_CENTER|CH_BACK_LEFT|CH_BACK_RIGHT, ///< 6, CF+ CR+LF+ RF+LR + RR
CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_BACK_LEFT|CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2+ SR1 + SR2
CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_BACK_CENTER|CH_SIDE_RIGHT, ///< 8, CL + C+ CR + L + R + SL + S+ SR
};
static const int8_t dca_lfe_index[] = {
1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
};
static const int8_t dca_channel_reorder_lfe[][8] = {
{ 0, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, -1, -1, -1, -1, -1},
{ 0, 1, 3, -1, -1, -1, -1, -1},
{ 2, 0, 1, 4, -1, -1, -1, -1},
{ 0, 1, 3, 4, -1, -1, -1, -1},
{ 2, 0, 1, 4, 5, -1, -1, -1},
{ 3, 4, 0, 1, 5, 6, -1, -1},
{ 2, 0, 1, 4, 5, 6, -1, -1},
{ 0, 6, 4, 5, 2, 3, -1, -1},
{ 4, 2, 5, 0, 1, 6, 7, -1},
{ 5, 6, 0, 1, 7, 3, 8, 4},
{ 4, 2, 5, 0, 1, 6, 8, 7},
};
static const int8_t dca_channel_reorder_nolfe[][8] = {
{ 0, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, -1, -1, -1, -1, -1},
{ 0, 1, 2, -1, -1, -1, -1, -1},
{ 2, 0, 1, 3, -1, -1, -1, -1},
{ 0, 1, 2, 3, -1, -1, -1, -1},
{ 2, 0, 1, 3, 4, -1, -1, -1},
{ 2, 3, 0, 1, 4, 5, -1, -1},
{ 2, 0, 1, 3, 4, 5, -1, -1},
{ 0, 5, 3, 4, 1, 2, -1, -1},
{ 3, 2, 4, 0, 1, 5, 6, -1},
{ 4, 5, 0, 1, 6, 2, 7, 3},
{ 3, 2, 4, 0, 1, 5, 7, 6},
};
#define DCA_DOLBY 101 /* FIXME */
#define DCA_CHANNEL_BITS 6
#define DCA_CHANNEL_MASK 0x3F
#define DCA_LFE 0x80
#define HEADER_SIZE 14
#define DCA_MAX_FRAME_SIZE 16384
/** Bit allocation */
typedef struct {
int offset; ///< code values offset
int maxbits[8]; ///< max bits in VLC
int wrap; ///< wrap for get_vlc2()
VLC vlc[8]; ///< actual codes
} BitAlloc;
static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
static BitAlloc dca_tmode; ///< transition mode VLCs
static BitAlloc dca_scalefactor; ///< scalefactor VLCs
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
{
return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
}
typedef struct {
AVCodecContext *avctx;
/* Frame header */
int frame_type; ///< type of the current frame
int samples_deficit; ///< deficit sample count
int crc_present; ///< crc is present in the bitstream
int sample_blocks; ///< number of PCM sample blocks
int frame_size; ///< primary frame byte size
int amode; ///< audio channels arrangement
int sample_rate; ///< audio sampling rate
int bit_rate; ///< transmission bit rate
int bit_rate_index; ///< transmission bit rate index
int downmix; ///< embedded downmix enabled
int dynrange; ///< embedded dynamic range flag
int timestamp; ///< embedded time stamp flag
int aux_data; ///< auxiliary data flag
int hdcd; ///< source material is mastered in HDCD
int ext_descr; ///< extension audio descriptor flag
int ext_coding; ///< extended coding flag
int aspf; ///< audio sync word insertion flag
int lfe; ///< low frequency effects flag
int predictor_history; ///< predictor history flag
int header_crc; ///< header crc check bytes
int multirate_inter; ///< multirate interpolator switch
int version; ///< encoder software revision
int copy_history; ///< copy history
int source_pcm_res; ///< source pcm resolution
int front_sum; ///< front sum/difference flag
int surround_sum; ///< surround sum/difference flag
int dialog_norm; ///< dialog normalisation parameter
/* Primary audio coding header */
int subframes; ///< number of subframes
int total_channels; ///< number of channels including extensions
int prim_channels; ///< number of primary audio channels
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
/* Primary audio coding side information */
int subsubframes; ///< number of subsubframes
int partial_samples; ///< partial subsubframe samples count
int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
int dynrange_coef; ///< dynamic range coefficient
int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX *
2 /*history */ ]; ///< Low frequency effect data
int lfe_scale_factor;
/* Subband samples history (for ADPCM) */
float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
DECLARE_ALIGNED(16, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
DECLARE_ALIGNED(16, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
int hist_index[DCA_PRIM_CHANNELS_MAX];
DECLARE_ALIGNED(16, float, raXin)[32];
int output; ///< type of output
float add_bias; ///< output bias
float scale_bias; ///< output scale
DECLARE_ALIGNED(16, float, samples)[1536]; /* 6 * 256 = 1536, might only need 5 */
