1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
|
/*
* ATRAC9 decoder
* Copyright (c) 2018 Rostislav Pehlivanov <atomnuker@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "internal.h"
#include "get_bits.h"
#include "fft.h"
#include "atrac9tab.h"
#include "libavutil/lfg.h"
#include "libavutil/float_dsp.h"
typedef struct ATRAC9ChannelData {
int band_ext;
int q_unit_cnt;
int band_ext_data[4];
int32_t scalefactors[31];
int32_t scalefactors_prev[31];
int precision_coarse[30];
int precision_fine[30];
int precision_mask[30];
int codebookset[30];
int32_t q_coeffs_coarse[256];
int32_t q_coeffs_fine[256];
DECLARE_ALIGNED(32, float, coeffs )[256];
DECLARE_ALIGNED(32, float, prev_win)[128];
} ATRAC9ChannelData;
typedef struct ATRAC9BlockData {
ATRAC9ChannelData channel[2];
/* Base */
int band_count;
int q_unit_cnt;
int q_unit_cnt_prev;
/* Stereo block only */
int stereo_q_unit;
/* Band extension only */
int has_band_ext;
int has_band_ext_data;
int band_ext_q_unit;
/* Gradient */
int grad_mode;
int grad_boundary;
int gradient[31];
/* Stereo */
int cpe_base_channel;
int is_signs[30];
int reuseable;
} ATRAC9BlockData;
typedef struct ATRAC9Context {
AVCodecContext *avctx;
AVFloatDSPContext *fdsp;
FFTContext imdct;
ATRAC9BlockData block[5];
AVLFG lfg;
/* Set on init */
int frame_log2;
int avg_frame_size;
int frame_count;
int samplerate_idx;
const ATRAC9BlockConfig *block_config;
/* Generated on init */
VLC sf_vlc[2][8]; /* Signed/unsigned, length */
VLC coeff_vlc[2][8][4]; /* Cookbook, precision, cookbook index */
uint8_t alloc_curve[48][48];
DECLARE_ALIGNED(32, float, imdct_win)[256];
DECLARE_ALIGNED(32, float, temp)[256];
} ATRAC9Context;
static inline int parse_gradient(ATRAC9Context *s, ATRAC9BlockData *b,
GetBitContext *gb)
{
int grad_range[2];
int grad_value[2];
int values, sign, base;
uint8_t *curve;
float scale;
b->grad_mode = get_bits(gb, 2);
if (b->grad_mode) {
grad_range[0] = get_bits(gb, 5);
grad_range[1] = 31;
grad_value[0] = get_bits(gb, 5);
grad_value[1] = 31;
} else {
grad_range[0] = get_bits(gb, 6);
grad_range[1] = get_bits(gb, 6) + 1;
grad_value[0] = get_bits(gb, 5);
grad_value[1] = get_bits(gb, 5);
}
b->grad_boundary = get_bits(gb, 4);
if (grad_range[0] >= grad_range[1] || grad_range[1] > 31)
return AVERROR_INVALIDDATA;
if (grad_value[0] > 31 || grad_value[1] > 31)
return AVERROR_INVALIDDATA;
if (b->grad_boundary > b->q_unit_cnt)
return AVERROR_INVALIDDATA;
values = grad_value[1] - grad_value[0];
sign = 1 - 2*(values < 0);
base = grad_value[0] + sign;
scale = (FFABS(values) - 1) / 31.0f;
curve = s->alloc_curve[grad_range[1] - grad_range[0] - 1];
for (int i = 0; i <= b->q_unit_cnt; i++)
b->gradient[i] = grad_value[i >= grad_range[0]];
for (int i = grad_range[0]; i < grad_range[1]; i++)
b->gradient[i] = base + sign*((int)(scale*curve[i - grad_range[0]]));
return 0;
}
static inline void calc_precision(ATRAC9Context *s, ATRAC9BlockData *b,
ATRAC9ChannelData *c)
{
memset(c->precision_mask, 0, sizeof(c->precision_mask));
for (int i = 1; i < b->q_unit_cnt; i++) {
const int delta = FFABS(c->scalefactors[i] - c->scalefactors[i - 1]) - 1;
if (delta > 0) {
