aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/apv_entropy.c
blob: 1cab88d547eb57bb5079aba20308ebb6b09a26cd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "apv.h"
#include "apv_decode.h"

#include "put_bits.h"


av_always_inline
static unsigned int apv_read_vlc(GetBitContext *restrict gbc, int k_param,
                                 const APVVLCLUT *restrict lut)
{
    unsigned int next_bits;
    const APVSingleVLCLUTEntry *ent;

    next_bits = show_bits(gbc, APV_VLC_LUT_BITS);
    ent = &lut->single_lut[k_param][next_bits];

    if (ent->more) {
        unsigned int leading_zeroes;

        skip_bits(gbc, ent->consume);

        next_bits = show_bits(gbc, 16);
        leading_zeroes = 15 - av_log2(next_bits);

        if (leading_zeroes == 0) {
            // This can't happen mid-stream because the lookup would
            // have resolved a leading one into a shorter code, but it
            // can happen if we are hitting the end of the buffer.
            // Return an invalid code to propagate as an error.
            return APV_MAX_TRANS_COEFF + 1;
        }

        skip_bits(gbc, leading_zeroes + 1);

        return (2 << k_param) +
            ((1 << leading_zeroes) - 1) * (1 << k_param) +
            get_bits(gbc, leading_zeroes + k_param);
    } else {
        skip_bits(gbc, ent->consume);
        return ent->result;
    }
}

void ff_apv_entropy_build_decode_lut(APVVLCLUT *decode_lut)
{
    const int code_len = APV_VLC_LUT_BITS;
    const int lut_size = APV_VLC_LUT_SIZE;

    // Build the single-symbol VLC table.
    for (int k = 0; k <= 5; k++) {
        for (unsigned int code = 0; code < lut_size; code++) {
            APVSingleVLCLUTEntry   *ent = &decode_lut->single_lut[k][code];
            unsigned int first_bit      = code & (1 << code_len - 1);
            unsigned int remaining_bits = code ^ first_bit;

            if (first_bit) {
                ent->consume = 1 + k;
                ent->result  = remaining_bits >> (code_len - k - 1);
                ent->more    = 0;
            } else {
                unsigned int second_bit = code & (1 << code_len - 2);
                remaining_bits ^= second_bit;

                if (second_bit) {
                    unsigned int bits_left = code_len - 2;
                    unsigned int first_set = bits_left - av_log2(remaining_bits);
                    unsigned int last_bits = first_set - 1 + k;

                    if (first_set + last_bits <= bits_left) {
                        // Whole code fits here.
                        ent->consume = 2 + first_set + last_bits;
                        ent->result  = ((2 << k) +
                                        (((1 << first_set - 1) - 1) << k) +
                                        ((code >> bits_left - first_set - last_bits) & (1 << last_bits) - 1));
                        ent->more    = 0;
                    } else {
                        // Need to read more, collapse to default.
                        ent->consume = 2;
                        ent->more    = 1;
                    }
                } else {
                    ent->consume = 2 + k;
                    ent->result  = (1 << k) + (remaining_bits >> (code_len - k - 2));
                    ent->more    = 0;
                }
            }
        }
    }

    // Build the multi-symbol VLC table.
    for (int start_run = 0; start_run <= 2; start_run++) {
        for (int start_level = 0; start_level <= 4; start_level++) {
            for (unsigned int code = 0; code < lut_size; code++) {
                APVMultiVLCLUTEntry *ent;
                int k_run, k_level;
                GetBitContext gbc;
                PutBitContext pbc;
                uint8_t buffer[16];
                uint8_t run_first_buffer[16];
                uint8_t level_first_buffer[16];

                memset(buffer, 0, sizeof(buffer));
                init_put_bits(&pbc, buffer, sizeof(buffer));
                put_bits(&pbc, APV_VLC_LUT_BITS, code);
                flush_put_bits(&pbc);

                memcpy(run_first_buffer,   buffer, sizeof(buffer));
                memcpy(level_first_buffer, buffer, sizeof(buffer));

