aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ac3enc.c
blob: f5ee9337b18735854fb814394c3cd2aa089727d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
/*
 * The simplest AC-3 encoder
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * The simplest AC-3 encoder.
 */

//#define DEBUG

#include "libavcore/audioconvert.h"
#include "libavutil/crc.h"
#include "avcodec.h"
#include "put_bits.h"
#include "dsputil.h"
#include "ac3.h"
#include "audioconvert.h"


/** Maximum number of exponent groups. +1 for separate DC exponent. */
#define AC3_MAX_EXP_GROUPS 85

/** Scale a float value by 2^bits and convert to an integer. */
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))

typedef int16_t SampleType;
typedef int32_t CoefType;

#define SCALE_COEF(a) (a)

/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)


/**
 * Compex number.
 * Used in fixed-point MDCT calculation.
 */
typedef struct IComplex {
    int16_t re,im;
} IComplex;

typedef struct AC3MDCTContext {
    const int16_t *window;                  ///< MDCT window function
    int nbits;                              ///< log2(transform size)
    int16_t *costab;                        ///< FFT cos table
    int16_t *sintab;                        ///< FFT sin table
    int16_t *xcos1;                         ///< MDCT cos table
    int16_t *xsin1;                         ///< MDCT sin table
    int16_t *rot_tmp;                       ///< temp buffer for pre-rotated samples
    IComplex *cplx_tmp;                     ///< temp buffer for complex pre-rotated samples
} AC3MDCTContext;

/**
 * Data for a single audio block.
 */
typedef struct AC3Block {
    uint8_t  **bap;                             ///< bit allocation pointers (bap)
    CoefType **mdct_coef;                       ///< MDCT coefficients
    uint8_t  **exp;                             ///< original exponents
    uint8_t  **grouped_exp;                     ///< grouped exponents
    int16_t  **psd;                             ///< psd per frequency bin
    int16_t  **band_psd;                        ///< psd per critical band
    int16_t  **mask;                            ///< masking curve
    uint16_t **qmant;                           ///< quantized mantissas
    uint8_t  exp_strategy[AC3_MAX_CHANNELS];    ///< exponent strategies
    int8_t   exp_shift[AC3_MAX_CHANNELS];       ///< exponent shift values
} AC3Block;

/**
 * AC-3 encoder private context.
 */
typedef struct AC3EncodeContext {
    PutBitContext pb;                       ///< bitstream writer context
    DSPContext dsp;
    AC3MDCTContext mdct;                    ///< MDCT context

    AC3Block blocks[AC3_MAX_BLOCKS];        ///< per-block info

    int bitstream_id;                       ///< bitstream id                           (bsid)
    int bitstream_mode;                     ///< bitstream mode                         (bsmod)

    int bit_rate;                           ///< target bit rate, in bits-per-second
    int sample_rate;                        ///< sampling frequency, in Hz

    int frame_size_min;                     ///< minimum frame size in case rounding is necessary
    int frame_size;                         ///< current frame size in bytes
    int frame_size_code;                    ///< frame size code                        (frmsizecod)
    uint16_t crc_inv[2];
    int bits_written;                       ///< bit count    (used to avg. bitrate)
    int samples_written;                    ///< sample count (used to avg. bitrate)

    int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
    int channels;                           ///< total number of channels               (nchans)
    int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
    int lfe_channel;                        ///< channel index of the LFE channel
    int channel_mode;                       ///< channel mode                           (acmod)
    const uint8_t *channel_map;             ///< channel map used to reorder channels

    int cutoff;                             ///< user-specified cutoff frequency, in Hz
    int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
    int nb_coefs[AC3_MAX_CHANNELS];

    /* bitrate allocation control */
    int slow_gain_code;                     ///< slow gain code                         (sgaincod)
    int slow_decay_code;                    ///< slow decay code                        (sdcycod)
    int fast_decay_code;                    ///< fast decay code                        (fdcycod)
    int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
    int floor_code;                         ///< floor code                             (floorcod)
    AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
    int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
    int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
    int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)
    int frame_bits_fixed;                   ///< number of non-coefficient bits for fixed parameters
    int frame_bits;                         ///< all frame bits except exponents and mantissas
    int exponent_bits;                      ///< number of bits used for exponents

