aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/cook.c
blob: 88ee071b2bd6d9b0b69ad034dda077ab93ad9937 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
/*
 * COOK compatible decoder
 * Copyright (c) 2003 Sascha Sommer
 * Copyright (c) 2005 Benjamin Larsson
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 */

/**
 * @file cook.c
 * Cook compatible decoder.
 * This decoder handles RealNetworks, RealAudio G2 data.
 * Cook is identified by the codec name cook in RM files.
 *
 * To use this decoder, a calling application must supply the extradata
 * bytes provided from the RM container; 8+ bytes for mono streams and
 * 16+ for stereo streams (maybe more).
 *
 * Codec technicalities (all this assume a buffer length of 1024):
 * Cook works with several different techniques to achieve its compression.
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
 * two neighboring pieces have different quantization index a smooth
 * quantization curve is used to get a smooth overlap between the different
 * pieces.
 * To get to the transformdomain Cook uses a modulated lapped transform.
 * The transform domain has 50 subbands with 20 elements each. This
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
 * available.
 */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

#include "avcodec.h"
#include "bitstream.h"
#include "dsputil.h"

#include "cookdata.h"

/* the different Cook versions */
#define MONO_COOK1      0x1000001
#define MONO_COOK2      0x1000002
#define JOINT_STEREO    0x1000003
#define MC_COOK         0x2000000   //multichannel Cook, not supported

#define SUBBAND_SIZE    20
//#define COOKDEBUG

typedef struct {
    int     size;
    int     qidx_table1[8];
    int     qidx_table2[8];
} COOKgain;

typedef struct __attribute__((__packed__)){
    /* codec data start */
    uint32_t cookversion;               //in network order, bigendian
    uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
    uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
    /* Mono extradata ends here. */
    uint32_t unused;
    uint16_t js_subband_start;          //bigendian
    uint16_t js_vlc_bits;               //bigendian
    /* Stereo extradata ends here. */
} COOKextradata;


typedef struct {
    GetBitContext       gb;
    /* stream data */
    int                 nb_channels;
    int                 joint_stereo;
    int                 bit_rate;
    int                 sample_rate;
    int                 samples_per_channel;
    int                 samples_per_frame;
    int                 subbands;
    int                 log2_numvector_size;
    int                 numvector_size;                //1 << log2_numvector_size;
    int                 js_subband_start;
    int                 total_subbands;
    int                 num_vectors;
    int                 bits_per_subpacket;
    /* states */
    int                 random_state;

    /* transform data */
    FFTContext          fft_ctx;
    FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
    float*              mlt_window;
    float*              mlt_precos;
    float*              mlt_presin;
    float*              mlt_postcos;
    int                 fft_size;
    int                 fft_order;
    int                 mlt_size;       //modulated lapped transform size

    /* gain buffers */
    COOKgain*           gain_now_ptr;
    COOKgain*           gain_previous_ptr;
    COOKgain            gain_current;
    COOKgain            gain_now;
    COOKgain            gain_previous;
    COOKgain            gain_channel1[2];
    COOKgain            gain_channel2[2];

    /* VLC data */
    int                 js_vlc_bits;
    VLC                 envelope_quant_index[13];
    VLC                 sqvh[7];          //scalar quantization
    VLC                 ccpl;             //channel coupling

    /* generatable tables and related variables */
    int                 gain_size_factor;
    float               gain_table[23];
    float               pow2tab[127];
    float               rootpow2tab[127];

    /* data buffers */

    uint8_t*            decoded_bytes_buffer;
    float               mono_mdct_output[2048] __attribute__((aligned(16)));
    float*              previous_buffer_ptr[2];
    float               mono_previous_buffer1[1024];
    float               mono_previous_buffer2[1024];
    float*              decode_buf_ptr[4];
    float*              decode_buf_ptr2[2];
    float               decode_buffer_1[1024];
    float               decode_buffer_2[1024];
    float               decode_buffer_3[1024];
    float               decode_buffer_4[1024];
} COOKContext;

/* debug functions */

#ifdef COOKDEBUG
static void dump_float_table(float* table, int size, int delimiter) {
    int i=0;
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
    }
}

static void dump_int_table(int* table, int size, int delimiter) {
    int i=0;
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
    }
}

static void dump_short_table(short* table, int size, int delimiter) {
    int i=0;
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
    }
}