const int neg = c->scalefactors[i - 1] > c->scalefactors[i];
c->precision_mask[i - neg] += FFMIN(delta, 5);
}
}
if (b->grad_mode) {
for (int i = 0; i < b->q_unit_cnt; i++) {
c->precision_coarse[i] = c->scalefactors[i];
c->precision_coarse[i] += c->precision_mask[i] - b->gradient[i];
if (c->precision_coarse[i] < 0)
continue;
switch (b->grad_mode) {
case 1:
c->precision_coarse[i] >>= 1;
break;
case 2:
c->precision_coarse[i] = (3 * c->precision_coarse[i]) >> 3;
break;
case 3:
c->precision_coarse[i] >>= 2;
break;
}
}
} else {
for (int i = 0; i < b->q_unit_cnt; i++)
c->precision_coarse[i] = c->scalefactors[i] - b->gradient[i];
}
for (int i = 0; i < b->q_unit_cnt; i++)
c->precision_coarse[i] = FFMAX(c->precision_coarse[i], 1);
for (int i = 0; i < b->grad_boundary; i++)
c->precision_coarse[i]++;
for (int i = 0; i < b->q_unit_cnt; i++) {
c->precision_fine[i] = 0;
if (c->precision_coarse[i] > 15) {
c->precision_fine[i] = c->precision_coarse[i] - 15;
c->precision_coarse[i] = 15;
}
}
}
static inline int parse_band_ext(ATRAC9Context *s, ATRAC9BlockData *b,
GetBitContext *gb, int stereo)
{
int ext_band = 0;
if (b->has_band_ext) {
if (b->q_unit_cnt < 13)
return AVERROR_INVALIDDATA;
ext_band = at9_tab_band_ext_group[b->q_unit_cnt - 13][2];
if (stereo) {
b->channel[1].band_ext = get_bits(gb, 2);
b->channel[1].band_ext = ext_band > 2 ? b->channel[1].band_ext : 4;
} else {
skip_bits1(gb);
}
}
b->has_band_ext_data = get_bits1(gb);
if (!b->has_band_ext_data)
return 0;
if (!b->has_band_ext) {
skip_bits(gb, 2);
skip_bits_long(gb, get_bits(gb, 5));
return 0;
}
b->channel[0].band_ext = get_bits(gb, 2);
b->channel[0].band_ext = ext_band > 2 ? b->channel[0].band_ext : 4;
if (!get_bits(gb, 5))
return 0;
for (int i = 0; i <= stereo; i++) {
ATRAC9ChannelData *c = &b->channel[i];
const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band];
for (int j = 0; j < count; j++) {
int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j];
c->band_ext_data[j] = get_bits(gb, len);
}
}
return 0;
}
static inline int read_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
ATRAC9ChannelData *c, GetBitContext *gb,
int channel_idx, int first_in_pkt)
{
static const int mode_map[2][4] = { { 0, 1, 2, 3 }, { 0, 2, 3, 4 } };
const int mode = mode_map[channel_idx][get_bits(gb, 2)];
memset(c->scalefactors, 0, sizeof(c->scalefactors));
if (first_in_pkt && (mode == 4 || ((mode == 3) && !channel_idx))) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid scalefactor coding mode!\n");
return AVERROR_INVALIDDATA;
}
switch (mode) {
case 0: { /* VLC delta offset */
const uint8_t *sf_weights = at9_tab_sf_weights[get_bits(gb, 3)];
const int base = get_bits(gb, 5);
const int len = get_bits(gb, 2) + 3;
const VLC *tab = &s->sf_vlc[0][len];
c->scalefactors[0] = get_bits(gb, len);
for (int i = 1; i < b->band_ext_q_unit; i++) {
int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2);
c->scalefactors[i] = val & ((1 << len) - 1);
}
for (int i = 0; i < b->band_ext_q_unit; i++)
c->scalefactors[i] += base - sf_weights[i];
break;
}
case 1: { /* CLC offset */
const int len = get_bits(gb, 2) + 2;
const int base = len < 5 ? get_bits(gb, 5) : 0;