    /* mantissa encoding */
    int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4

    SampleType **planar_samples;
    uint8_t *bap_buffer;
    uint8_t *bap1_buffer;
    CoefType *mdct_coef_buffer;
    uint8_t *exp_buffer;
    uint8_t *grouped_exp_buffer;
    int16_t *psd_buffer;
    int16_t *band_psd_buffer;
    int16_t *mask_buffer;
    uint16_t *qmant_buffer;

    DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE];
} AC3EncodeContext;


/**
 * LUT for number of exponent groups.
 * exponent_group_tab[exponent strategy-1][number of coefficients]
 */
static uint8_t exponent_group_tab[3][256];


/**
 * List of supported channel layouts.
 */
static const int64_t ac3_channel_layouts[] = {
     AV_CH_LAYOUT_MONO,
     AV_CH_LAYOUT_STEREO,
     AV_CH_LAYOUT_2_1,
     AV_CH_LAYOUT_SURROUND,
     AV_CH_LAYOUT_2_2,
     AV_CH_LAYOUT_QUAD,
     AV_CH_LAYOUT_4POINT0,
     AV_CH_LAYOUT_5POINT0,
     AV_CH_LAYOUT_5POINT0_BACK,
    (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
    (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
    (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
    (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
    (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
    (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
    (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
     AV_CH_LAYOUT_5POINT1,
     AV_CH_LAYOUT_5POINT1_BACK,
     0
};


/**
 * Adjust the frame size to make the average bit rate match the target bit rate.
 * This is only needed for 11025, 22050, and 44100 sample rates.
 */
static void adjust_frame_size(AC3EncodeContext *s)
{
    while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
        s->bits_written    -= s->bit_rate;
        s->samples_written -= s->sample_rate;
    }
    s->frame_size = s->frame_size_min +
                    2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
    s->bits_written    += s->frame_size * 8;
    s->samples_written += AC3_FRAME_SIZE;
}


/**
 * Deinterleave input samples.
 * Channels are reordered from FFmpeg's default order to AC-3 order.
 */
static void deinterleave_input_samples(AC3EncodeContext *s,
                                       const SampleType *samples)
{
    int ch, i;

    /* deinterleave and remap input samples */
    for (ch = 0; ch < s->channels; ch++) {
        const SampleType *sptr;
        int sinc;

        /* copy last 256 samples of previous frame to the start of the current frame */
        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));

        /* deinterleave */
        sinc = s->channels;
        sptr = samples + s->channel_map[ch];
        for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
            s->planar_samples[ch][i] = *sptr;
            sptr += sinc;
        }
    }
}


/**
 * Finalize MDCT and free allocated memory.
 */
static av_cold void mdct_end(AC3MDCTContext *mdct)
{
    mdct->nbits = 0;
    av_freep(&mdct->costab);
    av_freep(&mdct->sintab);
    av_freep(&mdct->xcos1);
    av_freep(&mdct->xsin1);
    av_freep(&mdct->rot_tmp);
    av_freep(&mdct->cplx_tmp);
}


/**
 * Initialize FFT tables.
 * @param ln log2(FFT size)
 */
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
{
    int i, n, n2;
    float alpha;

    n  = 1 << ln;
    n2 = n >> 1;

    FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);

    for (i = 0; i < n2; i++) {
        alpha     = 2.0 * M_PI * i / n;
        mdct->costab[i] = FIX15(cos(alpha));
        mdct->sintab[i] = FIX15(sin(alpha));
    }

    return 0;
fft_alloc_fail:
    mdct_end(mdct);
    return AVERROR(ENOMEM);
}


/**
 * Initialize MDCT tables.
 * @param nbits log2(MDCT size)
 */
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
                             int nbits)
{
    int i, n, n4, ret;

    n  = 1 << nbits;
    n4 = n >> 2;

    mdct->nbits = nbits;

    ret = fft_init(avctx, mdct, nbits - 2);
    if (ret)
        return ret;

    mdct->window = ff_ac3_window;