#endif

/*************** init functions ***************/

/* table generator */
static void init_pow2table(COOKContext *q){
    int i;
    q->pow2tab[63] = 1.0;
    for (i=1 ; i<64 ; i++){
        q->pow2tab[63+i]=(float)((uint64_t)1<<i);
        q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
    }
}

/* table generator */
static void init_rootpow2table(COOKContext *q){
    int i;
    q->rootpow2tab[63] = 1.0;
    for (i=1 ; i<64 ; i++){
        q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
        q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
    }
}

/* table generator */
static void init_gain_table(COOKContext *q) {
    int i;
    q->gain_size_factor = q->samples_per_channel/8;
    for (i=0 ; i<23 ; i++) {
        q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
                               (1.0/(double)q->gain_size_factor));
    }
}


static int init_cook_vlc_tables(COOKContext *q) {
    int i, result;

    result = 0;
    for (i=0 ; i<13 ; i++) {
        result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
            envelope_quant_index_huffbits[i], 1, 1,
            envelope_quant_index_huffcodes[i], 2, 2, 0);
    }
    av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
    for (i=0 ; i<7 ; i++) {
        result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
            cvh_huffbits[i], 1, 1,
            cvh_huffcodes[i], 2, 2, 0);
    }

    if (q->nb_channels==2 && q->joint_stereo==1){
        result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
        av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
    }

    av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
    return result;
}

static int init_cook_mlt(COOKContext *q) {
    int j;
    float alpha;

    /* Allocate the buffers, could be replaced with a static [512]
       array if needed. */
    q->mlt_size = q->samples_per_channel;
    q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
    q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
    q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
    q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);

    /* Initialize the MLT window: simple sine window. */
    alpha = M_PI / (2.0 * (float)q->mlt_size);
    for(j=0 ; j<q->mlt_size ; j++) {
        q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
    }

    /* pre/post twiddle factors */
    for (j=0 ; j<q->mlt_size/2 ; j++){
        q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
        q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
        q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
    }

    /* Initialize the FFT. */
    ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
    av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
           av_log2(q->samples_per_channel)-1);

    return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
}

/*************** init functions end ***********/

/**
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
 * Why? No idea, some checksum/error detection method maybe.
 * Nice way to waste CPU cycles.
 *
 * @param in        pointer to 32bit array of indata
 * @param bits      amount of bits
 * @param out       pointer to 32bit array of outdata
 */

static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
    int i;
    uint32_t* buf = (uint32_t*) inbuffer;
    uint32_t* obuf = (uint32_t*) out;
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
     * I'm too lazy though, should be something like
     * for(i=0 ; i<bitamount/64 ; i++)
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
     * Buffer alignment needs to be checked. */


    for(i=0 ; i<bytes/4 ; i++){
#ifdef WORDS_BIGENDIAN
        obuf[i] = 0x37c511f2^buf[i];
#else
        obuf[i] = 0xf211c537^buf[i];
#endif
    }
}

/**
 * Cook uninit
 */

static int cook_decode_close(AVCodecContext *avctx)
{
    int i;
    COOKContext *q = avctx->priv_data;
    av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");

    /* Free allocated memory buffers. */
    av_free(q->mlt_window);
    av_free(q->mlt_precos);
    av_free(q->mlt_presin);
    av_free(q->mlt_postcos);
    av_free(q->decoded_bytes_buffer);

    /* Free the transform. */
    ff_fft_end(&q->fft_ctx);

    /* Free the VLC tables. */
    for (i=0 ; i<13 ; i++) {
        free_vlc(&q->envelope_quant_index[i]);
    }
    for (i=0 ; i<7 ; i++) {
        free_vlc(&q->sqvh[i]);
    }
    if(q->nb_channels==2 && q->joint_stereo==1 ){
        free_vlc(&q->ccpl);
    }

    av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");

    return 0;
}

/**
 * Fill the COOKgain structure for the timedomain quantization.
 *
 * @param q                 pointer to the COOKContext
 * @param gaininfo          pointer to the COOKgain
 */

static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
    int i;

    while (get_bits1(gb)) {}

    gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update

    if (get_bits_count(gb) - 1 <= 0) return;

    for (i=0 ; i<gaininfo->size ; i++){
        gaininfo->qidx_table1[i] = get_bits(gb,3);
        if (get_bits1(gb)) {
            gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
        } else {
            gaininfo->qidx_table2[i] = -1;
        }
    }
}

