1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
|
/*
* COOK compatible decoder
* Copyright (c) 2003 Sascha Sommer
* Copyright (c) 2005 Benjamin Larsson
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Cook compatible decoder. Bastardization of the G.722.1 standard.
* This decoder handles RealNetworks, RealAudio G2 data.
* Cook is identified by the codec name cook in RM files.
*
* To use this decoder, a calling application must supply the extradata
* bytes provided from the RM container; 8+ bytes for mono streams and
* 16+ for stereo streams (maybe more).
*
* Codec technicalities (all this assume a buffer length of 1024):
* Cook works with several different techniques to achieve its compression.
* In the timedomain the buffer is divided into 8 pieces and quantized. If
* two neighboring pieces have different quantization index a smooth
* quantization curve is used to get a smooth overlap between the different
* pieces.
* To get to the transformdomain Cook uses a modulated lapped transform.
* The transform domain has 50 subbands with 20 elements each. This
* means only a maximum of 50*20=1000 coefficients are used out of the 1024
* available.
*/
#include "libavutil/lfg.h"
#include "avcodec.h"
#include "get_bits.h"
#include "dsputil.h"
#include "bytestream.h"
#include "fft.h"
#include "libavutil/audioconvert.h"
#include "sinewin.h"
#include "cookdata.h"
/* the different Cook versions */
#define MONO 0x1000001
#define STEREO 0x1000002
#define JOINT_STEREO 0x1000003
#define MC_COOK 0x2000000 // multichannel Cook, not supported
#define SUBBAND_SIZE 20
#define MAX_SUBPACKETS 5
typedef struct {
int *now;
int *previous;
} cook_gains;
typedef struct {
int ch_idx;
int size;
int num_channels;
int cookversion;
int samples_per_frame;
int subbands;
int js_subband_start;
int js_vlc_bits;
int samples_per_channel;
int log2_numvector_size;
unsigned int channel_mask;
VLC ccpl; ///< channel coupling
int joint_stereo;
int bits_per_subpacket;
int bits_per_subpdiv;
int total_subbands;
int numvector_size; ///< 1 << log2_numvector_size;
float mono_previous_buffer1[1024];
float mono_previous_buffer2[1024];
/** gain buffers */
cook_gains gains1;
cook_gains gains2;
int gain_1[9];
int gain_2[9];
int gain_3[9];
int gain_4[9];
} COOKSubpacket;
typedef struct cook {
/*
* The following 5 functions provide the lowlevel arithmetic on
* the internal audio buffers.
*/
void (*scalar_dequant)(struct cook *q, int index, int quant_index,
int *subband_coef_index, int *subband_coef_sign,
float *mlt_p);
void (*decouple)(struct cook *q,
COOKSubpacket *p,
int subband,
float f1, float f2,
float *decode_buffer,
float *mlt_buffer1, float *mlt_buffer2);
void (*imlt_window)(struct cook *q, float *buffer1,
cook_gains *gains_ptr, float *previous_buffer);
void (*interpolate)(struct cook *q, float *buffer,
int gain_index, int gain_index_next);
void (*saturate_output)(struct cook *q, int chan, float *out);
AVCodecContext* avctx;
AVFrame frame;
GetBitContext gb;
/* stream data */
int nb_channels;
int bit_rate;
int sample_rate;
int num_vectors;
int samples_per_channel;
/* states */
AVLFG random_state;
int discarded_packets;
/* transform data */
FFTContext mdct_ctx;
float* mlt_window;
/* VLC data */
VLC envelope_quant_index[13];
VLC sqvh[7]; // scalar quantization
/* generatable tables and related variables */
int gain_size_factor;
float gain_table[23];
/* data buffers */
uint8_t* decoded_bytes_buffer;
DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
float decode_buffer_1[1024];
float decode_buffer_2[1024];
float decode_buffer_0[1060]; /* static allocation for joint decode */
const float *cplscales[5];
int num_subpackets;
COOKSubpacket subpacket[MAX_SUBPACKETS];
} COOKContext;
static float pow2tab[127];
static float rootpow2tab[127];
/*************** init functions ***************/
/* table generator */
static av_cold void init_pow2table(void)
{
int i;
for (i = -63; i < 64; i++) {