                k_run   = start_run;
                k_level = start_level;

                ent = &decode_lut->run_first_lut[k_run][k_level][code];
                memset(ent, 0, sizeof(*ent));
                init_get_bits8(&gbc, run_first_buffer, sizeof(run_first_buffer));

                ent->count = 0;
                for (int i = 0; i <= 1; i++) {
                    int value, sign, pos;

                    value = apv_read_vlc(&gbc, k_run, decode_lut);
                    pos = get_bits_count(&gbc);
                    if (pos > APV_VLC_LUT_BITS)
                        break;
                    ent->run[i] = value;
                    ent->offset[ent->count] = pos;
                    ++ent->count;
                    k_run = FFMIN(value >> 2, 2);

                    value = apv_read_vlc(&gbc, k_level, decode_lut);
                    sign = get_bits1(&gbc);
                    pos = get_bits_count(&gbc);
                    if (pos > APV_VLC_LUT_BITS)
                        break;
                    ++value;
                    ent->level[i] = sign ? -value : value;
                    ent->offset[ent->count] = pos;
                    ++ent->count;
                    k_level = FFMIN(value >> 2, 4);
                    if (i == 0)
                        ent->k_level_0 = k_level;
                }
                if (ent->count > 0 && ent->count < 4)
                    ent->offset[3] = ent->offset[ent->count - 1];
                ent->k_run     = k_run;
                ent->k_level_1 = k_level;

                k_run   = start_run;
                k_level = start_level;

                ent = &decode_lut->level_first_lut[k_run][k_level][code];
                memset(ent, 0, sizeof(*ent));
                init_get_bits8(&gbc, level_first_buffer, sizeof(level_first_buffer));

                ent->count = 0;
                for (int i = 0; i <= 1; i++) {
                    int value, sign, pos;

                    value = apv_read_vlc(&gbc, k_level, decode_lut);
                    sign = get_bits1(&gbc);
                    pos = get_bits_count(&gbc);
                    if (pos > APV_VLC_LUT_BITS)
                        break;
                    ++value;
                    ent->level[i] = sign ? -value : value;
                    ent->offset[ent->count] = pos;
                    ++ent->count;
                    k_level = FFMIN(value >> 2, 4);
                    if (i == 0)
                        ent->k_level_0 = k_level;

                    value = apv_read_vlc(&gbc, k_run, decode_lut);
                    pos = get_bits_count(&gbc);
                    if (pos > APV_VLC_LUT_BITS)
                        break;
                    ent->run[i] = value;
                    ent->offset[ent->count] = pos;
                    ++ent->count;
                    k_run = FFMIN(value >> 2, 2);
                }
                if (ent->count > 0 && ent->count < 4)
                    ent->offset[3] = ent->offset[ent->count - 1];
                ent->k_run     = k_run;
                ent->k_level_1 = k_level;
            }
        }
    }
}

int ff_apv_entropy_decode_block(int16_t *restrict coeff,
                                GetBitContext *restrict gbc,
                                APVEntropyState *restrict state)
{
    const APVVLCLUT *lut = state->decode_lut;
    int scan_pos;
    int k_dc = state->prev_k_dc;
    int k_run, k_level;
    uint32_t next_bits, lut_bits;
    const APVMultiVLCLUTEntry *ent;

    // DC coefficient is likely to be large and cannot be usefully
    // combined with other read steps, so extract it separately.
    {
        int dc_coeff, abs_diff, sign;

        abs_diff = apv_read_vlc(gbc, k_dc, lut);

        if (abs_diff) {
            sign = get_bits1(gbc);
            if (sign)
                dc_coeff = state->prev_dc - abs_diff;
            else
                dc_coeff = state->prev_dc + abs_diff;
        } else {
            dc_coeff = state->prev_dc;
        }


        if (dc_coeff < APV_MIN_TRANS_COEFF ||
            dc_coeff > APV_MAX_TRANS_COEFF) {
            av_log(state->log_ctx, AV_LOG_ERROR,
                   "Out-of-range DC coefficient value: %d.\n",
                   dc_coeff);
            return AVERROR_INVALIDDATA;
        }

        coeff[0] = dc_coeff;

        state->prev_dc   = dc_coeff;
        state->prev_k_dc = FFMIN(abs_diff >> 1, 5);
    }