/**
 * Create the quant index table needed for the envelope.
 *
 * @param q                 pointer to the COOKContext
 * @param quant_index_table pointer to the array
 */

static void decode_envelope(COOKContext *q, int* quant_index_table) {
    int i,j, vlc_index;
    int bitbias;

    bitbias = get_bits_count(&q->gb);
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize

    for (i=1 ; i < q->total_subbands ; i++){
        vlc_index=i;
        if (i >= q->js_subband_start * 2) {
            vlc_index-=q->js_subband_start;
        } else {
            vlc_index/=2;
            if(vlc_index < 1) vlc_index = 1;
        }
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13

        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
                     q->envelope_quant_index[vlc_index-1].bits,2);
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
    }
}

/**
 * Create the quant value table.
 *
 * @param q                 pointer to the COOKContext
 * @param quant_value_table pointer to the array
 */

static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
                                    float* quant_value_table){

    int i;
    for(i=0 ; i < q->total_subbands ; i++){
        quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
    }
}

/**
 * Calculate the category and category_index vector.
 *
 * @param q                     pointer to the COOKContext
 * @param quant_index_table     pointer to the array
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */

static void categorize(COOKContext *q, int* quant_index_table,
                       int* category, int* category_index){
    int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
    int exp_index2[102];
    int exp_index1[102];

    int tmp_categorize_array1[128];
    int tmp_categorize_array1_idx=0;
    int tmp_categorize_array2[128];
    int tmp_categorize_array2_idx=0;
    int category_index_size=0;

    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);

    if(bits_left > q->samples_per_channel) {
        bits_left = q->samples_per_channel +
                    ((bits_left - q->samples_per_channel)*5)/8;
        //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
    }

    memset(&exp_index1,0,102*sizeof(int));
    memset(&exp_index2,0,102*sizeof(int));
    memset(&tmp_categorize_array1,0,128*sizeof(int));
    memset(&tmp_categorize_array2,0,128*sizeof(int));

    bias=-32;

    /* Estimate bias. */
    for (i=32 ; i>0 ; i=i/2){
        num_bits = 0;
        index = 0;
        for (j=q->total_subbands ; j>0 ; j--){
            exp_idx = (i - quant_index_table[index] + bias) / 2;
            if (exp_idx<0){
                exp_idx=0;
            } else if(exp_idx >7) {
                exp_idx=7;
            }
            index++;
            num_bits+=expbits_tab[exp_idx];
        }
        if(num_bits >= bits_left - 32){
            bias+=i;
        }
    }

    /* Calculate total number of bits. */
    num_bits=0;
    for (i=0 ; i<q->total_subbands ; i++) {
        exp_idx = (bias - quant_index_table[i]) / 2;
        if (exp_idx<0) {
            exp_idx=0;
        } else if(exp_idx >7) {
            exp_idx=7;
        }
        num_bits += expbits_tab[exp_idx];
        exp_index1[i] = exp_idx;
        exp_index2[i] = exp_idx;
    }
    tmpbias = bias = num_bits;

    for (j = 1 ; j < q->numvector_size ; j++) {
        if (tmpbias + bias > 2*bits_left) {  /* ---> */
            int max = -999999;
            index=-1;
            for (i=0 ; i<q->total_subbands ; i++){
                if (exp_index1[i] < 7) {
                    v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
                    if ( v >= max) {
                        max = v;
                        index = i;
                    }
                }
            }
            if(index==-1)break;
            tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
            tmpbias -= expbits_tab[exp_index1[index]] -
                       expbits_tab[exp_index1[index]+1];
            ++exp_index1[index];
        } else {  /* <--- */
            int min = 999999;
            index=-1;
            for (i=0 ; i<q->total_subbands ; i++){
                if(exp_index2[i] > 0){
                    v = (-2*exp_index2[i])-quant_index_table[i];
                    if ( v < min) {
                        min = v;
                        index = i;
                    }
                }
            }
            if(index == -1)break;
            tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
            tmpbias -= expbits_tab[exp_index2[index]] -
                       expbits_tab[exp_index2[index]-1];
            --exp_index2[index];
        }
    }

    for(i=0 ; i<q->total_subbands ; i++)
        category[i] = exp_index2[i];