const float *samples_chanptr[6];
uint8_t dca_buffer[DCA_MAX_FRAME_SIZE];
int dca_buffer_size; ///< how much data is in the dca_buffer
const int8_t* channel_order_tab; ///< channel reordering table, lfe and non lfe
GetBitContext gb;
/* Current position in DCA frame */
int current_subframe;
int current_subsubframe;
int debug_flag; ///< used for suppressing repeated error messages output
DSPContext dsp;
FFTContext imdct;
SynthFilterContext synth;
} DCAContext;
static const uint16_t dca_vlc_offs[] = {
0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
};
static av_cold void dca_init_vlcs(void)
{
static int vlcs_initialized = 0;
int i, j, c = 14;
static VLC_TYPE dca_table[23622][2];
if (vlcs_initialized)
return;
dca_bitalloc_index.offset = 1;
dca_bitalloc_index.wrap = 2;
for (i = 0; i < 5; i++) {
dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
bitalloc_12_bits[i], 1, 1,
bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
dca_scalefactor.offset = -64;
dca_scalefactor.wrap = 2;
for (i = 0; i < 5; i++) {
dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
scales_bits[i], 1, 1,
scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
dca_tmode.offset = 0;
dca_tmode.wrap = 1;
for (i = 0; i < 4; i++) {
dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
tmode_bits[i], 1, 1,
tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
for(i = 0; i < 10; i++)
for(j = 0; j < 7; j++){
if(!bitalloc_codes[i][j]) break;
dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
dca_smpl_bitalloc[i+1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
dca_smpl_bitalloc[i+1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
bitalloc_sizes[i],
bitalloc_bits[i][j], 1, 1,
bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
c++;
}
vlcs_initialized = 1;
}
static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
{
while(len--)
*dst++ = get_bits(gb, bits);
}
static int dca_parse_frame_header(DCAContext * s)
{
int i, j;
static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
/* Sync code */
get_bits(&s->gb, 32);
/* Frame header */
s->frame_type = get_bits(&s->gb, 1);
s->samples_deficit = get_bits(&s->gb, 5) + 1;
s->crc_present = get_bits(&s->gb, 1);
s->sample_blocks = get_bits(&s->gb, 7) + 1;
s->frame_size = get_bits(&s->gb, 14) + 1;
if (s->frame_size < 95)
return -1;
s->amode = get_bits(&s->gb, 6);
s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
if (!s->sample_rate)
return -1;
s->bit_rate_index = get_bits(&s->gb, 5);
s->bit_rate = dca_bit_rates[s->bit_rate_index];
if (!s->bit_rate)
return -1;
s->downmix = get_bits(&s->gb, 1);
s->dynrange = get_bits(&s->gb, 1);
s->timestamp = get_bits(&s->gb, 1);
s->aux_data = get_bits(&s->gb, 1);
s->hdcd = get_bits(&s->gb, 1);
s->ext_descr = get_bits(&s->gb, 3);
s->ext_coding = get_bits(&s->gb, 1);
s->aspf = get_bits(&s->gb, 1);
s->lfe = get_bits(&s->gb, 2);
s->predictor_history = get_bits(&s->gb, 1);
/* TODO: check CRC */
if (s->crc_present)
s->header_crc = get_bits(&s->gb, 16);
s->multirate_inter = get_bits(&s->gb, 1);
s->version = get_bits(&s->gb, 4);
s->copy_history = get_bits(&s->gb, 2);
s->source_pcm_res = get_bits(&s->gb, 3);
s->front_sum = get_bits(&s->gb, 1);
s->surround_sum = get_bits(&s->gb, 1);
s->dialog_norm = get_bits(&s->gb, 4);
/* FIXME: channels mixing levels */
s->output = s->amode;
if(s->lfe) s->output |= DCA_LFE;
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
s->sample_blocks, s->sample_blocks * 32);
av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
s->amode, dca_channels[s->amode]);
av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
s->sample_rate);
av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
s->bit_rate);
av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
s->predictor_history);
av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
s->multirate_inter);
av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
av_log(s->avctx, AV_LOG_DEBUG,
"source pcm resolution: %i (%i bits/sample)\n",
s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
#endif
/* Primary audio coding header */
s->subframes = get_bits(&s->gb, 4) + 1;
s->total_channels = get_bits(&s->gb, 3) + 1;
s->prim_channels = s->total_channels;
if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
s->prim_channels = DCA_PRIM_CHANNELS_MAX; /* We only support DTS core */
for (i = 0; i < s->prim_channels; i++) {
s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