for (int i = 0; i < b->band_ext_q_unit; i++)
c->scalefactors[i] = base + get_bits(gb, len);
break;
}
case 2:
case 4: { /* VLC dist to baseline */
const int *baseline = mode == 4 ? c->scalefactors_prev :
channel_idx ? b->channel[0].scalefactors :
c->scalefactors_prev;
const int baseline_len = mode == 4 ? b->q_unit_cnt_prev :
channel_idx ? b->band_ext_q_unit :
b->q_unit_cnt_prev;
const int len = get_bits(gb, 2) + 2;
const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
const VLC *tab = &s->sf_vlc[1][len];
for (int i = 0; i < unit_cnt; i++) {
int dist = get_vlc2(gb, tab->table, 9, 2);
c->scalefactors[i] = baseline[i] + dist;
}
for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
c->scalefactors[i] = get_bits(gb, 5);
break;
}
case 3: { /* VLC offset with baseline */
const int *baseline = channel_idx ? b->channel[0].scalefactors :
c->scalefactors_prev;
const int baseline_len = channel_idx ? b->band_ext_q_unit :
b->q_unit_cnt_prev;
const int base = get_bits(gb, 5) - (1 << (5 - 1));
const int len = get_bits(gb, 2) + 1;
const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
const VLC *tab = &s->sf_vlc[0][len];
c->scalefactors[0] = get_bits(gb, len);
for (int i = 1; i < unit_cnt; i++) {
int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2);
c->scalefactors[i] = val & ((1 << len) - 1);
}
for (int i = 0; i < unit_cnt; i++)
c->scalefactors[i] += base + baseline[i];
for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
c->scalefactors[i] = get_bits(gb, 5);
break;
}
}
for (int i = 0; i < b->band_ext_q_unit; i++)
if (c->scalefactors[i] < 0 || c->scalefactors[i] > 31)
return AVERROR_INVALIDDATA;
memcpy(c->scalefactors_prev, c->scalefactors, sizeof(c->scalefactors));
return 0;
}
static inline void calc_codebook_idx(ATRAC9Context *s, ATRAC9BlockData *b,
ATRAC9ChannelData *c)
{
int avg = 0;
const int last_sf = c->scalefactors[c->q_unit_cnt];
memset(c->codebookset, 0, sizeof(c->codebookset));
if (c->q_unit_cnt <= 1)
return;
if (s->samplerate_idx > 7)
return;
c->scalefactors[c->q_unit_cnt] = c->scalefactors[c->q_unit_cnt - 1];
if (c->q_unit_cnt > 12) {
for (int i = 0; i < 12; i++)
avg += c->scalefactors[i];
avg = (avg + 6) / 12;
}
for (int i = 8; i < c->q_unit_cnt; i++) {
const int prev = c->scalefactors[i - 1];
const int cur = c->scalefactors[i ];
const int next = c->scalefactors[i + 1];
const int min = FFMIN(prev, next);
if ((cur - min >= 3 || 2*cur - prev - next >= 3))
c->codebookset[i] = 1;
}
for (int i = 12; i < c->q_unit_cnt; i++) {
const int cur = c->scalefactors[i];
const int cnd = at9_q_unit_to_coeff_cnt[i] == 16;
const int min = FFMIN(c->scalefactors[i + 1], c->scalefactors[i - 1]);
if (c->codebookset[i])
continue;
c->codebookset[i] = (((cur - min) >= 2) && (cur >= (avg - cnd)));
}
c->scalefactors[c->q_unit_cnt] = last_sf;
}
static inline void read_coeffs_coarse(ATRAC9Context *s, ATRAC9BlockData *b,
ATRAC9ChannelData *c, GetBitContext *gb)
{
const int max_prec = s->samplerate_idx > 7 ? 1 : 7;
memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
for (int i = 0; i < c->q_unit_cnt; i++) {
int *coeffs = &c->q_coeffs_coarse[at9_q_unit_to_coeff_idx[i]];