    /* Concatenate the two arrays. */
    for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
        category_index[category_index_size++] =  tmp_categorize_array2[i];

    for(i=0;i<tmp_categorize_array1_idx;i++)
        category_index[category_index_size++ ] =  tmp_categorize_array1[i];

    /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
       should fill the remaining bytes. */
    for(i=category_index_size;i<q->numvector_size;i++)
        category_index[i]=0;

}


/**
 * Expand the category vector.
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */

static void inline expand_category(COOKContext *q, int* category,
                                   int* category_index){
    int i;
    for(i=0 ; i<q->num_vectors ; i++){
        ++category[category_index[i]];
    }
}

/**
 * The real requantization of the mltcoefs
 *
 * @param q                     pointer to the COOKContext
 * @param index                 index
 * @param band                  current subband
 * @param quant_value_table     pointer to the array
 * @param subband_coef_index    array of indexes to quant_centroid_tab
 * @param subband_coef_noise    use random noise instead of predetermined value
 * @param mlt_buffer            pointer to the mlt buffer
 */


static void scalar_dequant(COOKContext *q, int index, int band,
                           float* quant_value_table, int* subband_coef_index,
                           int* subband_coef_noise, float* mlt_buffer){
    int i;
    float f1;

    for(i=0 ; i<SUBBAND_SIZE ; i++) {
        if (subband_coef_index[i]) {
            if (subband_coef_noise[i]) {
                f1 = -quant_centroid_tab[index][subband_coef_index[i]];
            } else {
                f1 = quant_centroid_tab[index][subband_coef_index[i]];
            }
        } else {
            /* noise coding if subband_coef_noise[i] == 0 */
            q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
            f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
        }
        mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
    }
}
/**
 * Unpack the subband_coef_index and subband_coef_noise vectors.
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param subband_coef_index    array of indexes to quant_centroid_tab
 * @param subband_coef_noise    use random noise instead of predetermined value
 */

static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
                       int* subband_coef_noise) {
    int i,j;
    int vlc, vd ,tmp, result;
    int ub;
    int cb;

    vd = vd_tab[category];
    result = 0;
    for(i=0 ; i<vpr_tab[category] ; i++){
        ub = get_bits_count(&q->gb);
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
        cb = get_bits_count(&q->gb);
        if (q->bits_per_subpacket < get_bits_count(&q->gb)){
            vlc = 0;
            result = 1;
        }
        for(j=vd-1 ; j>=0 ; j--){
            tmp = (vlc * invradix_tab[category])/0x100000;
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
            vlc = tmp;
        }
        for(j=0 ; j<vd ; j++){
            if (subband_coef_index[i*vd + j]) {
                if(get_bits_count(&q->gb) < q->bits_per_subpacket){
                    subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
                } else {
                    result=1;
                    subband_coef_noise[i*vd+j]=0;
                }
            } else {
                subband_coef_noise[i*vd+j]=0;
            }
        }
    }
    return result;
}


/**
 * Fill the mlt_buffer with mlt coefficients.
 *
 * @param q                 pointer to the COOKContext
 * @param category          pointer to the category array
 * @param quant_value_table pointer to the array
 * @param mlt_buffer        pointer to mlt coefficients
 */


static void decode_vectors(COOKContext* q, int* category,
                           float* quant_value_table, float* mlt_buffer){
    /* A zero in this table means that the subband coefficient is
       random noise coded. */
    int subband_coef_noise[SUBBAND_SIZE];
    /* A zero in this table means that the subband coefficient is a
       positive multiplicator. */
    int subband_coef_index[SUBBAND_SIZE];
    int band, j;
    int index=0;

    for(band=0 ; band<q->total_subbands ; band++){
        index = category[band];
        if(category[band] < 7){
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
                index=7;
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
            }
        }
        if(index==7) {
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
            memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
        }
        scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
                       subband_coef_noise, mlt_buffer);
    }

    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
        return;
    }
}


/**
 * function for decoding mono data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */

static void mono_decode(COOKContext *q, float* mlt_buffer) {

    int category_index[128];
    float quant_value_table[102];
    int quant_index_table[102];
    int category[128];

    memset(&category, 0, 128*sizeof(int));
    memset(&quant_value_table, 0, 102*sizeof(int));
    memset(&category_index, 0, 128*sizeof(int));

    decode_envelope(q, quant_index_table);
    q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
    dequant_envelope(q, quant_index_table, quant_value_table);
    categorize(q, quant_index_table, category, category_index);
    expand_category(q, category, category_index);
    decode_vectors(q, category, quant_value_table, mlt_buffer);
}