    FF_ALLOC_OR_GOTO(avctx, mdct->xcos1,    n4 * sizeof(*mdct->xcos1),    mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->xsin1,    n4 * sizeof(*mdct->xsin1),    mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),  mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);

    for (i = 0; i < n4; i++) {
        float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
        mdct->xcos1[i] = FIX15(-cos(alpha));
        mdct->xsin1[i] = FIX15(-sin(alpha));
    }

    return 0;
mdct_alloc_fail:
    mdct_end(mdct);
    return AVERROR(ENOMEM);
}


/** Butterfly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
{                                                       \
  int ax, ay, bx, by;                                   \
  bx  = pre1;                                           \
  by  = pim1;                                           \
  ax  = qre1;                                           \
  ay  = qim1;                                           \
  pre = (bx + ax) >> 1;                                 \
  pim = (by + ay) >> 1;                                 \
  qre = (bx - ax) >> 1;                                 \
  qim = (by - ay) >> 1;                                 \
}


/** Complex multiply */
#define CMUL(pre, pim, are, aim, bre, bim)              \
{                                                       \
   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;     \
   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;     \
}


/**
 * Calculate a 2^n point complex FFT on 2^ln points.
 * @param z  complex input/output samples
 * @param ln log2(FFT size)
 */
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
{
    int j, l, np, np2;
    int nblocks, nloops;
    register IComplex *p,*q;
    int tmp_re, tmp_im;

    np = 1 << ln;

    /* reverse */
    for (j = 0; j < np; j++) {
        int k = av_reverse[j] >> (8 - ln);
        if (k < j)
            FFSWAP(IComplex, z[k], z[j]);
    }

    /* pass 0 */

    p = &z[0];
    j = np >> 1;
    do {
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
           p[0].re, p[0].im, p[1].re, p[1].im);
        p += 2;
    } while (--j);

    /* pass 1 */

    p = &z[0];
    j = np >> 2;
    do {
        BF(p[0].re, p[0].im, p[2].re,  p[2].im,
           p[0].re, p[0].im, p[2].re,  p[2].im);
        BF(p[1].re, p[1].im, p[3].re,  p[3].im,
           p[1].re, p[1].im, p[3].im, -p[3].re);
        p+=4;
    } while (--j);

    /* pass 2 .. ln-1 */

    nblocks = np >> 3;
    nloops  =  1 << 2;
    np2     = np >> 1;
    do {
        p = z;
        q = z + nloops;
        for (j = 0; j < nblocks; j++) {
            BF(p->re, p->im, q->re, q->im,
               p->re, p->im, q->re, q->im);
            p++;
            q++;
            for(l = nblocks; l < np2; l += nblocks) {
                CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
                BF(p->re, p->im, q->re,  q->im,
                   p->re, p->im, tmp_re, tmp_im);
                p++;
                q++;
            }
            p += nloops;
            q += nloops;
        }
        nblocks = nblocks >> 1;
        nloops  = nloops  << 1;
    } while (nblocks);
}


/**
 * Calculate a 512-point MDCT
 * @param out 256 output frequency coefficients
 * @param in  512 windowed input audio samples
 */
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
{
    int i, re, im, n, n2, n4;
    int16_t *rot = mdct->rot_tmp;
    IComplex *x  = mdct->cplx_tmp;

    n  = 1 << mdct->nbits;
    n2 = n >> 1;
    n4 = n >> 2;

    /* shift to simplify computations */
    for (i = 0; i <n4; i++)
        rot[i] = -in[i + 3*n4];
    memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));

    /* pre rotation */
    for (i = 0; i < n4; i++) {
        re =  ((int)rot[   2*i] - (int)rot[ n-1-2*i]) >> 1;
        im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
        CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
    }

    fft(mdct, x, mdct->nbits - 2);

    /* post rotation */
    for (i = 0; i < n4; i++) {
        re = x[i].re;
        im = x[i].im;
        CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
    }
}