const int bands = at9_q_unit_to_coeff_cnt[i];
const int prec = c->precision_coarse[i] + 1;
if (prec <= max_prec) {
const int cb = c->codebookset[i];
const int cbi = at9_q_unit_to_codebookidx[i];
const VLC *tab = &s->coeff_vlc[cb][prec][cbi];
const HuffmanCodebook *huff = &at9_huffman_coeffs[cb][prec][cbi];
const int groups = bands >> huff->value_cnt_pow;
for (int j = 0; j < groups; j++) {
uint16_t val = get_vlc2(gb, tab->table, 9, huff->max_bit_size);
for (int k = 0; k < huff->value_cnt; k++) {
coeffs[k] = sign_extend(val, huff->value_bits);
val >>= huff->value_bits;
}
coeffs += huff->value_cnt;
}
} else {
for (int j = 0; j < bands; j++)
coeffs[j] = sign_extend(get_bits(gb, prec), prec);
}
}
}
static inline void read_coeffs_fine(ATRAC9Context *s, ATRAC9BlockData *b,
ATRAC9ChannelData *c, GetBitContext *gb)
{
memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
for (int i = 0; i < c->q_unit_cnt; i++) {
const int start = at9_q_unit_to_coeff_idx[i + 0];
const int end = at9_q_unit_to_coeff_idx[i + 1];
const int len = c->precision_fine[i] + 1;
if (c->precision_fine[i] <= 0)
continue;
for (int j = start; j < end; j++)
c->q_coeffs_fine[j] = sign_extend(get_bits(gb, len), len);
}
}
static inline void dequantize(ATRAC9Context *s, ATRAC9BlockData *b,
ATRAC9ChannelData *c)
{
memset(c->coeffs, 0, sizeof(c->coeffs));
for (int i = 0; i < c->q_unit_cnt; i++) {
const int start = at9_q_unit_to_coeff_idx[i + 0];
const int end = at9_q_unit_to_coeff_idx[i + 1];
const float coarse_c = at9_quant_step_coarse[c->precision_coarse[i]];
const float fine_c = at9_quant_step_fine[c->precision_fine[i]];
for (int j = start; j < end; j++) {
const float vc = c->q_coeffs_coarse[j] * coarse_c;
const float vf = c->q_coeffs_fine[j] * fine_c;
c->coeffs[j] = vc + vf;
}
}
}
static inline void apply_intensity_stereo(ATRAC9Context *s, ATRAC9BlockData *b,
const int stereo)
{
float *src = b->channel[ b->cpe_base_channel].coeffs;
float *dst = b->channel[!b->cpe_base_channel].coeffs;
if (!stereo)
return;
if (b->q_unit_cnt <= b->stereo_q_unit)
return;
for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++) {
const int sign = b->is_signs[i];
const int start = at9_q_unit_to_coeff_idx[i + 0];
const int end = at9_q_unit_to_coeff_idx[i + 1];
for (int j = start; j < end; j++)
dst[j] = sign*src[j];
}
}
static inline void apply_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
const int stereo)
{
for (int i = 0; i <= stereo; i++) {
float *coeffs = b->channel[i].coeffs;
for (int j = 0; j < b->q_unit_cnt; j++) {
const int start = at9_q_unit_to_coeff_idx[j + 0];
const int end = at9_q_unit_to_coeff_idx[j + 1];
const int scalefactor = b->channel[i].scalefactors[j];
const float scale = at9_scalefactor_c[scalefactor];
for (int k = start; k < end; k++)
coeffs[k] *= scale;
}
}
}
static inline void fill_with_noise(ATRAC9Context *s, ATRAC9ChannelData *c,
int start, int count)
{
float maxval = 0.0f;
for (int i = 0; i < count; i += 2) {
double tmp[2];
av_bmg_get(&s->lfg, tmp);
c->coeffs[start + i + 0] = tmp[0];
c->coeffs[start + i + 1] = tmp[1];
maxval = FFMAX(FFMAX(FFABS(tmp[0]), FFABS(tmp[1])), maxval);
}
/* Normalize */