pow2tab[63 + i] = pow(2, i);
rootpow2tab[63 + i] = sqrt(pow(2, i));
}
}
/* table generator */
static av_cold void init_gain_table(COOKContext *q)
{
int i;
q->gain_size_factor = q->samples_per_channel / 8;
for (i = 0; i < 23; i++)
q->gain_table[i] = pow(pow2tab[i + 52],
(1.0 / (double) q->gain_size_factor));
}
static av_cold int init_cook_vlc_tables(COOKContext *q)
{
int i, result;
result = 0;
for (i = 0; i < 13; i++) {
result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
envelope_quant_index_huffbits[i], 1, 1,
envelope_quant_index_huffcodes[i], 2, 2, 0);
}
av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
for (i = 0; i < 7; i++) {
result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
cvh_huffbits[i], 1, 1,
cvh_huffcodes[i], 2, 2, 0);
}
for (i = 0; i < q->num_subpackets; i++) {
if (q->subpacket[i].joint_stereo == 1) {
result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
}
}
av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
return result;
}
static av_cold int init_cook_mlt(COOKContext *q)
{
int j, ret;
int mlt_size = q->samples_per_channel;
if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
return AVERROR(ENOMEM);
/* Initialize the MLT window: simple sine window. */
ff_sine_window_init(q->mlt_window, mlt_size);
for (j = 0; j < mlt_size; j++)
q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
/* Initialize the MDCT. */
if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
av_free(q->mlt_window);
return ret;
}
av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
av_log2(mlt_size) + 1);
return 0;
}
static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
{
if (1)
return ptr;
}
static av_cold void init_cplscales_table(COOKContext *q)
{
int i;
for (i = 0; i < 5; i++)
q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
}
/*************** init functions end ***********/
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
/**
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
* Why? No idea, some checksum/error detection method maybe.
*
* Out buffer size: extra bytes are needed to cope with
* padding/misalignment.
* Subpackets passed to the decoder can contain two, consecutive
* half-subpackets, of identical but arbitrary size.
* 1234 1234 1234 1234 extraA extraB
* Case 1: AAAA BBBB 0 0
* Case 2: AAAA ABBB BB-- 3 3
* Case 3: AAAA AABB BBBB 2 2
* Case 4: AAAA AAAB BBBB BB-- 1 5
*
* Nice way to waste CPU cycles.
*
* @param inbuffer pointer to byte array of indata
* @param out pointer to byte array of outdata
* @param bytes number of bytes
*/
static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
{
static const uint32_t tab[4] = {
AV_BE2NE32C(0x37c511f2), AV_BE2NE32C(0xf237c511),
AV_BE2NE32C(0x11f237c5), AV_BE2NE32C(0xc511f237),
};
int i, off;
uint32_t c;
const uint32_t *buf;
uint32_t *obuf = (uint32_t *) out;
/* FIXME: 64 bit platforms would be able to do 64 bits at a time.
* I'm too lazy though, should be something like
* for (i = 0; i < bitamount / 64; i++)
* (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
* Buffer alignment needs to be checked. */
off = (intptr_t) inbuffer & 3;
buf = (const uint32_t *) (inbuffer - off);
c = tab[off];
bytes += 3 + off;
for (i = 0; i < bytes / 4; i++)
obuf[i] = c ^ buf[i];
return off;
}
/**
* Cook uninit
*/
static av_cold int cook_decode_close(AVCodecContext *avctx)
{
int i;
COOKContext *q = avctx->priv_data;
av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
/* Free allocated memory buffers. */
av_free(q->mlt_window);
av_free(q->decoded_bytes_buffer);
/* Free the transform. */
ff_mdct_end(&q->mdct_ctx);
/* Free the VLC tables. */
for (i = 0; i < 13; i++)
free_vlc(&q->envelope_quant_index[i]);
for (i = 0; i < 7; i++)
free_vlc(&q->sqvh[i]);
for (i = 0; i < q->num_subpackets; i++)
free_vlc(&q->subpacket[i].ccpl);
av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
return 0;
}
/**
* Fill the gain array for the timedomain quantization.
