aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ac3enc_fixed.c
blob: e750a3903855f2a3cc6baf136a7bcb3c75496183 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/*
 * The simplest AC-3 encoder
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * fixed-point AC-3 encoder.
 */

#undef CONFIG_AC3ENC_FLOAT
#include "ac3enc.c"


/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)


/**
 * Finalize MDCT and free allocated memory.
 */
static av_cold void mdct_end(AC3MDCTContext *mdct)
{
    mdct->nbits = 0;
    av_freep(&mdct->costab);
    av_freep(&mdct->sintab);
    av_freep(&mdct->xcos1);
    av_freep(&mdct->xsin1);
    av_freep(&mdct->rot_tmp);
    av_freep(&mdct->cplx_tmp);
}


/**
 * Initialize FFT tables.
 * @param ln log2(FFT size)
 */
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
{
    int i, n, n2;
    float alpha;

    n  = 1 << ln;
    n2 = n >> 1;

    FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);

    for (i = 0; i < n2; i++) {
        alpha     = 2.0 * M_PI * i / n;
        mdct->costab[i] = FIX15(cos(alpha));
        mdct->sintab[i] = FIX15(sin(alpha));
    }

    return 0;
fft_alloc_fail:
    mdct_end(mdct);
    return AVERROR(ENOMEM);
}


/**
 * Initialize MDCT tables.
 * @param nbits log2(MDCT size)
 */
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
                             int nbits)
{
    int i, n, n4, ret;

    n  = 1 << nbits;
    n4 = n >> 2;

    mdct->nbits = nbits;

    ret = fft_init(avctx, mdct, nbits - 2);
    if (ret)
        return ret;

    mdct->window = ff_ac3_window;

    FF_ALLOC_OR_GOTO(avctx, mdct->xcos1,    n4 * sizeof(*mdct->xcos1),    mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->xsin1,    n4 * sizeof(*mdct->xsin1),    mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),  mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);

    for (i = 0; i < n4; i++) {
        float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
        mdct->xcos1[i] = FIX15(-cos(alpha));
        mdct->xsin1[i] = FIX15(-sin(alpha));
    }

    return 0;
mdct_alloc_fail:
    mdct_end(mdct);
    return AVERROR(ENOMEM);
}


/** Butterfly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
{                                                       \
  int ax, ay, bx, by;                                   \
  bx  = pre1;                                           \
  by  = pim1;                                           \
  ax  = qre1;                                           \
  ay  = qim1;                                           \
  pre = (bx + ax) >> 1;                                 \
  pim = (by + ay) >> 1;                                 \
  qre = (bx - ax) >> 1;                                 \
  qim = (by - ay) >> 1;                                 \
}


/** Complex multiply */
#define CMUL(pre, pim, are, aim, bre, bim, rshift)      \
{                                                       \
   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> rshift; \
   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> rshift; \
}


/**
 * Calculate a 2^n point complex FFT on 2^ln points.
 * @param z  complex input/output samples
 * @param ln log2(FFT size)
 */
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
{
    int j, l, np, np2;
    int nblocks, nloops;
    register IComplex *p,*q;
    int tmp_re, tmp_im;

    np = 1 << ln;

    /* reverse */
    for (j = 0; j < np; j++) {
        int k = av_reverse[j] >> (8 - ln);
        if (k < j)
            FFSWAP(IComplex, z[k], z[j]);
    }

    /* pass 0 */

    p = &z[0];
    j = np >> 1;
    do {
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
           p[0].re, p[0].im, p[1].re, p[1].im);
        p += 2;
    } while (--j);

    /* pass 1 */

    p = &z[0];
    j = np >> 2;
    do {
        BF(p[0].re, p[0].im, p[2].re,  p[2].im,
           p[0].re, p[0].im, p[2].re,  p[2].im);
        BF(p[1].re, p[1].im, p[3].re,  p[3].im,
           p[1].re, p[1].im, p[3].im, -p[3].re);
        p+=4;
    } while (--j);

    /* pass 2 .. ln-1 */

    nblocks = np >> 3;
    nloops  =  1 << 2;
    np2     = np >> 1;
    do {
        p = z;
        q = z + nloops;
        for (j = 0; j < nblocks; j++) {
            BF(p->re, p->im, q->re, q->im,
               p->re, p->im, q->re, q->im);
            p++;
            q++;
            for(l = nblocks; l < np2; l += nblocks) {
                CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im, 15);
                BF(p->re, p->im, q->re,  q->im,
                   p->re, p->im, tmp_re, tmp_im);
                p++;
                q++;
            }
            p += nloops;
            q += nloops;
        }
        nblocks = nblocks >> 1;
        nloops  = nloops  << 1;
    } while (nblocks);
}


/**
 * Calculate a 512-point MDCT
 * @param out 256 output frequency coefficients
 * @param in  512 windowed input audio samples
 */
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
{
    int i, re, im, n, n2, n4;
    int16_t *rot = mdct->rot_tmp;
    IComplex *x  = mdct->cplx_tmp;

    n  = 1 << mdct->nbits;
    n2 = n >> 1;
    n4 = n >> 2;

    /* shift to simplify computations */
    for (i = 0; i <n4; i++)
        rot[i] = -in[i + 3*n4];
    memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));

