aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/celp_filters.h
blob: ccdffe84838cc5066531bf6c999209250472e2a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
 * various filters for CELP-based codecs
 *
 * Copyright (c) 2008 Vladimir Voroshilov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef AVCODEC_CELP_FILTERS_H
#define AVCODEC_CELP_FILTERS_H

#include <stdint.h>

/**
 * Circularly convolve fixed vector with a phase dispersion impulse
 *        response filter (D.6.2 of G.729 and 6.1.5 of AMR).
 * @param fc_out vector with filter applied
 * @param fc_in source vector
 * @param filter phase filter coefficients
 *
 *  fc_out[n] = sum(i,0,len-1){ fc_in[i] * filter[(len + n - i)%len] }
 *
 * \note fc_in and fc_out should not overlap!
 */
void ff_celp_convolve_circ(int16_t* fc_out,
                           const int16_t* fc_in,
                           const int16_t* filter,
                           int len);

/**
 * LP synthesis filter.
 * @param out [out] pointer to output buffer
 * @param filter_coeffs filter coefficients (-0x8000 <= (3.12) < 0x8000)
 * @param in input signal
 * @param buffer_length amount of data to process
 * @param filter_length filter length (10 for 10th order LP filter)
 * @param stop_on_overflow   1 - return immediately if overflow occurs
 *                           0 - ignore overflows
 * @param rounder the amount to add for rounding (usually 0x800 or 0xfff)
 *
 * @return 1 if overflow occurred, 0 - otherwise
 *
 * @note Output buffer must contain filter_length samples of past
 *       speech data before pointer.
 *
 * Routine applies 1/A(z) filter to given speech data.
 */
int ff_celp_lp_synthesis_filter(int16_t *out,
                                const int16_t* filter_coeffs,
                                const int16_t* in,
                                int buffer_length,
                                int filter_length,
                                int stop_on_overflow,
                                int rounder);

/**
 * LP synthesis filter.
 * @param out [out] pointer to output buffer
 *        - the array out[-filter_length, -1] must
 *        contain the previous result of this filter
 * @param filter_coeffs filter coefficients.
 * @param in input signal
 * @param buffer_length amount of data to process
 * @param filter_length filter length (10 for 10th order LP filter)
 *
 * @note Output buffer must contain filter_length samples of past
 *       speech data before pointer.
 *
 * Routine applies 1/A(z) filter to given speech data.
 */
void ff_celp_lp_synthesis_filterf(float *out,
                                  const float* filter_coeffs,
                                  const float* in,
                                  int buffer_length,
                                  int filter_length);

/**
 * LP zero synthesis filter.
 * @param out [out] pointer to output buffer
 * @param filter_coeffs filter coefficients.
 * @param in input signal
 *        - the array in[-filter_length, -1] must
 *        contain the previous input of this filter
 * @param buffer_length amount of data to process
 * @param filter_length filter length (10 for 10th order LP filter)
 *
 * @note Output buffer must contain filter_length samples of past
 *       speech data before pointer.
 *
 * Routine applies A(z) filter to given speech data.
 */
void ff_celp_lp_zero_synthesis_filterf(float *out,
                                       const float* filter_coeffs,
                                       const float* in,
                                       int buffer_length,
                                       int filter_length);

#endif /* AVCODEC_CELP_FILTERS_H */