*
* @param gb pointer to the GetBitContext
* @param gaininfo array[9] of gain indexes
*/
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
{
int i, n;
while (get_bits1(gb)) {
/* NOTHING */
}
n = get_bits_count(gb) - 1; // amount of elements*2 to update
i = 0;
while (n--) {
int index = get_bits(gb, 3);
int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
while (i <= index)
gaininfo[i++] = gain;
}
while (i <= 8)
gaininfo[i++] = 0;
}
/**
* Create the quant index table needed for the envelope.
*
* @param q pointer to the COOKContext
* @param quant_index_table pointer to the array
*/
static int decode_envelope(COOKContext *q, COOKSubpacket *p,
int *quant_index_table)
{
int i, j, vlc_index;
quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
for (i = 1; i < p->total_subbands; i++) {
vlc_index = i;
if (i >= p->js_subband_start * 2) {
vlc_index -= p->js_subband_start;
} else {
vlc_index /= 2;
if (vlc_index < 1)
vlc_index = 1;
}
if (vlc_index > 13)
vlc_index = 13; // the VLC tables >13 are identical to No. 13
j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
q->envelope_quant_index[vlc_index - 1].bits, 2);
quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
av_log(q->avctx, AV_LOG_ERROR,
"Invalid quantizer %d at position %d, outside [-63, 63] range\n",
quant_index_table[i], i);
return AVERROR_INVALIDDATA;
}
}
return 0;
}
/**
* Calculate the category and category_index vector.
*
* @param q pointer to the COOKContext
* @param quant_index_table pointer to the array
* @param category pointer to the category array
* @param category_index pointer to the category_index array
*/
static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
int *category, int *category_index)
{
int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
int exp_index2[102];
int exp_index1[102];
int tmp_categorize_array[128 * 2];
int tmp_categorize_array1_idx = p->numvector_size;
int tmp_categorize_array2_idx = p->numvector_size;
bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
if (bits_left > q->samples_per_channel) {
bits_left = q->samples_per_channel +
((bits_left - q->samples_per_channel) * 5) / 8;
//av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
}
memset(&exp_index1, 0, sizeof(exp_index1));
memset(&exp_index2, 0, sizeof(exp_index2));
memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
bias = -32;
/* Estimate bias. */
for (i = 32; i > 0; i = i / 2) {
num_bits = 0;
index = 0;
for (j = p->total_subbands; j > 0; j--) {
exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
index++;
num_bits += expbits_tab[exp_idx];
}
if (num_bits >= bits_left - 32)
bias += i;
}
/* Calculate total number of bits. */
num_bits = 0;
for (i = 0; i < p->total_subbands; i++) {
exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
num_bits += expbits_tab[exp_idx];
exp_index1[i] = exp_idx;
exp_index2[i] = exp_idx;
}
tmpbias1 = tmpbias2 = num_bits;
for (j = 1; j < p->numvector_size; j++) {
if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
int max = -999999;
index = -1;
for (i = 0; i < p->total_subbands; i++) {
if (exp_index1[i] < 7) {
v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
if (v >= max) {
max = v;
index = i;
}
}
}
if (index == -1)
break;
tmp_categorize_array[tmp_categorize_array1_idx++] = index;
tmpbias1 -= expbits_tab[exp_index1[index]] -
expbits_tab[exp_index1[index] + 1];
++exp_index1[index];
} else { /* <--- */
int min = 999999;
index = -1;
for (i = 0; i < p->total_subbands; i++) {
if (exp_index2[i] > 0) {
v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
if (v < min) {
min = v;
index = i;
}
}
}
if (index == -1)
break;
tmp_categorize_array[--tmp_categorize_array2_idx] = index;
tmpbias2 -= expbits_tab[exp_index2[index]] -
expbits_tab[exp_index2[index] - 1];
--exp_index2[index];
}
}
for (i = 0; i < p->total_subbands; i++)
category[i] = exp_index2[i];
for (i = 0; i < p->numvector_size - 1; i++)
category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
}
/**
* Expand the category vector.