    // Repeatedly read 18 bits, look up the first half of them in either
    // the run-first or the level-first table.  If the next code is too
    // long the 18 bits will allow resolving a run code (up to 63)
    // without reading any more bits, and will allow the exact length
    // of a level code to be determined.  (Note that reusing the
    // single-symbol LUT is never useful here as the multisymbol lookup
    // has already determined that the code is too long.)

    // Run a single iteration of the run-first LUT to start, then a
    // single iteration of the level-first LUT if that only read a
    // single code.  This avoids dealing with the first-AC logic inside
    // the normal code lookup sequence.

    k_level = state->prev_k_level;
    {
        next_bits = show_bits(gbc, 18);
        lut_bits = next_bits >> (18 - APV_VLC_LUT_BITS);

        ent = &lut->run_first_lut[0][k_level][lut_bits];

        if (ent->count == 0) {
            // One long code.
            uint32_t bits, low_bits;
            unsigned int leading_zeroes, low_bit_count, low_bit_shift;
            int run;

            // Remove the prefix bits.
            bits = next_bits & 0xffff;
            // Determine code length.
            leading_zeroes = 15 - av_log2(bits);
            if (leading_zeroes >= 6) {
                // 6 zeroes implies run > 64, which is always invalid.
                av_log(state->log_ctx, AV_LOG_ERROR,
                       "Out-of-range run value: %d leading zeroes.\n",
                       leading_zeroes);
                return AVERROR_INVALIDDATA;
            }
            // Extract the low bits.
            low_bit_count = leading_zeroes;
            low_bit_shift = 16 - (1 + 2 * leading_zeroes);
            low_bits = (bits >> low_bit_shift) & ((1 << low_bit_count) - 1);
            // Construct run code.
            run = 2 + ((1 << leading_zeroes) - 1) + low_bits;
            // Skip over the bits just used.
            skip_bits(gbc, 2 + leading_zeroes + 1 + low_bit_count);

            scan_pos = run + 1;
            if (scan_pos >= 64)
                goto end_of_block;
            k_run = FFMIN(run >> 2, 2);
            goto first_level;
        } else {
            // One or more short codes starting with a run; if there is
            // a level code then the length needs to be saved for the
            // next block.

            scan_pos = ent->run[0] + 1;
            if (scan_pos >= 64) {
                skip_bits(gbc, ent->offset[0]);
                goto end_of_block;
            }
            if (ent->count > 1) {
                coeff[ff_zigzag_direct[scan_pos]] = ent->level[0];
                ++scan_pos;
                state->prev_k_level = ent->k_level_0;
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[1]);
                    goto end_of_block;
                }
            }
            if (ent->count > 2) {
                scan_pos += ent->run[1];
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[2]);
                    goto end_of_block;
                }
            }
            if (ent->count > 3) {
                coeff[ff_zigzag_direct[scan_pos]] = ent->level[1];
                ++scan_pos;
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[3]);
                    goto end_of_block;
                }
            }
            skip_bits(gbc, ent->offset[3]);
            k_run   = ent->k_run;
            k_level = ent->k_level_1;
            if (ent->count == 1)
                goto first_level;
            else if (ent->count & 1)
                goto next_is_level;
            else
                goto next_is_run;
        }
    }

    first_level: {
        next_bits = show_bits(gbc, 18);
        lut_bits = next_bits >> (18 - APV_VLC_LUT_BITS);

        ent = &lut->level_first_lut[k_run][k_level][lut_bits];

        if (ent->count == 0) {
            // One long code.
            uint32_t bits;
            unsigned int leading_zeroes;
            int level, abs_level, sign;

