aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/adpcm.c
blob: 68a5c6f22f95b4c6e5e63b1237296de30bda99d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/*
 * ADPCM codecs
 * Copyright (c) 2001-2003 The ffmpeg Project
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include "avcodec.h"

/**
 * @file adpcm.c
 * ADPCM codecs.
 * First version by Francois Revol revol@free.fr
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
 *   by Mike Melanson (melanson@pcisys.net)
 *
 * Features and limitations:
 *
 * Reference documents:
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
 * http://openquicktime.sourceforge.net/plugins.htm
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
 */

#define BLKSIZE 1024

#define CLAMP_TO_SHORT(value) \
if (value > 32767) \
    value = 32767; \
else if (value < -32768) \
    value = -32768; \

/* step_table[] and index_table[] are from the ADPCM reference source */
/* This is the index table: */
static const int index_table[16] = {
    -1, -1, -1, -1, 2, 4, 6, 8,
    -1, -1, -1, -1, 2, 4, 6, 8,
};

/** 
 * This is the step table. Note that many programs use slight deviations from
 * this table, but such deviations are negligible:
 */
static const int step_table[89] = {
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};

/* Those are for MS-ADPCM */
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
static const int AdaptationTable[] = {
        230, 230, 230, 230, 307, 409, 512, 614,
        768, 614, 512, 409, 307, 230, 230, 230
};

static const int AdaptCoeff1[] = {
        256, 512, 0, 192, 240, 460, 392
};

static const int AdaptCoeff2[] = {
        0, -256, 0, 64, 0, -208, -232
};

/* end of tables */

typedef struct ADPCMChannelStatus {
    int predictor;
    short int step_index;
    int step;
    /* for encoding */
    int prev_sample;

    /* MS version */
    short sample1;
    short sample2;
    int coeff1;
    int coeff2;
    int idelta;
} ADPCMChannelStatus;

typedef struct ADPCMContext {
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
    ADPCMChannelStatus status[2];
    short sample_buffer[32]; /* hold left samples while waiting for right samples */
} ADPCMContext;

/* XXX: implement encoding */

#ifdef CONFIG_ENCODERS
static int adpcm_encode_init(AVCodecContext *avctx)
{
    if (avctx->channels > 2)
        return -1; /* only stereo or mono =) */
    switch(avctx->codec->id) {
    case CODEC_ID_ADPCM_IMA_QT:
        fprintf(stderr, "ADPCM: codec admcp_ima_qt unsupported for encoding !\n");
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
        return -1;
        break;
    case CODEC_ID_ADPCM_IMA_WAV:
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
                                                             /* and we have 4 bytes per channel overhead */
        avctx->block_align = BLKSIZE;
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
        break;
    case CODEC_ID_ADPCM_MS:
        fprintf(stderr, "ADPCM: codec admcp_ms unsupported for encoding !\n");
        return -1;
        break;
    default:
        return -1;
        break;
    }

    avctx->coded_frame= avcodec_alloc_frame();
    avctx->coded_frame->key_frame= 1;

    return 0;
}

static int adpcm_encode_close(AVCodecContext *avctx)
{
    av_freep(&avctx->coded_frame);

    return 0;
}


static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
{
    int step_index;
    unsigned char nibble;
    
    int sign = 0; /* sign bit of the nibble (MSB) */
    int delta, predicted_delta;

    delta = sample - c->prev_sample;

    if (delta < 0) {
        sign = 1;
        delta = -delta;
    }

    step_index = c->step_index;

    /* nibble = 4 * delta / step_table[step_index]; */
    nibble = (delta << 2) / step_table[step_index];

    if (nibble > 7)
        nibble = 7;

    step_index += index_table[nibble];
    if (step_index < 0)
        step_index = 0;
    if (step_index > 88)
        step_index = 88;

    /* what the decoder will find */
    predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);

    if (sign)
        c->prev_sample -= predicted_delta;
    else
        c->prev_sample += predicted_delta;

    CLAMP_TO_SHORT(c->prev_sample);


    nibble += sign << 3; /* sign * 8 */   

    /* save back */
    c->step_index = step_index;

    return nibble;
}

static int adpcm_encode_frame(AVCodecContext *avctx,
			    unsigned char *frame, int buf_size, void *data)
{
    int n;
    short *samples;
    unsigned char *dst;
    ADPCMContext *c = avctx->priv_data;

    dst = frame;
    samples = (short *)data;
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */

    switch(avctx->codec->id) {
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
        break;
    case CODEC_ID_ADPCM_IMA_WAV:
        n = avctx->frame_size / 8;
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
            *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
            *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
            *dst++ = (unsigned char)c->status[0].step_index;
            *dst++ = 0; /* unknown */
            samples++;
            if (avctx->channels == 2) {
                c->status[1].prev_sample = (signed short)samples[0];
/*                c->status[1].step_index = 0; */
                *dst++ = (c->status[1].prev_sample) & 0xFF;
                *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
                *dst++ = (unsigned char)c->status[1].step_index;
                *dst++ = 0;
                samples++;
            }
        