*
* @param q pointer to the COOKContext
* @param category pointer to the category array
* @param category_index pointer to the category_index array
*/
static inline void expand_category(COOKContext *q, int *category,
int *category_index)
{
int i;
for (i = 0; i < q->num_vectors; i++)
{
int idx = category_index[i];
if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
--category[idx];
}
}
/**
* The real requantization of the mltcoefs
*
* @param q pointer to the COOKContext
* @param index index
* @param quant_index quantisation index
* @param subband_coef_index array of indexes to quant_centroid_tab
* @param subband_coef_sign signs of coefficients
* @param mlt_p pointer into the mlt buffer
*/
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
int *subband_coef_index, int *subband_coef_sign,
float *mlt_p)
{
int i;
float f1;
for (i = 0; i < SUBBAND_SIZE; i++) {
if (subband_coef_index[i]) {
f1 = quant_centroid_tab[index][subband_coef_index[i]];
if (subband_coef_sign[i])
f1 = -f1;
} else {
/* noise coding if subband_coef_index[i] == 0 */
f1 = dither_tab[index];
if (av_lfg_get(&q->random_state) < 0x80000000)
f1 = -f1;
}
mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
}
}
/**
* Unpack the subband_coef_index and subband_coef_sign vectors.
*
* @param q pointer to the COOKContext
* @param category pointer to the category array
* @param subband_coef_index array of indexes to quant_centroid_tab
* @param subband_coef_sign signs of coefficients
*/
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
int *subband_coef_index, int *subband_coef_sign)
{
int i, j;
int vlc, vd, tmp, result;
vd = vd_tab[category];
result = 0;
for (i = 0; i < vpr_tab[category]; i++) {
vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
vlc = 0;
result = 1;
}
for (j = vd - 1; j >= 0; j--) {
tmp = (vlc * invradix_tab[category]) / 0x100000;
subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
vlc = tmp;
}
for (j = 0; j < vd; j++) {
if (subband_coef_index[i * vd + j]) {
if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
} else {
result = 1;
subband_coef_sign[i * vd + j] = 0;
}
} else {
subband_coef_sign[i * vd + j] = 0;
}
}
}
return result;
}
/**
* Fill the mlt_buffer with mlt coefficients.
*
* @param q pointer to the COOKContext
* @param category pointer to the category array
* @param quant_index_table pointer to the array
* @param mlt_buffer pointer to mlt coefficients
*/
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
int *quant_index_table, float *mlt_buffer)
{
/* A zero in this table means that the subband coefficient is
random noise coded. */
int subband_coef_index[SUBBAND_SIZE];
/* A zero in this table means that the subband coefficient is a
positive multiplicator. */
int subband_coef_sign[SUBBAND_SIZE];
int band, j;
int index = 0;
for (band = 0; band < p->total_subbands; band++) {
index = category[band];
if (category[band] < 7) {
if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
index = 7;
for (j = 0; j < p->total_subbands; j++)
category[band + j] = 7;
}
}
if (index >= 7) {
memset(subband_coef_index, 0, sizeof(subband_coef_index));
memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
}
q->scalar_dequant(q, index, quant_index_table[band],
subband_coef_index, subband_coef_sign,
&mlt_buffer[band * SUBBAND_SIZE]);
}
/* FIXME: should this be removed, or moved into loop above? */
if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
return;
}
/**
* function for decoding mono data
*
* @param q pointer to the COOKContext
* @param mlt_buffer pointer to mlt coefficients
*/
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
{
int category_index[128];
int quant_index_table[102];
int category[128];
int res;
memset(&category, 0, sizeof(category));
memset(&category_index, 0, sizeof(category_index));
if ((res = decode_envelope(q, p, quant_index_table)) < 0)
return res;
q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
categorize(q, p, quant_index_table, category, category_index);
expand_category(q, category, category_index);
decode_vectors(q, p, category, quant_index_table, mlt_buffer);
return 0;
}
/**
* the actual requantization of the timedomain samples
*
* @param q pointer to the COOKContext
* @param buffer pointer to the timedomain buffer
* @param gain_index index for the block multiplier
* @param gain_index_next index for the next block multiplier
*/
static void interpolate_float(COOKContext *q, float *buffer,
int gain_index, int gain_index_next)
{
int i;
float fc1, fc2;
fc1 = pow2tab[gain_index + 63];
if (gain_index == gain_index_next) { // static gain
for (i = 0; i < q->gain_size_factor; i++)
buffer[i] *= fc1;
} else { // smooth gain
fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
for (i = 0; i < q->gain_size_factor; i++) {
buffer[i] *= fc1;
fc1 *= fc2;
}
}
}
/**
* Apply transform window, overlap buffers.