            // Remove the prefix bits.
            bits = next_bits & 0xffff;
            // Determine code length.
            leading_zeroes = 15 - av_log2(bits);
            // Skip the prefix and length bits.
            skip_bits(gbc, 2 + leading_zeroes + 1);
            // Read the rest of the code and construct the level.
            // Include the + 1 offset for nonzero value here.
            abs_level = (2 << k_level) +
                ((1 << leading_zeroes) - 1) * (1 << k_level) +
                get_bits(gbc, leading_zeroes + k_level) + 1;

            sign = get_bits(gbc, 1);
            if (sign)
                level = -abs_level;
            else
                level = abs_level;

            // Check range (not checked in any other case, only a long
            // code can be out of range).
            if (level < APV_MIN_TRANS_COEFF ||
                level > APV_MAX_TRANS_COEFF) {
                av_log(state->log_ctx, AV_LOG_ERROR,
                       "Out-of-range AC coefficient value at %d: %d.\n",
                       scan_pos, level);
                return AVERROR_INVALIDDATA;
            }
            coeff[ff_zigzag_direct[scan_pos]] = level;
            ++scan_pos;
            k_level = FFMIN(abs_level >> 2, 4);
            state->prev_k_level = k_level;
            if (scan_pos >= 64)
                goto end_of_block;
            goto next_is_run;

        } else {
            // One or more short codes.

            coeff[ff_zigzag_direct[scan_pos]] = ent->level[0];
            ++scan_pos;
            state->prev_k_level = ent->k_level_0;
            if (scan_pos >= 64) {
                skip_bits(gbc, ent->offset[0]);
                goto end_of_block;
            }
            if (ent->count > 1) {
                scan_pos += ent->run[0];
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[1]);
                    goto end_of_block;
                }
            }
            if (ent->count > 2) {
                coeff[ff_zigzag_direct[scan_pos]] = ent->level[1];
                ++scan_pos;
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[2]);
                    goto end_of_block;
                }
            }
            if (ent->count > 3) {
                scan_pos += ent->run[1];
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[3]);
                    goto end_of_block;
                }
            }
            skip_bits(gbc, ent->offset[3]);
            k_run   = ent->k_run;
            k_level = ent->k_level_1;
            if (ent->count & 1)
                goto next_is_run;
            else
                goto next_is_level;
        }
    }

    next_is_run: {
        next_bits = show_bits(gbc, 18);
        lut_bits = next_bits >> (18 - APV_VLC_LUT_BITS);

        ent = &lut->run_first_lut[k_run][k_level][lut_bits];

        if (ent->count == 0) {
            // One long code.
            uint32_t bits, low_bits;
            unsigned int leading_zeroes, low_bit_count, low_bit_shift;
            int run;

            // Remove the prefix bits.
            bits = next_bits & 0xffff;
            // Determine code length.
            leading_zeroes = 15 - av_log2(bits);
            if (leading_zeroes >= 6) {
                // 6 zeroes implies run > 64, which is always invalid.
                av_log(state->log_ctx, AV_LOG_ERROR,
                       "Out-of-range run value: %d leading zeroes.\n",
                       leading_zeroes);
                return AVERROR_INVALIDDATA;
            }
            // Extract the low bits.
            low_bit_count = leading_zeroes + k_run;
            low_bit_shift = 16 - (1 + 2 * leading_zeroes + k_run);
            low_bits = (bits >> low_bit_shift) & ((1 << low_bit_count) - 1);
            // Construct run code.
            run = (2 << k_run) +
                ((1 << leading_zeroes) - 1) * (1 << k_run) +
                low_bits;
            // Skip over the bits just used.
            skip_bits(gbc, 2 + leading_zeroes + 1 + low_bit_count);

            scan_pos += run;
            if (scan_pos >= 64)
                goto end_of_block;
            k_run = FFMIN(run >> 2, 2);
            goto next_is_level;