if (s->subband_activity[i] > DCA_SUBBANDS)
s->subband_activity[i] = DCA_SUBBANDS;
}
for (i = 0; i < s->prim_channels; i++) {
s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
if (s->vq_start_subband[i] > DCA_SUBBANDS)
s->vq_start_subband[i] = DCA_SUBBANDS;
}
get_array(&s->gb, s->joint_intensity, s->prim_channels, 3);
get_array(&s->gb, s->transient_huffman, s->prim_channels, 2);
get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3);
get_array(&s->gb, s->bitalloc_huffman, s->prim_channels, 3);
/* Get codebooks quantization indexes */
memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
for (j = 1; j < 11; j++)
for (i = 0; i < s->prim_channels; i++)
s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
/* Get scale factor adjustment */
for (j = 0; j < 11; j++)
for (i = 0; i < s->prim_channels; i++)
s->scalefactor_adj[i][j] = 1;
for (j = 1; j < 11; j++)
for (i = 0; i < s->prim_channels; i++)
if (s->quant_index_huffman[i][j] < thr[j])
s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
if (s->crc_present) {
/* Audio header CRC check */
get_bits(&s->gb, 16);
}
s->current_subframe = 0;
s->current_subsubframe = 0;
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
for(i = 0; i < s->prim_channels; i++){
av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
for (j = 0; j < 11; j++)
av_log(s->avctx, AV_LOG_DEBUG, " %i",
s->quant_index_huffman[i][j]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
for (j = 0; j < 11; j++)
av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
#endif
return 0;
}
static inline int get_scale(GetBitContext *gb, int level, int value)
{
if (level < 5) {
/* huffman encoded */
value += get_bitalloc(gb, &dca_scalefactor, level);
} else if(level < 8)
value = get_bits(gb, level + 1);
return value;
}
static int dca_subframe_header(DCAContext * s)
{
/* Primary audio coding side information */
int j, k;
s->subsubframes = get_bits(&s->gb, 2) + 1;
s->partial_samples = get_bits(&s->gb, 3);
for (j = 0; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++)
s->prediction_mode[j][k] = get_bits(&s->gb, 1);
}
/* Get prediction codebook */
for (j = 0; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) {
if (s->prediction_mode[j][k] > 0) {
/* (Prediction coefficient VQ address) */
s->prediction_vq[j][k] = get_bits(&s->gb, 12);
}
}
}
/* Bit allocation index */
for (j = 0; j < s->prim_channels; j++) {
for (k = 0; k < s->vq_start_subband[j]; k++) {
if (s->bitalloc_huffman[j] == 6)
s->bitalloc[j][k] = get_bits(&s->gb, 5);
else if (s->bitalloc_huffman[j] == 5)
s->bitalloc[j][k] = get_bits(&s->gb, 4);
else if (s->bitalloc_huffman[j] == 7) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid bit allocation index\n");
return -1;
} else {
s->bitalloc[j][k] =
get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
}
if (s->bitalloc[j][k] > 26) {
// av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
// j, k, s->bitalloc[j][k]);
return -1;
}
}
}
/* Transition mode */
for (j = 0; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) {
s->transition_mode[j][k] = 0;
if (s->subsubframes > 1 &&
k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
s->transition_mode[j][k] =
get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
}
}
}
for (j = 0; j < s->prim_channels; j++) {
const uint32_t *scale_table;
int scale_sum;
memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
if (s->scalefactor_huffman[j] == 6)
scale_table = scale_factor_quant7;
else
scale_table = scale_factor_quant6;
/* When huffman coded, only the difference is encoded */
scale_sum = 0;
for (k = 0; k < s->subband_activity[j]; k++) {
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
s->scale_factor[j][k][0] = scale_table[scale_sum];
}
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
/* Get second scale factor */
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
s->scale_factor[j][k][1] = scale_table[scale_sum];
}
}
}
/* Joint subband scale factor codebook select */
for (j = 0; j < s->prim_channels; j++) {
/* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0)
s->joint_huff[j] = get_bits(&s->gb, 3);
}
/* Scale factors for joint subband coding */
for (j = 0; j < s->prim_channels; j++) {
int source_channel;
/* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0) {
int scale = 0;
source_channel = s->joint_intensity[j] - 1;
/* When huffman coded, only the difference is encoded
* (is this valid as well for joint scales ???) */