for (int i = 0; i < count; i++)
c->coeffs[start + i] /= maxval;
}
static inline void scale_band_ext_coeffs(ATRAC9ChannelData *c, float sf[6],
const int s_unit, const int e_unit)
{
for (int i = s_unit; i < e_unit; i++) {
const int start = at9_q_unit_to_coeff_idx[i + 0];
const int end = at9_q_unit_to_coeff_idx[i + 1];
for (int j = start; j < end; j++)
c->coeffs[j] *= sf[i - s_unit];
}
}
static inline void apply_band_extension(ATRAC9Context *s, ATRAC9BlockData *b,
const int stereo)
{
const int g_units[4] = { /* A, B, C, total units */
b->q_unit_cnt,
at9_tab_band_ext_group[b->q_unit_cnt - 13][0],
at9_tab_band_ext_group[b->q_unit_cnt - 13][1],
FFMAX(g_units[2], 22),
};
const int g_bins[4] = { /* A, B, C, total bins */
at9_q_unit_to_coeff_idx[g_units[0]],
at9_q_unit_to_coeff_idx[g_units[1]],
at9_q_unit_to_coeff_idx[g_units[2]],
at9_q_unit_to_coeff_idx[g_units[3]],
};
for (int ch = 0; ch <= stereo; ch++) {
ATRAC9ChannelData *c = &b->channel[ch];
/* Mirror the spectrum */
for (int i = 0; i < 3; i++)
for (int j = 0; j < (g_bins[i + 1] - g_bins[i + 0]); j++)
c->coeffs[g_bins[i] + j] = c->coeffs[g_bins[i] - j - 1];
switch (c->band_ext) {
case 0: {
float sf[6] = { 0.0f };
const int l = g_units[3] - g_units[0] - 1;
const int n_start = at9_q_unit_to_coeff_idx[g_units[3] - 1];
const int n_cnt = at9_q_unit_to_coeff_cnt[g_units[3] - 1];
switch (at9_tab_band_ext_group[b->q_unit_cnt - 13][2]) {
case 3:
sf[0] = at9_band_ext_scales_m0[0][0][c->band_ext_data[0]];
sf[1] = at9_band_ext_scales_m0[0][1][c->band_ext_data[0]];
sf[2] = at9_band_ext_scales_m0[0][2][c->band_ext_data[1]];
sf[3] = at9_band_ext_scales_m0[0][3][c->band_ext_data[2]];
sf[4] = at9_band_ext_scales_m0[0][4][c->band_ext_data[3]];
break;
case 4:
sf[0] = at9_band_ext_scales_m0[1][0][c->band_ext_data[0]];
sf[1] = at9_band_ext_scales_m0[1][1][c->band_ext_data[0]];
sf[2] = at9_band_ext_scales_m0[1][2][c->band_ext_data[1]];
sf[3] = at9_band_ext_scales_m0[1][3][c->band_ext_data[2]];
sf[4] = at9_band_ext_scales_m0[1][4][c->band_ext_data[3]];
break;
case 5:
sf[0] = at9_band_ext_scales_m0[2][0][c->band_ext_data[0]];
sf[1] = at9_band_ext_scales_m0[2][1][c->band_ext_data[1]];
sf[2] = at9_band_ext_scales_m0[2][2][c->band_ext_data[1]];
break;
}
sf[l] = at9_scalefactor_c[c->scalefactors[g_units[0]]];
fill_with_noise(s, c, n_start, n_cnt);
scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
break;
}
case 1: {
float sf[6];
for (int i = g_units[0]; i < g_units[3]; i++)
sf[i - g_units[0]] = at9_scalefactor_c[c->scalefactors[i]];
fill_with_noise(s, c, g_bins[0], g_bins[3] - g_bins[0]);
scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
break;
}
case 2: {
const float g_sf[2] = {
at9_band_ext_scales_m2[c->band_ext_data[0]],
at9_band_ext_scales_m2[c->band_ext_data[1]],
};
for (int i = 0; i < 2; i++)
for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
c->coeffs[j] *= g_sf[i];
break;
}
case 3: {
float scale = at9_band_ext_scales_m3[c->band_ext_data[0]][0];
float rate = at9_band_ext_scales_m3[c->band_ext_data[1]][1];
rate = pow(2, rate);
for (int i = g_bins[0]; i < g_bins[3]; i++) {
scale *= rate;
c->coeffs[i] *= scale;
}
break;
}
case 4: {