/**
 * The modulated lapped transform, this takes transform coefficients
 * and transforms them into timedomain samples. This is done through
 * an FFT-based algorithm with pre- and postrotation steps.
 * A window and reorder step is also included.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to the mltcoefficients
 * @param outbuffer         pointer to the timedomain buffer
 * @param mlt_tmp           pointer to temporary storage space
 */

static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
                      float* mlt_tmp){
    int i;

    /* prerotation */
    for(i=0 ; i<q->mlt_size ; i+=2){
        outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
                       (q->mlt_precos[i/2] * inbuffer[i]);
        outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
                         (q->mlt_presin[i/2] * inbuffer[i]);
    }

    /* FFT */
    ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
    ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);

    /* postrotation */
    for(i=0 ; i<q->mlt_size ; i+=2){
        mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
                                   (q->mlt_postcos[i/2] * outbuffer[i]);
        mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
                                   (q->mlt_postcos[i/2] * outbuffer[i+1]);
    }

    /* window and reorder */
    for(i=0 ; i<q->mlt_size/2 ; i++){
        outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
        outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
                                    q->mlt_window[q->mlt_size-1-i];
        outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
                                  q->mlt_window[q->mlt_size-1-i];
        outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
                                      q->mlt_window[i]);
    }
}


/**
 * the actual requantization of the timedomain samples
 *
 * @param q                 pointer to the COOKContext
 * @param buffer            pointer to the timedomain buffer
 * @param gain_index        index for the block multiplier
 * @param gain_index_next   index for the next block multiplier
 */

static void interpolate(COOKContext *q, float* buffer,
                        int gain_index, int gain_index_next){
    int i;
    float fc1, fc2;
    fc1 = q->pow2tab[gain_index+63];

    if(gain_index == gain_index_next){              //static gain
        for(i=0 ; i<q->gain_size_factor ; i++){
            buffer[i]*=fc1;
        }
        return;
    } else {                                        //smooth gain
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
        for(i=0 ; i<q->gain_size_factor ; i++){
            buffer[i]*=fc1;
            fc1*=fc2;
        }
        return;
    }
}

/**
 * timedomain requantization of the timedomain samples
 *
 * @param q                 pointer to the COOKContext
 * @param buffer            pointer to the timedomain buffer
 * @param gain_now          current gain structure
 * @param gain_previous     previous gain structure
 */

static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
                        COOKgain* gain_previous){
    int i, index;
    int gain_index[9];
    int tmp_gain_index;

    gain_index[8]=0;
    index = gain_previous->size;
    for (i=7 ; i>=0 ; i--) {
        if(index && gain_previous->qidx_table1[index-1]==i) {
            gain_index[i] = gain_previous->qidx_table2[index-1];
            index--;
        } else {
            gain_index[i]=gain_index[i+1];
        }
    }
    /* This is applied to the to be previous data buffer. */
    for(i=0;i<8;i++){
        interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
                    gain_index[i], gain_index[i+1]);
    }

    tmp_gain_index = gain_index[0];
    index = gain_now->size;
    for (i=7 ; i>=0 ; i--) {
        if(index && gain_now->qidx_table1[index-1]==i) {
            gain_index[i]= gain_now->qidx_table2[index-1];
            index--;
        } else {
            gain_index[i]=gain_index[i+1];
        }
    }

    /* This is applied to the to be current block. */
    for(i=0;i<8;i++){
        interpolate(q, &buffer[i*q->gain_size_factor],
                    tmp_gain_index+gain_index[i],
                    tmp_gain_index+gain_index[i+1]);
    }
}


/**
 * mlt overlapping and buffer management
 *
 * @param q                 pointer to the COOKContext
 * @param buffer            pointer to the timedomain buffer
 * @param gain_now          current gain structure
 * @param gain_previous     previous gain structure
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 *
 */

static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
                            COOKgain* gain_previous, float* previous_buffer) {
    int i;
    if((gain_now->size  || gain_previous->size)) {
        gain_window(q, buffer, gain_now, gain_previous);
    }