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
scale = get_scale(&s->gb, s->joint_huff[j], 0);
scale += 64; /* bias */
s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
}
if (!(s->debug_flag & 0x02)) {
av_log(s->avctx, AV_LOG_DEBUG,
"Joint stereo coding not supported\n");
s->debug_flag |= 0x02;
}
}
}
/* Stereo downmix coefficients */
if (s->prim_channels > 2) {
if(s->downmix) {
for (j = 0; j < s->prim_channels; j++) {
s->downmix_coef[j][0] = get_bits(&s->gb, 7);
s->downmix_coef[j][1] = get_bits(&s->gb, 7);
}
} else {
int am = s->amode & DCA_CHANNEL_MASK;
for (j = 0; j < s->prim_channels; j++) {
s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
}
}
}
/* Dynamic range coefficient */
if (s->dynrange)
s->dynrange_coef = get_bits(&s->gb, 8);
/* Side information CRC check word */
if (s->crc_present) {
get_bits(&s->gb, 16);
}
/*
* Primary audio data arrays
*/
/* VQ encoded high frequency subbands */
for (j = 0; j < s->prim_channels; j++)
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
/* 1 vector -> 32 samples */
s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
/* Low frequency effect data */
if (s->lfe) {
/* LFE samples */
int lfe_samples = 2 * s->lfe * s->subsubframes;
float lfe_scale;
for (j = lfe_samples; j < lfe_samples * 2; j++) {
/* Signed 8 bits int */
s->lfe_data[j] = get_sbits(&s->gb, 8);
}
/* Scale factor index */
s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
/* Quantization step size * scale factor */
lfe_scale = 0.035 * s->lfe_scale_factor;
for (j = lfe_samples; j < lfe_samples * 2; j++)
s->lfe_data[j] *= lfe_scale;
}
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes);
av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
s->partial_samples);
for (j = 0; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
for (k = 0; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = 0; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG,
"prediction coefs: %f, %f, %f, %f\n",
(float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
(float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
(float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
(float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
}
for (j = 0; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
for (k = 0; k < s->vq_start_subband[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = 0; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
for (k = 0; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = 0; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
for (k = 0; k < s->subband_activity[j]; k++) {
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = 0; j < s->prim_channels; j++) {
if (s->joint_intensity[j] > 0) {
int source_channel = s->joint_intensity[j] - 1;
av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
}
if (s->prim_channels > 2 && s->downmix) {
av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
for (j = 0; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = 0; j < s->prim_channels; j++)
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
if(s->lfe){
int lfe_samples = 2 * s->lfe * s->subsubframes;
av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
for (j = lfe_samples; j < lfe_samples * 2; j++)
av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
#endif
return 0;
}
static void qmf_32_subbands(DCAContext * s, int chans,
float samples_in[32][8], float *samples_out,
float scale, float bias)
{
const float *prCoeff;
int i;
int sb_act = s->subband_activity[chans];
int subindex;
scale *= sqrt(1/8.0);
/* Select filter */
if (!s->multirate_inter) /* Non-perfect reconstruction */
prCoeff = fir_32bands_nonperfect;
else /* Perfect reconstruction */
prCoeff = fir_32bands_perfect;
/* Reconstructed channel sample index */
for (subindex = 0; subindex < 8; subindex++) {
/* Load in one sample from each subband and clear inactive subbands */
for (i = 0; i < sb_act; i++){
uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ ((i-1)&2)<<30;
AV_WN32A(&s->raXin[i], v);
}
for (; i < 32; i++)
s->raXin[i] = 0.0;
s->synth.synth_filter_float(&s->imdct,
s->subband_fir_hist[chans], &s->hist_index[chans],
s->subband_fir_noidea[chans], prCoeff,
samples_out, s->raXin, scale, bias);
samples_out+= 32;
}
}
static void lfe_interpolation_fir(int decimation_select,
int num_deci_sample, float *samples_in,
float *samples_out, float scale,
float bias)
{
/* samples_in: An array holding decimated samples.