*
* @param q pointer to the COOKContext
* @param inbuffer pointer to the mltcoefficients
* @param gains_ptr current and previous gains
* @param previous_buffer pointer to the previous buffer to be used for overlapping
*/
static void imlt_window_float(COOKContext *q, float *inbuffer,
cook_gains *gains_ptr, float *previous_buffer)
{
const float fc = pow2tab[gains_ptr->previous[0] + 63];
int i;
/* The weird thing here, is that the two halves of the time domain
* buffer are swapped. Also, the newest data, that we save away for
* next frame, has the wrong sign. Hence the subtraction below.
* Almost sounds like a complex conjugate/reverse data/FFT effect.
*/
/* Apply window and overlap */
for (i = 0; i < q->samples_per_channel; i++)
inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
}
/**
* The modulated lapped transform, this takes transform coefficients
* and transforms them into timedomain samples.
* Apply transform window, overlap buffers, apply gain profile
* and buffer management.
*
* @param q pointer to the COOKContext
* @param inbuffer pointer to the mltcoefficients
* @param gains_ptr current and previous gains
* @param previous_buffer pointer to the previous buffer to be used for overlapping
*/
static void imlt_gain(COOKContext *q, float *inbuffer,
cook_gains *gains_ptr, float *previous_buffer)
{
float *buffer0 = q->mono_mdct_output;
float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
int i;
/* Inverse modified discrete cosine transform */
q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
/* Apply gain profile */
for (i = 0; i < 8; i++)
if (gains_ptr->now[i] || gains_ptr->now[i + 1])
q->interpolate(q, &buffer1[q->gain_size_factor * i],
gains_ptr->now[i], gains_ptr->now[i + 1]);
/* Save away the current to be previous block. */
memcpy(previous_buffer, buffer0,
q->samples_per_channel * sizeof(*previous_buffer));
}
/**
* function for getting the jointstereo coupling information
*
* @param q pointer to the COOKContext
* @param decouple_tab decoupling array
*
*/
static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
{
int i;
int vlc = get_bits1(&q->gb);
int start = cplband[p->js_subband_start];
int end = cplband[p->subbands - 1];
int length = end - start + 1;
if (start > end)
return;
if (vlc)
for (i = 0; i < length; i++)
decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
else
for (i = 0; i < length; i++)
decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
}
/*
* function decouples a pair of signals from a single signal via multiplication.