    /* Overlap with the previous block. */
    for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];

    /* Save away the current to be previous block. */
    memcpy(previous_buffer, buffer+q->samples_per_channel,
           sizeof(float)*q->samples_per_channel);
}


/**
 * function for getting the jointstereo coupling information
 *
 * @param q                 pointer to the COOKContext
 * @param decouple_tab      decoupling array
 *
 */

static void decouple_info(COOKContext *q, int* decouple_tab){
    int length, i;

    if(get_bits1(&q->gb)) {
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;

        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
        for (i=0 ; i<length ; i++) {
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
        }
        return;
    }

    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;

    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
    for (i=0 ; i<length ; i++) {
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
    }
    return;
}


/**
 * function for decoding joint stereo data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */

static void joint_decode(COOKContext *q, float* mlt_buffer1,
                         float* mlt_buffer2) {
    int i,j;
    int decouple_tab[SUBBAND_SIZE];
    float decode_buffer[1060];
    int idx, cpl_tmp,tmp_idx;
    float f1,f2;
    float* cplscale;

    memset(decouple_tab, 0, sizeof(decouple_tab));
    memset(decode_buffer, 0, sizeof(decode_buffer));

    /* Make sure the buffers are zeroed out. */
    memset(mlt_buffer1,0, 1024*sizeof(float));
    memset(mlt_buffer2,0, 1024*sizeof(float));
    decouple_info(q, decouple_tab);
    mono_decode(q, decode_buffer);

    /* The two channels are stored interleaved in decode_buffer. */
    for (i=0 ; i<q->js_subband_start ; i++) {
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
        }
    }

    /* When we reach js_subband_start (the higher frequencies)
       the coefficients are stored in a coupling scheme. */
    idx = (1 << q->js_vlc_bits) - 1;
    for (i=q->js_subband_start ; i<q->subbands ; i++) {
        cpl_tmp = cplband[i];
        idx -=decouple_tab[cpl_tmp];
        cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
        f1 = cplscale[decouple_tab[cpl_tmp]];
        f2 = cplscale[idx-1];
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
            tmp_idx = ((q->js_subband_start + i)*20)+j;
            mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
            mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
        }
        idx = (1 << q->js_vlc_bits) - 1;
    }
}

/**
 * Cook subpacket decoding. This function returns one decoded subpacket,
 * usually 1024 samples per channel.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to the inbuffer
 * @param sub_packet_size   subpacket size
 * @param outbuffer         pointer to the outbuffer
 */


static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
                            int sub_packet_size, int16_t *outbuffer) {
    int i,j;
    int value;
    float* tmp_ptr;

    /* packet dump */
//    for (i=0 ; i<sub_packet_size ; i++) {
//        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
//    }
//    av_log(NULL, AV_LOG_ERROR, "\n");

    decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
    init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
    decode_gain_info(&q->gb, &q->gain_current);

    if(q->nb_channels==2 && q->joint_stereo==1){
        joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);

        /* Swap buffer pointers. */
        tmp_ptr = q->decode_buf_ptr[1];
        q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
        q->decode_buf_ptr[0] = tmp_ptr;
        tmp_ptr = q->decode_buf_ptr[3];
        q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
        q->decode_buf_ptr[2] = tmp_ptr;

        /* FIXME: Rethink the gainbuffer handling, maybe a rename?
           now/previous swap */
        q->gain_now_ptr = &q->gain_now;
        q->gain_previous_ptr = &q->gain_previous;
        for (i=0 ; i<q->nb_channels ; i++){

            cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
            gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
                            q->gain_previous_ptr, q->previous_buffer_ptr[0]);

            /* Swap out the previous buffer. */
            tmp_ptr = q->previous_buffer_ptr[0];
            q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
            q->previous_buffer_ptr[1] = tmp_ptr;

            /* Clip and convert the floats to 16 bits. */
            for (j=0 ; j<q->samples_per_frame ; j++){
                value = lrintf(q->mono_mdct_output[j]);
                if(value < -32768) value = -32768;
                else if(value > 32767) value = 32767;
                outbuffer[2*j+i] = value;
            }
        }

        memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
        memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));