* Samples in current subframe starts from samples_in[0],
* while samples_in[-1], samples_in[-2], ..., stores samples
* from last subframe as history.
*
* samples_out: An array holding interpolated samples
*/
int decifactor, k, j;
const float *prCoeff;
int interp_index = 0; /* Index to the interpolated samples */
int deciindex;
/* Select decimation filter */
if (decimation_select == 1) {
decifactor = 128;
prCoeff = lfe_fir_128;
} else {
decifactor = 64;
prCoeff = lfe_fir_64;
}
/* Interpolation */
for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
/* One decimated sample generates decifactor interpolated ones */
for (k = 0; k < decifactor; k++) {
float rTmp = 0.0;
//FIXME the coeffs are symetric, fix that
for (j = 0; j < 512 / decifactor; j++)
rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor];
samples_out[interp_index++] = (rTmp * scale) + bias;
}
}
}
/* downmixing routines */
#define MIX_REAR1(samples, si1, rs, coef) \
samples[i] += samples[si1] * coef[rs][0]; \
samples[i+256] += samples[si1] * coef[rs][1];
#define MIX_REAR2(samples, si1, si2, rs, coef) \
samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \
samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1];
#define MIX_FRONT3(samples, coef) \
t = samples[i]; \
samples[i] = t * coef[0][0] + samples[i+256] * coef[1][0] + samples[i+512] * coef[2][0]; \
samples[i+256] = t * coef[0][1] + samples[i+256] * coef[1][1] + samples[i+512] * coef[2][1];
#define DOWNMIX_TO_STEREO(op1, op2) \
for(i = 0; i < 256; i++){ \
op1 \
op2 \
}
static void dca_downmix(float *samples, int srcfmt,
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2])
{
int i;
float t;
float coef[DCA_PRIM_CHANNELS_MAX][2];
for(i=0; i<DCA_PRIM_CHANNELS_MAX; i++) {
coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
}
switch (srcfmt) {
case DCA_MONO:
case DCA_CHANNEL:
case DCA_STEREO_TOTAL:
case DCA_STEREO_SUMDIFF:
case DCA_4F2R:
av_log(NULL, 0, "Not implemented!\n");
break;
case DCA_STEREO:
break;
case DCA_3F:
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),);
break;
case DCA_2F1R:
DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512, 2, coef),);
break;
case DCA_3F1R:
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
MIX_REAR1(samples, i + 768, 3, coef));
break;
case DCA_2F2R:
DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768, 2, coef),);
break;
case DCA_3F2R:
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
MIX_REAR2(samples, i + 768, i + 1024, 3, coef));
break;
}
}
/* Very compact version of the block code decoder that does not use table
* look-up but is slightly slower */
static int decode_blockcode(int code, int levels, int *values)
{
int i;
int offset = (levels - 1) >> 1;
for (i = 0; i < 4; i++) {
values[i] = (code % levels) - offset;
code /= levels;
}
if (code == 0)
return 0;
else {
av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
return -1;
}
}
static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
static int dca_subsubframe(DCAContext * s)
{
int k, l;
int subsubframe = s->current_subsubframe;
const float *quant_step_table;
/* FIXME */
float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
/*
* Audio data
*/
/* Select quantization step size table */
if (s->bit_rate_index == 0x1f)
quant_step_table = lossless_quant_d;
else
quant_step_table = lossy_quant_d;
for (k = 0; k < s->prim_channels; k++) {
for (l = 0; l < s->vq_start_subband[k]; l++) {
int m;
/* Select the mid-tread linear quantizer */
int abits = s->bitalloc[k][l];
float quant_step_size = quant_step_table[abits];
float rscale;
/*
* Determine quantization index code book and its type
*/
/* Select quantization index code book */
int sel = s->quant_index_huffman[k][abits];
/*
* Extract bits from the bit stream
*/
if(!abits){
memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
}else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
if(abits <= 7){
/* Block code */
int block_code1, block_code2, size, levels;
int block[8];
size = abits_sizes[abits-1];
levels = abits_levels[abits-1];
block_code1 = get_bits(&s->gb, size);
/* FIXME Should test return value */
decode_blockcode(block_code1, levels, block);