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
            for (; n>0; n--) {
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
                dst++;
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
                dst++;
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
                dst++;
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
                dst++;
                /* right channel */
                if (avctx->channels == 2) {
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
                    dst++;
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
                    dst++;
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
                    dst++;
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
                    dst++;
                }
                samples += 8 * avctx->channels;
            }
        break;
    default:
        return -1;
    }
    return dst - frame;
}
#endif //CONFIG_ENCODERS

static int adpcm_decode_init(AVCodecContext * avctx)
{
    ADPCMContext *c = avctx->priv_data;

    c->channel = 0;
    c->status[0].predictor = c->status[1].predictor = 0;
    c->status[0].step_index = c->status[1].step_index = 0;
    c->status[0].step = c->status[1].step = 0;

    switch(avctx->codec->id) {
    default:
        break;
    }
    return 0;
}

static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble)
{
    int step_index;
    int predictor;
    int sign, delta, diff, step;

    step = step_table[c->step_index];
    step_index = c->step_index + index_table[(unsigned)nibble];
    if (step_index < 0) step_index = 0;
    else if (step_index > 88) step_index = 88;

    sign = nibble & 8;
    delta = nibble & 7;
    /* perform direct multiplication instead of series of jumps proposed by
     * the reference ADPCM implementation since modern CPUs can do the mults
     * quickly enough */
    diff = ((2 * delta + 1) * step) >> 3;
    predictor = c->predictor;
    if (sign) predictor -= diff;
    else predictor += diff;

    CLAMP_TO_SHORT(predictor);
    c->predictor = predictor;
    c->step_index = step_index;

    return (short)predictor;
}

static inline short adpcm_4xa_expand_nibble(ADPCMChannelStatus *c, char nibble)
{
    int step_index;
    int predictor;
    int sign, delta, diff, step;

    step = step_table[c->step_index];
    step_index = c->step_index + index_table[(unsigned)nibble];
    if (step_index < 0) step_index = 0;
    else if (step_index > 88) step_index = 88;

    sign = nibble & 8;
    delta = nibble & 7;
    
    diff = (delta*step + (step>>1))>>3; // difference to code above
    
    predictor = c->predictor;
    if (sign) predictor -= diff;
    else predictor += diff;

    CLAMP_TO_SHORT(predictor);
    c->predictor = predictor;
    c->step_index = step_index;

    return (short)predictor;
}

static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
{
    int predictor;

    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
    CLAMP_TO_SHORT(predictor);

    c->sample2 = c->sample1;
    c->sample1 = predictor;
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) / 256;
    if (c->idelta < 16) c->idelta = 16;

    return (short)predictor;
}

/* DK3 ADPCM support macro */
#define DK3_GET_NEXT_NIBBLE() \
    if (decode_top_nibble_next) \
    { \
        nibble = (last_byte >> 4) & 0x0F; \
        decode_top_nibble_next = 0; \
    } \
    else \
    { \
        last_byte = *src++; \
        if (src >= buf + buf_size) break; \
        nibble = last_byte & 0x0F; \
        decode_top_nibble_next = 1; \
    }

static int adpcm_decode_frame(AVCodecContext *avctx,
			    void *data, int *data_size,
			    uint8_t *buf, int buf_size)
{
    ADPCMContext *c = avctx->priv_data;
    ADPCMChannelStatus *cs;
    int n, m, channel, i;
    int block_predictor[2];
    short *samples;
    uint8_t *src;
    int st; /* stereo */

    /* DK3 ADPCM accounting variables */
    unsigned char last_byte = 0;
    unsigned char nibble;
    int decode_top_nibble_next = 0;
    int diff_channel;

    samples = data;
    src = buf;

    st = avctx->channels == 2;

    switch(avctx->codec->id) {
    case CODEC_ID_ADPCM_IMA_QT:
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
        channel = c->channel;
        cs = &(c->status[channel]);
        /* (pppppp) (piiiiiii) */

        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
        cs->predictor = (*src++) << 8;
        cs->predictor |= (*src & 0x80);
        cs->predictor &= 0xFF80;

        /* sign extension */
        if(cs->predictor & 0x8000)
            cs->predictor -= 0x10000;