const float m = at9_band_ext_scales_m4[c->band_ext_data[0]];
const float g_sf[3] = { 0.7079468f*m, 0.5011902f*m, 0.3548279f*m };
for (int i = 0; i < 3; i++)
for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
c->coeffs[j] *= g_sf[i];
break;
}
}
}
}
static int atrac9_decode_block(ATRAC9Context *s, GetBitContext *gb,
ATRAC9BlockData *b, AVFrame *frame,
int frame_idx, int block_idx)
{
const int first_in_pkt = !get_bits1(gb);
const int reuse_params = get_bits1(gb);
const int stereo = s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_CPE;
if (s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_LFE) {
ATRAC9ChannelData *c = &b->channel[0];
const int precision = reuse_params ? 8 : 4;
c->q_unit_cnt = b->q_unit_cnt = 2;
memset(c->scalefactors, 0, sizeof(c->scalefactors));
memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
for (int i = 0; i < b->q_unit_cnt; i++) {
c->scalefactors[i] = get_bits(gb, 5);
c->precision_coarse[i] = precision;
c->precision_fine[i] = 0;
}
for (int i = 0; i < c->q_unit_cnt; i++) {
const int start = at9_q_unit_to_coeff_idx[i + 0];
const int end = at9_q_unit_to_coeff_idx[i + 1];
for (int j = start; j < end; j++)
c->q_coeffs_coarse[j] = get_bits(gb, c->precision_coarse[i] + 1);
}
dequantize (s, b, c);
apply_scalefactors(s, b, 0);
goto imdct;
}
if (first_in_pkt && reuse_params) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid block flags!\n");
return AVERROR_INVALIDDATA;
}
/* Band parameters */
if (!reuse_params) {
int stereo_band, ext_band;
const int min_band_count = s->samplerate_idx > 7 ? 1 : 3;
b->reuseable = 0;
b->band_count = get_bits(gb, 4) + min_band_count;
b->q_unit_cnt = at9_tab_band_q_unit_map[b->band_count];
b->band_ext_q_unit = b->stereo_q_unit = b->q_unit_cnt;
if (b->band_count > at9_tab_sri_max_bands[s->samplerate_idx]) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid band count %i!\n",
b->band_count);
return AVERROR_INVALIDDATA;
}
if (stereo) {
stereo_band = get_bits(gb, 4) + min_band_count;
if (stereo_band > b->band_count) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid stereo band %i!\n",
stereo_band);
return AVERROR_INVALIDDATA;
}
b->stereo_q_unit = at9_tab_band_q_unit_map[stereo_band];
}
b->has_band_ext = get_bits1(gb);
if (b->has_band_ext) {
ext_band = get_bits(gb, 4) + min_band_count;
if (ext_band < b->band_count) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid extension band %i!\n",
ext_band);
return AVERROR_INVALIDDATA;
}
b->band_ext_q_unit = at9_tab_band_q_unit_map[ext_band];
}
b->reuseable = 1;
}
if (!b->reuseable) {
av_log(s->avctx, AV_LOG_ERROR, "invalid block reused!\n");
return AVERROR_INVALIDDATA;
}
/* Calculate bit alloc gradient */
if (parse_gradient(s, b, gb))
return AVERROR_INVALIDDATA;
/* IS data */
b->cpe_base_channel = 0;
if (stereo) {
b->cpe_base_channel = get_bits1(gb);
if (get_bits1(gb)) {
for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++)
b->is_signs[i] = 1 - 2*get_bits1(gb);
} else {
for (int i = 0; i < FF_ARRAY_ELEMS(b->is_signs); i++)
b->is_signs[i] = 1;
}
}
/* Band extension */
if (parse_band_ext(s, b, gb, stereo))
return AVERROR_INVALIDDATA;
/* Scalefactors */