*
* @param q pointer to the COOKContext
* @param subband index of the current subband
* @param f1 multiplier for channel 1 extraction
* @param f2 multiplier for channel 2 extraction
* @param decode_buffer input buffer
* @param mlt_buffer1 pointer to left channel mlt coefficients
* @param mlt_buffer2 pointer to right channel mlt coefficients
*/
static void decouple_float(COOKContext *q,
COOKSubpacket *p,
int subband,
float f1, float f2,
float *decode_buffer,
float *mlt_buffer1, float *mlt_buffer2)
{
int j, tmp_idx;
for (j = 0; j < SUBBAND_SIZE; j++) {
tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
}
}
/**
* function for decoding joint stereo data
*
* @param q pointer to the COOKContext
* @param mlt_buffer1 pointer to left channel mlt coefficients
* @param mlt_buffer2 pointer to right channel mlt coefficients
*/
static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
float *mlt_buffer2)
{
int i, j, res;
int decouple_tab[SUBBAND_SIZE];
float *decode_buffer = q->decode_buffer_0;
int idx, cpl_tmp;
float f1, f2;
const float *cplscale;
memset(decouple_tab, 0, sizeof(decouple_tab));
memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
/* Make sure the buffers are zeroed out. */
memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
decouple_info(q, p, decouple_tab);
if ((res = mono_decode(q, p, decode_buffer)) < 0)
return res;
/* The two channels are stored interleaved in decode_buffer. */
for (i = 0; i < p->js_subband_start; i++) {
for (j = 0; j < SUBBAND_SIZE; j++) {
mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
}
}
/* When we reach js_subband_start (the higher frequencies)
the coefficients are stored in a coupling scheme. */
idx = (1 << p->js_vlc_bits) - 1;
for (i = p->js_subband_start; i < p->subbands; i++) {
cpl_tmp = cplband[i];
idx -= decouple_tab[cpl_tmp];
cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
f1 = cplscale[decouple_tab[cpl_tmp] + 1];
f2 = cplscale[idx];
q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
idx = (1 << p->js_vlc_bits) - 1;
}
return 0;
}
/**
* First part of subpacket decoding:
* decode raw stream bytes and read gain info.
*
* @param q pointer to the COOKContext
* @param inbuffer pointer to raw stream data
* @param gains_ptr array of current/prev gain pointers
*/
static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
const uint8_t *inbuffer,
cook_gains *gains_ptr)
{
int offset;
offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
p->bits_per_subpacket / 8);
init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
p->bits_per_subpacket);
decode_gain_info(&q->gb, gains_ptr->now);
/* Swap current and previous gains */
FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
}
/**
* Saturate the output signal and interleave.
*
* @param q pointer to the COOKContext
* @param chan channel to saturate
* @param out pointer to the output vector
*/
static void saturate_output_float(COOKContext *q, int chan, float *out)
{
int j;
float *output = q->mono_mdct_output + q->samples_per_channel;
for (j = 0; j < q->samples_per_channel; j++) {
out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
}
}
/**
* Final part of subpacket decoding:
* Apply modulated lapped transform, gain compensation,
* clip and convert to integer.
*
* @param q pointer to the COOKContext
* @param decode_buffer pointer to the mlt coefficients
* @param gains_ptr array of current/prev gain pointers
* @param previous_buffer pointer to the previous buffer to be used for overlapping
* @param out pointer to the output buffer
* @param chan 0: left or single channel, 1: right channel
*/
static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
cook_gains *gains_ptr, float *previous_buffer,
float *out, int chan)
{
imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
if (out)
q->saturate_output(q, chan, out);
}
/**
* Cook subpacket decoding. This function returns one decoded subpacket,
* usually 1024 samples per channel.
*
* @param q pointer to the COOKContext
* @param inbuffer pointer to the inbuffer
* @param outbuffer pointer to the outbuffer
*/
static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
const uint8_t *inbuffer, float *outbuffer)
{
int sub_packet_size = p->size;
int res;
/* packet dump */
// for (i = 0; i < sub_packet_size ; i++)
// av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
// av_log(q->avctx, AV_LOG_ERROR, "\n");
memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
if (p->joint_stereo) {
if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
return res;
} else {
if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