        } else {
            // One or more short codes.

            scan_pos += ent->run[0];
            if (scan_pos >= 64) {
                skip_bits(gbc, ent->offset[0]);
                goto end_of_block;
            }
            if (ent->count > 1) {
                coeff[ff_zigzag_direct[scan_pos]] = ent->level[0];
                ++scan_pos;
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[1]);
                    goto end_of_block;
                }
            }
            if (ent->count > 2) {
                scan_pos += ent->run[1];
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[2]);
                    goto end_of_block;
                }
            }
            if (ent->count > 3) {
                coeff[ff_zigzag_direct[scan_pos]] = ent->level[1];
                ++scan_pos;
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[3]);
                    goto end_of_block;
                }
            }
            skip_bits(gbc, ent->offset[3]);
            k_run   = ent->k_run;
            k_level = ent->k_level_1;
            if (ent->count & 1)
                goto next_is_level;
            else
                goto next_is_run;
        }
    }

    next_is_level: {
        next_bits = show_bits(gbc, 18);
        lut_bits = next_bits >> (18 - APV_VLC_LUT_BITS);

        ent = &lut->level_first_lut[k_run][k_level][lut_bits];

        if (ent->count == 0) {
            // One long code.
            uint32_t bits;
            unsigned int leading_zeroes;
            int level, abs_level, sign;

            // Remove the prefix bits.
            bits = next_bits & 0xffff;
            // Determine code length.
            leading_zeroes = 15 - av_log2(bits);
            // Skip the prefix and length bits.
            skip_bits(gbc, 2 + leading_zeroes + 1);
            // Read the rest of the code and construct the level.
            // Include the + 1 offset for nonzero value here.
            abs_level = (2 << k_level) +
                ((1 << leading_zeroes) - 1) * (1 << k_level) +
                get_bits(gbc, leading_zeroes + k_level) + 1;

            sign = get_bits(gbc, 1);
            if (sign)
                level = -abs_level;
            else
                level = abs_level;

            // Check range (not checked in any other case, only a long
            // code can be out of range).
            if (level < APV_MIN_TRANS_COEFF ||
                level > APV_MAX_TRANS_COEFF) {
                av_log(state->log_ctx, AV_LOG_ERROR,
                       "Out-of-range AC coefficient value at %d: %d.\n",
                       scan_pos, level);
                return AVERROR_INVALIDDATA;
            }
            coeff[ff_zigzag_direct[scan_pos]] = level;
            ++scan_pos;
            k_level = FFMIN(abs_level >> 2, 4);
            if (scan_pos >= 64)
                goto end_of_block;
            goto next_is_run;

        } else {
            // One or more short codes.

            coeff[ff_zigzag_direct[scan_pos]] = ent->level[0];
            ++scan_pos;
            if (scan_pos >= 64) {
                skip_bits(gbc, ent->offset[0]);
                goto end_of_block;
            }
            if (ent->count > 1) {
                scan_pos += ent->run[0];
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[1]);
                    goto end_of_block;
                }
            }
            if (ent->count > 2) {
                coeff[ff_zigzag_direct[scan_pos]] = ent->level[1];
                ++scan_pos;
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[2]);
                    goto end_of_block;
                }
            }
            if (ent->count > 3) {
                scan_pos += ent->run[1];
                if (scan_pos >= 64) {
                    skip_bits(gbc, ent->offset[3]);
                    goto end_of_block;
                }
            }
            skip_bits(gbc, ent->offset[3]);
            k_run   = ent->k_run;
            k_level = ent->k_level_1;
            if (ent->count & 1)
                goto next_is_run;
            else
                goto next_is_level;
        }
    }

    end_of_block: {
        if (scan_pos > 64) {
            av_log(state->log_ctx, AV_LOG_ERROR,
                   "Block decode reached invalid scan position %d.\n",
                   scan_pos);
            return AVERROR_INVALIDDATA;
        }
        return 0;
    }
}