for (int i = 0; i <= stereo; i++) {
ATRAC9ChannelData *c = &b->channel[i];
c->q_unit_cnt = i == b->cpe_base_channel ? b->q_unit_cnt :
b->stereo_q_unit;
if (read_scalefactors(s, b, c, gb, i, first_in_pkt))
return AVERROR_INVALIDDATA;
calc_precision (s, b, c);
calc_codebook_idx (s, b, c);
read_coeffs_coarse(s, b, c, gb);
read_coeffs_fine (s, b, c, gb);
dequantize (s, b, c);
}
b->q_unit_cnt_prev = b->has_band_ext ? b->band_ext_q_unit : b->q_unit_cnt;
apply_intensity_stereo(s, b, stereo);
apply_scalefactors (s, b, stereo);
if (b->has_band_ext && b->has_band_ext_data)
apply_band_extension (s, b, stereo);
imdct:
for (int i = 0; i <= stereo; i++) {
ATRAC9ChannelData *c = &b->channel[i];
const int dst_idx = s->block_config->plane_map[block_idx][i];
const int wsize = 1 << s->frame_log2;
const ptrdiff_t offset = wsize*frame_idx*sizeof(float);
float *dst = (float *)(frame->extended_data[dst_idx] + offset);
s->imdct.imdct_half(&s->imdct, s->temp, c->coeffs);
s->fdsp->vector_fmul_window(dst, c->prev_win, s->temp,
s->imdct_win, wsize >> 1);
memcpy(c->prev_win, s->temp + (wsize >> 1), sizeof(float)*wsize >> 1);
}
return 0;
}
static int atrac9_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
int ret;
GetBitContext gb;
AVFrame *frame = data;
ATRAC9Context *s = avctx->priv_data;
const int frames = FFMIN(avpkt->size / s->avg_frame_size, s->frame_count);
frame->nb_samples = (1 << s->frame_log2) * frames;
ret = ff_get_buffer(avctx, frame, 0);
if (ret < 0)
return ret;
init_get_bits8(&gb, avpkt->data, avpkt->size);
for (int i = 0; i < frames; i++) {
for (int j = 0; j < s->block_config->count; j++) {
ret = atrac9_decode_block(s, &gb, &s->block[j], frame, i, j);
if (ret)
return ret;
align_get_bits(&gb);
}
}
*got_frame_ptr = 1;
return avctx->block_align;
}
static void atrac9_decode_flush(AVCodecContext *avctx)
{
ATRAC9Context *s = avctx->priv_data;
for (int j = 0; j < s->block_config->count; j++) {
ATRAC9BlockData *b = &s->block[j];
const int stereo = s->block_config->type[j] == ATRAC9_BLOCK_TYPE_CPE;
for (int i = 0; i <= stereo; i++) {
ATRAC9ChannelData *c = &b->channel[i];
memset(c->prev_win, 0, sizeof(c->prev_win));
}
}
}
static av_cold int atrac9_decode_close(AVCodecContext *avctx)
{
ATRAC9Context *s = avctx->priv_data;
for (int i = 1; i < 7; i++)
ff_free_vlc(&s->sf_vlc[0][i]);
for (int i = 2; i < 6; i++)
ff_free_vlc(&s->sf_vlc[1][i]);
for (int i = 0; i < 2; i++)
for (int j = 0; j < 8; j++)
for (int k = 0; k < 4; k++)
ff_free_vlc(&s->coeff_vlc[i][j][k]);
ff_mdct_end(&s->imdct);
av_free(s->fdsp);
return 0;
}
static av_cold int atrac9_decode_init(AVCodecContext *avctx)
{
GetBitContext gb;
ATRAC9Context *s = avctx->priv_data;
int version, block_config_idx, superframe_idx, alloc_c_len;
s->avctx = avctx;
av_lfg_init(&s->lfg, 0xFBADF00D);
if (avctx->block_align <= 0) {
av_log(avctx, AV_LOG_ERROR, "Invalid block align\n");
return AVERROR_INVALIDDATA;
}
if (avctx->extradata_size != 12) {
av_log(avctx, AV_LOG_ERROR, "Invalid extradata length!\n");
return AVERROR_INVALIDDATA;
}
version = AV_RL32(avctx->extradata);
if (version > 2) {
av_log(avctx, AV_LOG_ERROR, "Unsupported version (%i)!\n", version);