    } else if (q->nb_channels==2 && q->joint_stereo==0) {
            /* channel 0 */
            mono_decode(q, q->decode_buf_ptr2[0]);

            tmp_ptr = q->decode_buf_ptr2[0];
            q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
            q->decode_buf_ptr2[1] = tmp_ptr;

            memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
            q->gain_now_ptr = &q->gain_channel1[0];
            q->gain_previous_ptr = &q->gain_channel1[1];

            cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
            gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
                            q->gain_previous_ptr, q->mono_previous_buffer1);

            memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));


            for (j=0 ; j<q->samples_per_frame ; j++){
                value = lrintf(q->mono_mdct_output[j]);
                if(value < -32768) value = -32768;
                else if(value > 32767) value = 32767;
                outbuffer[2*j+1] = value;
            }

            /* channel 1 */
            //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
            init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);

            q->gain_now_ptr = &q->gain_channel2[0];
            q->gain_previous_ptr = &q->gain_channel2[1];

            decode_gain_info(&q->gb, &q->gain_channel2[0]);
            mono_decode(q, q->decode_buf_ptr[0]);

            tmp_ptr = q->decode_buf_ptr[0];
            q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
            q->decode_buf_ptr[1] = tmp_ptr;

            cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
            gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
                            q->gain_previous_ptr, q->mono_previous_buffer2);

            /* Swap out the previous buffer. */
            tmp_ptr = q->previous_buffer_ptr[0];
            q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
            q->previous_buffer_ptr[1] = tmp_ptr;

            memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));

            for (j=0 ; j<q->samples_per_frame ; j++){
                value = lrintf(q->mono_mdct_output[j]);
                if(value < -32768) value = -32768;
                else if(value > 32767) value = 32767;
                outbuffer[2*j] = value;
            }

    } else {
        mono_decode(q, q->decode_buf_ptr[0]);

        /* Swap buffer pointers. */
        tmp_ptr = q->decode_buf_ptr[1];
        q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
        q->decode_buf_ptr[0] = tmp_ptr;

        /* FIXME: Rethink the gainbuffer handling, maybe a rename?
           now/previous swap */
        q->gain_now_ptr = &q->gain_now;
        q->gain_previous_ptr = &q->gain_previous;

        cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
        gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
                        q->gain_previous_ptr, q->mono_previous_buffer1);

        /* Clip and convert the floats to 16 bits */
        for (j=0 ; j<q->samples_per_frame ; j++){
            value = lrintf(q->mono_mdct_output[j]);
            if(value < -32768) value = -32768;
            else if(value > 32767) value = 32767;
            outbuffer[j] = value;
        }
        memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
        memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
    }
    return q->samples_per_frame * sizeof(int16_t);
}


/**
 * Cook frame decoding
 *
 * @param avctx     pointer to the AVCodecContext
 */

static int cook_decode_frame(AVCodecContext *avctx,
            void *data, int *data_size,
            uint8_t *buf, int buf_size) {
    COOKContext *q = avctx->priv_data;

    if (buf_size < avctx->block_align)
        return buf_size;

    *data_size = decode_subpacket(q, buf, avctx->block_align, data);

    return avctx->block_align;
}

#ifdef COOKDEBUG
static void dump_cook_context(COOKContext *q, COOKextradata *e)
{
    //int i=0;
#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
    av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
    av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
    if (e->cookversion > MONO_COOK2) {
        PRINT("js_subband_start",e->js_subband_start);
        PRINT("js_vlc_bits",e->js_vlc_bits);
    }
    av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
    PRINT("nb_channels",q->nb_channels);
    PRINT("bit_rate",q->bit_rate);
    PRINT("sample_rate",q->sample_rate);
    PRINT("samples_per_channel",q->samples_per_channel);
    PRINT("samples_per_frame",q->samples_per_frame);
    PRINT("subbands",q->subbands);
    PRINT("random_state",q->random_state);
    PRINT("mlt_size",q->mlt_size);
    PRINT("js_subband_start",q->js_subband_start);
    PRINT("log2_numvector_size",q->log2_numvector_size);
    PRINT("numvector_size",q->numvector_size);
    PRINT("total_subbands",q->total_subbands);
}
#endif

/**
 * Cook initialization
 *
 * @param avctx     pointer to the AVCodecContext
 */

static int cook_decode_init(AVCodecContext *avctx)
{
    COOKextradata *e = avctx->extradata;
    COOKContext *q = avctx->priv_data;