    /* pre rotation */
    for (i = 0; i < n4; i++) {
        re =  ((int)rot[   2*i] - (int)rot[ n-1-2*i]) >> 1;
        im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
        CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i], 15);
    }

    fft(mdct, x, mdct->nbits - 2);

    /* post rotation */
    for (i = 0; i < n4; i++) {
        re = x[i].re;
        im = x[i].im;
        CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i], 0);
    }
}


/**
 * Apply KBD window to input samples prior to MDCT.
 */
static void apply_window(DSPContext *dsp, int16_t *output, const int16_t *input,
                         const int16_t *window, int n)
{
    int i;
    int n2 = n >> 1;

    for (i = 0; i < n2; i++) {
        output[i]     = MUL16(input[i],     window[i]) >> 15;
        output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
    }
}


/**
 * Calculate the log2() of the maximum absolute value in an array.
 * @param tab input array
 * @param n   number of values in the array
 * @return    log2(max(abs(tab[])))
 */
static int log2_tab(AC3EncodeContext *s, int16_t *src, int len)
{
    int v = s->ac3dsp.ac3_max_msb_abs_int16(src, len);
    return av_log2(v);
}


/**
 * Left-shift each value in an array by a specified amount.
 * @param tab    input array
 * @param n      number of values in the array
 * @param lshift left shift amount
 */
static void lshift_tab(int16_t *tab, int n, unsigned int lshift)
{
    int i;

    if (lshift > 0) {
        for (i = 0; i < n; i++)
            tab[i] <<= lshift;
    }
}


/**
 * Right-shift each value in an array of int32_t by a specified amount.
 * @param src    input array
 * @param len    number of values in the array
 * @param shift  right shift amount
 */
static void ac3_rshift_int32_c(int32_t *src, unsigned int len, unsigned int shift)
{
    int i;

    if (shift > 0) {
        for (i = 0; i < len; i++)
            src[i] >>= shift;
    }
}


/**
 * Normalize the input samples to use the maximum available precision.
 * This assumes signed 16-bit input samples.
 *
 * @return exponent shift
 */
static int normalize_samples(AC3EncodeContext *s)
{
    int v = 14 - log2_tab(s, s->windowed_samples, AC3_WINDOW_SIZE);
    lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
    /* +6 to right-shift from 31-bit to 25-bit */
    return v + 6;
}


/**
 * Scale MDCT coefficients to 25-bit signed fixed-point.
 */
static void scale_coefficients(AC3EncodeContext *s)
{
    int blk, ch;

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        for (ch = 0; ch < s->channels; ch++) {
            ac3_rshift_int32_c(block->mdct_coef[ch], AC3_MAX_COEFS,
                               block->coeff_shift[ch]);
        }
    }
}


#ifdef TEST
/*************************************************************************/
/* TEST */

#include "libavutil/lfg.h"

#define MDCT_NBITS 9
#define MDCT_SAMPLES (1 << MDCT_NBITS)
#define FN (MDCT_SAMPLES/4)


static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
{
    IComplex in[FN], in1[FN];
    int k, n, i;
    float sum_re, sum_im, a;

    for (i = 0; i < FN; i++) {
        in[i].re = av_lfg_get(lfg) % 65535 - 32767;
        in[i].im = av_lfg_get(lfg) % 65535 - 32767;
        in1[i]   = in[i];
    }
    fft(mdct, in, 7);

    /* do it by hand */
    for (k = 0; k < FN; k++) {
        sum_re = 0;
        sum_im = 0;
        for (n = 0; n < FN; n++) {
            a = -2 * M_PI * (n * k) / FN;
            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
        }
        av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
    }
}


static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
{
    int16_t input[MDCT_SAMPLES];
    int32_t output[AC3_MAX_COEFS];
    float input1[MDCT_SAMPLES];
    float output1[AC3_MAX_COEFS];
    float s, a, err, e, emax;
    int i, k, n;

    for (i = 0; i < MDCT_SAMPLES; i++) {
        input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
        input1[i] = input[i];
    }

    mdct512(mdct, output, input);

    /* do it by hand */
    for (k = 0; k < AC3_MAX_COEFS; k++) {
        s = 0;
        for (n = 0; n < MDCT_SAMPLES; n++) {
            a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
            s += input1[n] * cos(a);
        }
        output1[k] = -2 * s / MDCT_SAMPLES;
    }

    err  = 0;
    emax = 0;
    for (i = 0; i < AC3_MAX_COEFS; i++) {
        av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
        e = output[i] - output1[i];
        if (e > emax)
            emax = e;
        err += e * e;
    }
    av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
}


int main(void)
{
    AVLFG lfg;
    AC3MDCTContext mdct;

    mdct.avctx = NULL;
    av_log_set_level(AV_LOG_DEBUG);
    mdct_init(&mdct, 9);

    fft_test(&mdct, &lfg);
    mdct_test(&mdct, &lfg);

    return 0;
}
#endif /* TEST */


AVCodec ff_ac3_fixed_encoder = {
    "ac3_fixed",
    AVMEDIA_TYPE_AUDIO,
    CODEC_ID_AC3,
    sizeof(AC3EncodeContext),
    ac3_encode_init,
    ac3_encode_frame,
    ac3_encode_close,
    NULL,
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
    .channel_layouts = ac3_channel_layouts,
};