block_code2 = get_bits(&s->gb, size);
decode_blockcode(block_code2, levels, &block[4]);
for (m = 0; m < 8; m++)
subband_samples[k][l][m] = block[m];
}else{
/* no coding */
for (m = 0; m < 8; m++)
subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3);
}
}else{
/* Huffman coded */
for (m = 0; m < 8; m++)
subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
}
/* Deal with transients */
if (s->transition_mode[k][l] &&
subsubframe >= s->transition_mode[k][l])
rscale = quant_step_size * s->scale_factor[k][l][1];
else
rscale = quant_step_size * s->scale_factor[k][l][0];
rscale *= s->scalefactor_adj[k][sel];
for (m = 0; m < 8; m++)
subband_samples[k][l][m] *= rscale;
/*
* Inverse ADPCM if in prediction mode
*/
if (s->prediction_mode[k][l]) {
int n;
for (m = 0; m < 8; m++) {
for (n = 1; n <= 4; n++)
if (m >= n)
subband_samples[k][l][m] +=
(adpcm_vb[s->prediction_vq[k][l]][n - 1] *
subband_samples[k][l][m - n] / 8192);
else if (s->predictor_history)
subband_samples[k][l][m] +=
(adpcm_vb[s->prediction_vq[k][l]][n - 1] *
s->subband_samples_hist[k][l][m - n +
4] / 8192);
}
}
}
/*
* Decode VQ encoded high frequencies
*/
for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
/* 1 vector -> 32 samples but we only need the 8 samples
* for this subsubframe. */
int m;
if (!s->debug_flag & 0x01) {
av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
s->debug_flag |= 0x01;
}
for (m = 0; m < 8; m++) {
subband_samples[k][l][m] =
high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 +
m]
* (float) s->scale_factor[k][l][0] / 16.0;
}
}
}
/* Check for DSYNC after subsubframe */
if (s->aspf || subsubframe == s->subsubframes - 1) {
if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
#endif
} else {
av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
}
}
/* Backup predictor history for adpcm */
for (k = 0; k < s->prim_channels; k++)
for (l = 0; l < s->vq_start_subband[k]; l++)
memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
4 * sizeof(subband_samples[0][0][0]));
/* 32 subbands QMF */
for (k = 0; k < s->prim_channels; k++) {
/* static float pcm_to_double[8] =
{32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]],
M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ ,
s->add_bias );
}
/* Down mixing */
if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) {
dca_downmix(s->samples, s->amode, s->downmix_coef);
}
/* Generate LFE samples for this subsubframe FIXME!!! */
if (s->output & DCA_LFE) {
int lfe_samples = 2 * s->lfe * s->subsubframes;
lfe_interpolation_fir(s->lfe, 2 * s->lfe,
s->lfe_data + lfe_samples +
2 * s->lfe * subsubframe,
&s->samples[256 * dca_lfe_index[s->amode]],
(1.0/256.0)*s->scale_bias, s->add_bias);
/* Outputs 20bits pcm samples */
}
return 0;
}
static int dca_subframe_footer(DCAContext * s)
{
int aux_data_count = 0, i;
int lfe_samples;
/*
* Unpack optional information
*/
if (s->timestamp)
get_bits(&s->gb, 32);
if (s->aux_data)
aux_data_count = get_bits(&s->gb, 6);
for (i = 0; i < aux_data_count; i++)
get_bits(&s->gb, 8);
if (s->crc_present && (s->downmix || s->dynrange))
get_bits(&s->gb, 16);
lfe_samples = 2 * s->lfe * s->subsubframes;
for (i = 0; i < lfe_samples; i++) {
s->lfe_data[i] = s->lfe_data[i + lfe_samples];
}
return 0;
}
/**
* Decode a dca frame block
*
* @param s pointer to the DCAContext
*/
static int dca_decode_block(DCAContext * s)
{
/* Sanity check */
if (s->current_subframe >= s->subframes) {
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
s->current_subframe, s->subframes);
return -1;
}
if (!s->current_subsubframe) {
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
#endif
/* Read subframe header */
if (dca_subframe_header(s))
return -1;
}
/* Read subsubframe */
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
#endif
if (dca_subsubframe(s))
return -1;
/* Update state */
s->current_subsubframe++;
if (s->current_subsubframe >= s->subsubframes) {
s->current_subsubframe = 0;
s->current_subframe++;
}
if (s->current_subframe >= s->subframes) {
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
#endif
/* Read subframe footer */
if (dca_subframe_footer(s))