return res;
if (p->num_channels == 2) {
decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
return res;
}
}
mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
p->mono_previous_buffer1, outbuffer, p->ch_idx);
if (p->num_channels == 2)
if (p->joint_stereo)
mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
else
mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
return 0;
}
/**
* Cook frame decoding
*
* @param avctx pointer to the AVCodecContext
*/
static int cook_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
COOKContext *q = avctx->priv_data;
float *samples = NULL;
int i, ret;
int offset = 0;
int chidx = 0;
if (buf_size < avctx->block_align)
return buf_size;
/* get output buffer */
if (q->discarded_packets >= 2) {
q->frame.nb_samples = q->samples_per_channel;
if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
samples = (float *) q->frame.data[0];
}
/* estimate subpacket sizes */
q->subpacket[0].size = avctx->block_align;
for (i = 1; i < q->num_subpackets; i++) {
q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
q->subpacket[0].size -= q->subpacket[i].size + 1;
if (q->subpacket[0].size < 0) {
av_log(avctx, AV_LOG_DEBUG,
"frame subpacket size total > avctx->block_align!\n");
return AVERROR_INVALIDDATA;
}
}
/* decode supbackets */
for (i = 0; i < q->num_subpackets; i++) {
q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
q->subpacket[i].bits_per_subpdiv;
q->subpacket[i].ch_idx = chidx;
av_log(avctx, AV_LOG_DEBUG,
"subpacket[%i] size %i js %i %i block_align %i\n",
i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
avctx->block_align);
if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
return ret;
offset += q->subpacket[i].size;
chidx += q->subpacket[i].num_channels;
av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
}
/* Discard the first two frames: no valid audio. */
if (q->discarded_packets < 2) {
q->discarded_packets++;
*got_frame_ptr = 0;
return avctx->block_align;
}
*got_frame_ptr = 1;
*(AVFrame *) data = q->frame;
return avctx->block_align;
}
#ifdef DEBUG
static void dump_cook_context(COOKContext *q)
{
//int i=0;
#define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
if (q->subpacket[0].cookversion > STEREO) {
PRINT("js_subband_start", q->subpacket[0].js_subband_start);
PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
}
av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
PRINT("nb_channels", q->nb_channels);
PRINT("bit_rate", q->bit_rate);
PRINT("sample_rate", q->sample_rate);
PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
PRINT("subbands", q->subpacket[0].subbands);
PRINT("js_subband_start", q->subpacket[0].js_subband_start);
PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
PRINT("numvector_size", q->subpacket[0].numvector_size);
PRINT("total_subbands", q->subpacket[0].total_subbands);
}
#endif
static av_cold int cook_count_channels(unsigned int mask)
{
int i;
int channels = 0;
for (i = 0; i < 32; i++)
if (mask & (1 << i))
++channels;
return channels;
}
/**
* Cook initialization
*
* @param avctx pointer to the AVCodecContext
*/
static av_cold int cook_decode_init(AVCodecContext *avctx)
{
COOKContext *q = avctx->priv_data;
const uint8_t *edata_ptr = avctx->extradata;
const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
int extradata_size = avctx->extradata_size;
int s = 0;
unsigned int channel_mask = 0;
int ret;
q->avctx = avctx;
/* Take care of the codec specific extradata. */
if (extradata_size <= 0) {
av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
return AVERROR_INVALIDDATA;
}
av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
/* Take data from the AVCodecContext (RM container). */
q->sample_rate = avctx->sample_rate;
q->nb_channels = avctx->channels;
q->bit_rate = avctx->bit_rate;
if (!q->nb_channels) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
return AVERROR_INVALIDDATA;
}
/* Initialize RNG. */
av_lfg_init(&q->random_state, 0);
while (edata_ptr < edata_ptr_end) {
/* 8 for mono, 16 for stereo, ? for multichannel
Swap to right endianness so we don't need to care later on. */
if (extradata_size >= 8) {
q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
extradata_size -= 8;
}
if (extradata_size >= 8) {
bytestream_get_be32(&edata_ptr); // Unknown unused
q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
extradata_size -= 8;
}
/* Initialize extradata related variables. */
q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
/* Initialize default data states. */
q->subpacket[s].log2_numvector_size = 5;