        CLAMP_TO_SHORT(cs->predictor);

        cs->step_index = (*src++) & 0x7F;

        if (cs->step_index > 88) fprintf(stderr, "ERROR: step_index = %i\n", cs->step_index);
        if (cs->step_index > 88) cs->step_index = 88;

        cs->step = step_table[cs->step_index];

        if (st && channel)
            samples++;

        *samples++ = cs->predictor;
        samples += st;

        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F);
            samples += avctx->channels;
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F);
            samples += avctx->channels;
            src ++;
        }

        if(st) { /* handle stereo interlacing */
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
            if(channel == 0) { /* wait for the other packet before outputing anything */
                *data_size = 0;
                return src - buf;
            }
        }
        break;
    case CODEC_ID_ADPCM_IMA_WAV:
        if (buf_size > BLKSIZE) {
            if (avctx->block_align != 0)
                buf_size = avctx->block_align;
            else
                buf_size = BLKSIZE;
        }
	// XXX: do as per-channel loop
        cs = &(c->status[0]);
        cs->predictor = (*src++) & 0x0FF;
        cs->predictor |= ((*src++) << 8) & 0x0FF00;
        if(cs->predictor & 0x8000)
            cs->predictor -= 0x10000;
        CLAMP_TO_SHORT(cs->predictor);

	// XXX: is this correct ??: *samples++ = cs->predictor;

	cs->step_index = *src++;
        if (cs->step_index < 0) cs->step_index = 0;
        if (cs->step_index > 88) cs->step_index = 88;
        if (*src++) fprintf(stderr, "unused byte should be null !!\n"); /* unused */

        if (st) {
            cs = &(c->status[1]);
            cs->predictor = (*src++) & 0x0FF;
            cs->predictor |= ((*src++) << 8) & 0x0FF00;
            if(cs->predictor & 0x8000)
                cs->predictor -= 0x10000;
            CLAMP_TO_SHORT(cs->predictor);

	    // XXX: is this correct ??: *samples++ = cs->predictor;

	    cs->step_index = *src++;
            if (cs->step_index < 0) cs->step_index = 0;
            if (cs->step_index > 88) cs->step_index = 88;
            src++; /* if != 0  -> out-of-sync */
        }

        for(m=4; src < (buf + buf_size);) {
	    *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F);
            if (st)
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F);
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
	    if (st) {
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F);
		if (!--m) {
		    m=4;
		    src+=4;
		}
	    }
	    src++;
	}
        break;
    case CODEC_ID_ADPCM_4XM:
        cs = &(c->status[0]);
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
        if(st){
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
        }
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
        if(st){
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
        }
//            if (cs->step_index < 0) cs->step_index = 0;
//            if (cs->step_index > 88) cs->step_index = 88;

        m= (buf_size - (src - buf))>>st;
//printf("%d %d %d %d\n", st, m, c->status[0].predictor, c->status[0].step_index);
        //FIXME / XXX decode chanels individual & interleave samples
        for(i=0; i<m; i++) {
	    *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] & 0x0F);
            if (st)
                *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] & 0x0F);
            *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] >> 4);
	    if (st)
                *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] >> 4);
	}

        src += m<<st;

        break;
    case CODEC_ID_ADPCM_MS:

        if (buf_size > BLKSIZE) {
            if (avctx->block_align != 0)
                buf_size = avctx->block_align;
            else
                buf_size = BLKSIZE;
        }
        n = buf_size - 7 * avctx->channels;
        if (n < 0)
            return -1;
        block_predictor[0] = (*src++); /* should be bound */
        block_predictor[0] = (block_predictor[0] < 0)?(0):((block_predictor[0] > 7)?(7):(block_predictor[0]));
        block_predictor[1] = 0;
        if (st)
            block_predictor[1] = (*src++);
        block_predictor[1] = (block_predictor[1] < 0)?(0):((block_predictor[1] > 7)?(7):(block_predictor[1]));
        c->status[0].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
        if (c->status[0].idelta & 0x08000)
            c->status[0].idelta -= 0x10000;
        src+=2;
        if (st)
            c->status[1].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
        if (st && c->status[1].idelta & 0x08000)
            c->status[1].idelta |= 0xFFFF0000;
        if (st)
            src+=2;
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
        
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
        src+=2;
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
        if (st) src+=2;
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
        src+=2;
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
        if (st) src+=2;