    /* Take care of the codec specific extradata. */
    if (avctx->extradata_size <= 0) {
        av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
        return -1;
    } else {
        /* 8 for mono, 16 for stereo, ? for multichannel
           Swap to right endianness so we don't need to care later on. */
        av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
        if (avctx->extradata_size >= 8){
            e->cookversion = be2me_32(e->cookversion);
            e->samples_per_frame = be2me_16(e->samples_per_frame);
            e->subbands = be2me_16(e->subbands);
        }
        if (avctx->extradata_size >= 16){
            e->js_subband_start = be2me_16(e->js_subband_start);
            e->js_vlc_bits = be2me_16(e->js_vlc_bits);
        }
    }

    /* Take data from the AVCodecContext (RM container). */
    q->sample_rate = avctx->sample_rate;
    q->nb_channels = avctx->channels;
    q->bit_rate = avctx->bit_rate;

    /* Initialize state. */
    q->random_state = 1;

    /* Initialize extradata related variables. */
    q->samples_per_channel = e->samples_per_frame / q->nb_channels;
    q->samples_per_frame = e->samples_per_frame;
    q->subbands = e->subbands;
    q->bits_per_subpacket = avctx->block_align * 8;

    /* Initialize default data states. */
    q->js_subband_start = 0;
    q->log2_numvector_size = 5;
    q->total_subbands = q->subbands;

    /* Initialize version-dependent variables */
    av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
    switch (e->cookversion) {
        case MONO_COOK1:
            if (q->nb_channels != 1) {
                av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
                return -1;
            }
            av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
            break;
        case MONO_COOK2:
            if (q->nb_channels != 1) {
                q->joint_stereo = 0;
                q->bits_per_subpacket = q->bits_per_subpacket/2;
            }
            av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
            break;
        case JOINT_STEREO:
            if (q->nb_channels != 2) {
                av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
                return -1;
            }
            av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
            if (avctx->extradata_size >= 16){
                q->total_subbands = q->subbands + e->js_subband_start;
                q->js_subband_start = e->js_subband_start;
                q->joint_stereo = 1;
                q->js_vlc_bits = e->js_vlc_bits;
            }
            if (q->samples_per_channel > 256) {
                q->log2_numvector_size  = 6;
            }
            if (q->samples_per_channel > 512) {
                q->log2_numvector_size  = 7;
            }
            break;
        case MC_COOK:
            av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
            return -1;
            break;
        default:
            av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
            return -1;
            break;
    }

    /* Initialize variable relations */
    q->mlt_size = q->samples_per_channel;
    q->numvector_size = (1 << q->log2_numvector_size);

    /* Generate tables */
    init_rootpow2table(q);
    init_pow2table(q);
    init_gain_table(q);

    if (init_cook_vlc_tables(q) != 0)
        return -1;


    if(avctx->block_align >= UINT_MAX/2)
        return -1;

    /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
       this is for the bitstreamreader. */
    if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
        return -1;

    q->decode_buf_ptr[0] = q->decode_buffer_1;
    q->decode_buf_ptr[1] = q->decode_buffer_2;
    q->decode_buf_ptr[2] = q->decode_buffer_3;
    q->decode_buf_ptr[3] = q->decode_buffer_4;

    q->decode_buf_ptr2[0] = q->decode_buffer_3;
    q->decode_buf_ptr2[1] = q->decode_buffer_4;

    q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
    q->previous_buffer_ptr[1] = q->mono_previous_buffer2;

    /* Initialize transform. */
    if ( init_cook_mlt(q) == 0 )
        return -1;

    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
    if (q->total_subbands > 53) {
        av_log(NULL,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
        return -1;
    }
    if (q->subbands > 50) {
        av_log(NULL,AV_LOG_ERROR,"subbands > 50, report sample!\n");
        return -1;
    }
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
    } else {
        av_log(NULL,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
        return -1;
    }

#ifdef COOKDEBUG
    dump_cook_context(q,e);
#endif
    return 0;
}


AVCodec cook_decoder =
{
    .name = "cook",
    .type = CODEC_TYPE_AUDIO,
    .id = CODEC_ID_COOK,
    .priv_data_size = sizeof(COOKContext),
    .init = cook_decode_init,
    .close = cook_decode_close,
    .decode = cook_decode_frame,
};