return -1;
}
return 0;
}
/**
* Convert bitstream to one representation based on sync marker
*/
static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst,
int max_size)
{
uint32_t mrk;
int i, tmp;
const uint16_t *ssrc = (const uint16_t *) src;
uint16_t *sdst = (uint16_t *) dst;
PutBitContext pb;
if((unsigned)src_size > (unsigned)max_size) {
// av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n");
// return -1;
src_size = max_size;
}
mrk = AV_RB32(src);
switch (mrk) {
case DCA_MARKER_RAW_BE:
memcpy(dst, src, src_size);
return src_size;
case DCA_MARKER_RAW_LE:
for (i = 0; i < (src_size + 1) >> 1; i++)
*sdst++ = bswap_16(*ssrc++);
return src_size;
case DCA_MARKER_14B_BE:
case DCA_MARKER_14B_LE:
init_put_bits(&pb, dst, max_size);
for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
put_bits(&pb, 14, tmp);
}
flush_put_bits(&pb);
return (put_bits_count(&pb) + 7) >> 3;
default:
return -1;
}
}
/**
* Main frame decoding function
* FIXME add arguments
*/
static int dca_decode_frame(AVCodecContext * avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int i;
int16_t *samples = data;
DCAContext *s = avctx->priv_data;
int channels;
s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE);
if (s->dca_buffer_size == -1) {
av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
return -1;
}
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
if (dca_parse_frame_header(s) < 0) {
//seems like the frame is corrupt, try with the next one
*data_size=0;
return buf_size;
}
//set AVCodec values with parsed data
avctx->sample_rate = s->sample_rate;
avctx->bit_rate = s->bit_rate;
channels = s->prim_channels + !!s->lfe;
if (s->amode<16) {
avctx->channel_layout = dca_core_channel_layout[s->amode];
if (s->lfe) {
avctx->channel_layout |= CH_LOW_FREQUENCY;
s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
} else
s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
if (s->prim_channels > 0 &&
s->channel_order_tab[s->prim_channels - 1] < 0)
return -1;
if(avctx->request_channels == 2 && s->prim_channels > 2) {
channels = 2;
s->output = DCA_STEREO;
avctx->channel_layout = CH_LAYOUT_STEREO;
}
} else {
av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n",s->amode);
return -1;
}
/* There is nothing that prevents a dts frame to change channel configuration
but FFmpeg doesn't support that so only set the channels if it is previously
unset. Ideally during the first probe for channels the crc should be checked
and only set avctx->channels when the crc is ok. Right now the decoder could
set the channels based on a broken first frame.*/
if (!avctx->channels)
avctx->channels = channels;
if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels)
return -1;
*data_size = 256 / 8 * s->sample_blocks * sizeof(int16_t) * channels;
for (i = 0; i < (s->sample_blocks / 8); i++) {
dca_decode_block(s);
s->dsp.float_to_int16_interleave(samples, s->samples_chanptr, 256, channels);
samples += 256 * channels;
}
return buf_size;
}
/**
* DCA initialization
*
* @param avctx pointer to the AVCodecContext
*/
static av_cold int dca_decode_init(AVCodecContext * avctx)
{
DCAContext *s = avctx->priv_data;
int i;
s->avctx = avctx;
dca_init_vlcs();
dsputil_init(&s->dsp, avctx);
ff_mdct_init(&s->imdct, 6, 1, 1.0);
ff_synth_filter_init(&s->synth);
for(i = 0; i < 6; i++)
s->samples_chanptr[i] = s->samples + i * 256;
avctx->sample_fmt = SAMPLE_FMT_S16;
if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
s->add_bias = 385.0f;
s->scale_bias = 1.0 / 32768.0;
} else {
s->add_bias = 0.0f;
s->scale_bias = 1.0;
/* allow downmixing to stereo */
if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
avctx->request_channels == 2) {
avctx->channels = avctx->request_channels;
}
}
return 0;
}
static av_cold int dca_decode_end(AVCodecContext * avctx)
{
DCAContext *s = avctx->priv_data;
ff_mdct_end(&s->imdct);
return 0;
}
AVCodec dca_decoder = {
.name = "dca",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_DTS,
.priv_data_size = sizeof(DCAContext),
.init = dca_decode_init,
.decode = dca_decode_frame,
.close = dca_decode_end,
.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
};
|