        *samples++ = c->status[0].sample1;
        if (st) *samples++ = c->status[1].sample1;
        *samples++ = c->status[0].sample2;
        if (st) *samples++ = c->status[1].sample2;
        for(;n>0;n--) {
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
            src ++;
        }
        break;
    case CODEC_ID_ADPCM_IMA_DK4:
        if (buf_size > BLKSIZE) {
            if (avctx->block_align != 0)
                buf_size = avctx->block_align;
            else
                buf_size = BLKSIZE;
        }
        c->status[0].predictor = (src[0] | (src[1] << 8));
        c->status[0].step_index = src[2];
        src += 4;
        if(c->status[0].predictor & 0x8000)
            c->status[0].predictor -= 0x10000;
        *samples++ = c->status[0].predictor;
        if (st) {
            c->status[1].predictor = (src[0] | (src[1] << 8));
            c->status[1].step_index = src[2];
            src += 4;
            if(c->status[1].predictor & 0x8000)
                c->status[1].predictor -= 0x10000;
            *samples++ = c->status[1].predictor;
        }
        while (src < buf + buf_size) {

            /* take care of the top nibble (always left or mono channel) */
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
                (src[0] >> 4) & 0x0F);

            /* take care of the bottom nibble, which is right sample for
             * stereo, or another mono sample */
            if (st)
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], 
                    src[0] & 0x0F);
            else
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
                    src[0] & 0x0F);

            src++;
        }
        break;
    case CODEC_ID_ADPCM_IMA_DK3:
        if (buf_size > BLKSIZE) {
            if (avctx->block_align != 0)
                buf_size = avctx->block_align;
            else
                buf_size = BLKSIZE;
        }
        c->status[0].predictor = (src[10] | (src[11] << 8));
        c->status[1].predictor = (src[12] | (src[13] << 8));
        c->status[0].step_index = src[14];
        c->status[1].step_index = src[15];
        /* sign extend the predictors */
        if(c->status[0].predictor & 0x8000)
            c->status[0].predictor -= 0x10000;
        if(c->status[1].predictor & 0x8000)
            c->status[1].predictor -= 0x10000;
        src += 16;
        diff_channel = c->status[1].predictor;

        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
         * the buffer is consumed */
        while (1) {

            /* for this algorithm, c->status[0] is the sum channel and
             * c->status[1] is the diff channel */

            /* process the first predictor of the sum channel */
            DK3_GET_NEXT_NIBBLE();
            adpcm_ima_expand_nibble(&c->status[0], nibble);

            /* process the diff channel predictor */
            DK3_GET_NEXT_NIBBLE();
            adpcm_ima_expand_nibble(&c->status[1], nibble);

            /* process the first pair of stereo PCM samples */
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
            *samples++ = c->status[0].predictor + c->status[1].predictor;
            *samples++ = c->status[0].predictor - c->status[1].predictor;

            /* process the second predictor of the sum channel */
            DK3_GET_NEXT_NIBBLE();
            adpcm_ima_expand_nibble(&c->status[0], nibble);

            /* process the second pair of stereo PCM samples */
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
            *samples++ = c->status[0].predictor + c->status[1].predictor;
            *samples++ = c->status[0].predictor - c->status[1].predictor;
        }
        break;
    case CODEC_ID_ADPCM_IMA_WS:
        /* no per-block initialization; just start decoding the data */
        while (src < buf + buf_size) {

            if (st) {
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
                    (src[0] >> 4) & 0x0F);
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], 
                    src[0] & 0x0F);
            } else {
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
                    (src[0] >> 4) & 0x0F);
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
                    src[0] & 0x0F);
            }

            src++;
        }
        break;
    default:
        *data_size = 0;
        return -1;
    }
    *data_size = (uint8_t *)samples - (uint8_t *)data;
    return src - buf;
}



#ifdef CONFIG_ENCODERS
#define ADPCM_ENCODER(id,name)                  \
AVCodec name ## _encoder = {                    \
    #name,                                      \
    CODEC_TYPE_AUDIO,                           \
    id,                                         \
    sizeof(ADPCMContext),                       \
    adpcm_encode_init,                          \
    adpcm_encode_frame,                         \
    adpcm_encode_close,                         \
    NULL,                                       \
};
#else
#define ADPCM_ENCODER(id,name)
#endif

#ifdef CONFIG_DECODERS
#define ADPCM_DECODER(id,name)                  \
AVCodec name ## _decoder = {                    \
    #name,                                      \
    CODEC_TYPE_AUDIO,                           \
    id,                                         \
    sizeof(ADPCMContext),                       \
    adpcm_decode_init,                          \
    NULL,                                       \
    NULL,                                       \
    adpcm_decode_frame,                         \
};
#else
#define ADPCM_DECODER(id,name)
#endif

#define ADPCM_CODEC(id, name)                   \
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)

ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);

#undef ADPCM_CODEC