q->subpacket[s].total_subbands = q->subpacket[s].subbands;
q->subpacket[s].num_channels = 1;
/* Initialize version-dependent variables */
av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
q->subpacket[s].cookversion);
q->subpacket[s].joint_stereo = 0;
switch (q->subpacket[s].cookversion) {
case MONO:
if (q->nb_channels != 1) {
av_log_ask_for_sample(avctx, "Container channels != 1.\n");
return AVERROR_PATCHWELCOME;
}
av_log(avctx, AV_LOG_DEBUG, "MONO\n");
break;
case STEREO:
if (q->nb_channels != 1) {
q->subpacket[s].bits_per_subpdiv = 1;
q->subpacket[s].num_channels = 2;
}
av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
break;
case JOINT_STEREO:
if (q->nb_channels != 2) {
av_log_ask_for_sample(avctx, "Container channels != 2.\n");
return AVERROR_PATCHWELCOME;
}
av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
if (avctx->extradata_size >= 16) {
q->subpacket[s].total_subbands = q->subpacket[s].subbands +
q->subpacket[s].js_subband_start;
q->subpacket[s].joint_stereo = 1;
q->subpacket[s].num_channels = 2;
}
if (q->subpacket[s].samples_per_channel > 256) {
q->subpacket[s].log2_numvector_size = 6;
}
if (q->subpacket[s].samples_per_channel > 512) {
q->subpacket[s].log2_numvector_size = 7;
}
break;
case MC_COOK:
av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
if (extradata_size >= 4)
channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
q->subpacket[s].total_subbands = q->subpacket[s].subbands +
q->subpacket[s].js_subband_start;
q->subpacket[s].joint_stereo = 1;
q->subpacket[s].num_channels = 2;
q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
if (q->subpacket[s].samples_per_channel > 256) {
q->subpacket[s].log2_numvector_size = 6;
}
if (q->subpacket[s].samples_per_channel > 512) {
q->subpacket[s].log2_numvector_size = 7;
}
} else
q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
break;
default:
av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
return AVERROR_PATCHWELCOME;
}
if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
return AVERROR_INVALIDDATA;
} else
q->samples_per_channel = q->subpacket[0].samples_per_channel;
/* Initialize variable relations */
q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
/* Try to catch some obviously faulty streams, othervise it might be exploitable */
if (q->subpacket[s].total_subbands > 53) {
av_log_ask_for_sample(avctx, "total_subbands > 53\n");
return AVERROR_PATCHWELCOME;
}
if ((q->subpacket[s].js_vlc_bits > 6) ||
(q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
return AVERROR_INVALIDDATA;
}
if (q->subpacket[s].subbands > 50) {
av_log_ask_for_sample(avctx, "subbands > 50\n");
return AVERROR_PATCHWELCOME;
}
q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
q->num_subpackets++;
s++;
if (s > MAX_SUBPACKETS) {
av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
return AVERROR_PATCHWELCOME;
}
}
/* Generate tables */
init_pow2table();
init_gain_table(q);
init_cplscales_table(q);
if ((ret = init_cook_vlc_tables(q)))
return ret;
if (avctx->block_align >= UINT_MAX / 2)
return AVERROR(EINVAL);
/* Pad the databuffer with:
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
q->decoded_bytes_buffer =
av_mallocz(avctx->block_align
+ DECODE_BYTES_PAD1(avctx->block_align)
+ FF_INPUT_BUFFER_PADDING_SIZE);
if (q->decoded_bytes_buffer == NULL)
return AVERROR(ENOMEM);
/* Initialize transform. */
if ((ret = init_cook_mlt(q)))
return ret;
/* Initialize COOK signal arithmetic handling */
if (1) {
q->scalar_dequant = scalar_dequant_float;
q->decouple = decouple_float;
q->imlt_window = imlt_window_float;
q->interpolate = interpolate_float;
q->saturate_output = saturate_output_float;
}
/* Try to catch some obviously faulty streams, othervise it might be exploitable */
if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
|| (q->samples_per_channel == 1024)) {
} else {
av_log_ask_for_sample(avctx,
"unknown amount of samples_per_channel = %d\n",
q->samples_per_channel);
return AVERROR_PATCHWELCOME;
}
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
if (channel_mask)
avctx->channel_layout = channel_mask;
else
avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
avcodec_get_frame_defaults(&q->frame);
avctx->coded_frame = &q->frame;
#ifdef DEBUG
dump_cook_context(q);
#endif
return 0;
}
AVCodec ff_cook_decoder = {
.name = "cook",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_COOK,
.priv_data_size = sizeof(COOKContext),
.init = cook_decode_init,
.close = cook_decode_close,
.decode = cook_decode_frame,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("COOK"),
};
|