return AVERROR_INVALIDDATA;
}
init_get_bits8(&gb, avctx->extradata + 4, avctx->extradata_size);
if (get_bits(&gb, 8) != 0xFE) {
av_log(avctx, AV_LOG_ERROR, "Incorrect magic byte!\n");
return AVERROR_INVALIDDATA;
}
s->samplerate_idx = get_bits(&gb, 4);
avctx->sample_rate = at9_tab_samplerates[s->samplerate_idx];
block_config_idx = get_bits(&gb, 3);
if (block_config_idx > 5) {
av_log(avctx, AV_LOG_ERROR, "Incorrect block config!\n");
return AVERROR_INVALIDDATA;
}
s->block_config = &at9_block_layout[block_config_idx];
avctx->channel_layout = s->block_config->channel_layout;
avctx->channels = av_get_channel_layout_nb_channels(avctx->channel_layout);
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
if (get_bits1(&gb)) {
av_log(avctx, AV_LOG_ERROR, "Incorrect verification bit!\n");
return AVERROR_INVALIDDATA;
}
/* Average frame size in bytes */
s->avg_frame_size = get_bits(&gb, 11) + 1;
superframe_idx = get_bits(&gb, 2);
if (superframe_idx & 1) {
av_log(avctx, AV_LOG_ERROR, "Invalid superframe index!\n");
return AVERROR_INVALIDDATA;
}
s->frame_count = 1 << superframe_idx;
s->frame_log2 = at9_tab_sri_frame_log2[s->samplerate_idx];
if (ff_mdct_init(&s->imdct, s->frame_log2 + 1, 1, 1.0f / 32768.0f))
return AVERROR(ENOMEM);
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
if (!s->fdsp)
return AVERROR(ENOMEM);
/* iMDCT window */
for (int i = 0; i < (1 << s->frame_log2); i++) {
const int len = 1 << s->frame_log2;
const float sidx = ( i + 0.5f) / len;
const float eidx = (len - i - 0.5f) / len;
const float s_c = sinf(sidx*M_PI - M_PI_2)*0.5f + 0.5f;
const float e_c = sinf(eidx*M_PI - M_PI_2)*0.5f + 0.5f;
s->imdct_win[i] = s_c / ((s_c * s_c) + (e_c * e_c));
}
/* Allocation curve */
alloc_c_len = FF_ARRAY_ELEMS(at9_tab_b_dist);
for (int i = 1; i <= alloc_c_len; i++)
for (int j = 0; j < i; j++)
s->alloc_curve[i - 1][j] = at9_tab_b_dist[(j * alloc_c_len) / i];
/* Unsigned scalefactor VLCs */
for (int i = 1; i < 7; i++) {
const HuffmanCodebook *hf = &at9_huffman_sf_unsigned[i];
init_vlc(&s->sf_vlc[0][i], 9, hf->size, hf->bits, 1, 1, hf->codes,
2, 2, 0);
}
/* Signed scalefactor VLCs */
for (int i = 2; i < 6; i++) {
const HuffmanCodebook *hf = &at9_huffman_sf_signed[i];
int nums = hf->size;
int16_t sym[32];
for (int j = 0; j < nums; j++)
sym[j] = sign_extend(j, hf->value_bits);
ff_init_vlc_sparse(&s->sf_vlc[1][i], 9, hf->size, hf->bits, 1, 1,
hf->codes, 2, 2, sym, sizeof(*sym), sizeof(*sym), 0);
}
/* Coefficient VLCs */
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 8; j++) {
for (int k = 0; k < 4; k++) {
const HuffmanCodebook *hf = &at9_huffman_coeffs[i][j][k];
init_vlc(&s->coeff_vlc[i][j][k], 9, hf->size, hf->bits, 1, 1,
hf->codes, 2, 2, 0);
}
}
}
return 0;
}
AVCodec ff_atrac9_decoder = {
.name = "atrac9",
.long_name = NULL_IF_CONFIG_SMALL("ATRAC9 (Adaptive TRansform Acoustic Coding 9)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_ATRAC9,
.priv_data_size = sizeof(ATRAC9Context),
.init = atrac9_decode_init,
.close = atrac9_decode_close,
.decode = atrac9_decode_frame,
.flush = atrac9_decode_flush,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
};
|