/**
 * Apply KBD window to input samples prior to MDCT.
 */
static void apply_window(int16_t *output, const int16_t *input,
                         const int16_t *window, int n)
{
    int i;
    int n2 = n >> 1;

    for (i = 0; i < n2; i++) {
        output[i]     = MUL16(input[i],     window[i]) >> 15;
        output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
    }
}


/**
 * Calculate the log2() of the maximum absolute value in an array.
 * @param tab input array
 * @param n   number of values in the array
 * @return    log2(max(abs(tab[])))
 */
static int log2_tab(int16_t *tab, int n)
{
    int i, v;

    v = 0;
    for (i = 0; i < n; i++)
        v |= abs(tab[i]);

    return av_log2(v);
}


/**
 * Left-shift each value in an array by a specified amount.
 * @param tab    input array
 * @param n      number of values in the array
 * @param lshift left shift amount. a negative value means right shift.
 */
static void lshift_tab(int16_t *tab, int n, int lshift)
{
    int i;

    if (lshift > 0) {
        for (i = 0; i < n; i++)
            tab[i] <<= lshift;
    } else if (lshift < 0) {
        lshift = -lshift;
        for (i = 0; i < n; i++)
            tab[i] >>= lshift;
    }
}


/**
 * Normalize the input samples to use the maximum available precision.
 * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
 * match the 24-bit internal precision for MDCT coefficients.
 *
 * @return exponent shift
 */
static int normalize_samples(AC3EncodeContext *s)
{
    int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
    v = FFMAX(0, v);
    lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
    return v - 9;
}


/**
 * Apply the MDCT to input samples to generate frequency coefficients.
 * This applies the KBD window and normalizes the input to reduce precision
 * loss due to fixed-point calculations.
 */
static void apply_mdct(AC3EncodeContext *s)
{
    int blk, ch;

    for (ch = 0; ch < s->channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            AC3Block *block = &s->blocks[blk];
            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];

            apply_window(s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE);

            block->exp_shift[ch] = normalize_samples(s);

            mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
        }
    }
}


/**
 * Initialize exponent tables.
 */
static av_cold void exponent_init(AC3EncodeContext *s)
{
    int i;
    for (i = 73; i < 256; i++) {
        exponent_group_tab[0][i] = (i - 1) /  3;
        exponent_group_tab[1][i] = (i + 2) /  6;
        exponent_group_tab[2][i] = (i + 8) / 12;
    }
    /* LFE */
    exponent_group_tab[0][7] = 2;
}


/**
 * Extract exponents from the MDCT coefficients.
 * This takes into account the normalization that was done to the input samples
 * by adjusting the exponents by the exponent shift values.
 */
static void extract_exponents(AC3EncodeContext *s)
{
    int blk, ch, i;

    for (ch = 0; ch < s->channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            AC3Block *block = &s->blocks[blk];
            for (i = 0; i < AC3_MAX_COEFS; i++) {
                int e;
                int v = abs(SCALE_COEF(block->mdct_coef[ch][i]));
                if (v == 0)
                    e = 24;
                else {
                    e = 23 - av_log2(v) + block->exp_shift[ch];
                    if (e >= 24) {
                        e = 24;
                        block->mdct_coef[ch][i] = 0;
                    }
                }
                block->exp[ch][i] = e;
            }
        }
    }
}


/**
 * Exponent Difference Threshold.
 * New exponents are sent if their SAD exceed this number.
 */
#define EXP_DIFF_THRESHOLD 1000


/**
 * Calculate exponent strategies for all blocks in a single channel.
 */
static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy,
                                    uint8_t **exp)
{
    int blk, blk1;
    int exp_diff;

    /* estimate if the exponent variation & decide if they should be
       reused in the next frame */
    exp_strategy[0] = EXP_NEW;
    for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
        exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16);
        if (exp_diff > EXP_DIFF_THRESHOLD)
            exp_strategy[blk] = EXP_NEW;
        else
            exp_strategy[blk] = EXP_REUSE;
    }
    emms_c();

    /* now select the encoding strategy type : if exponents are often
       recoded, we use a coarse encoding */
    blk = 0;
    while (blk < AC3_MAX_BLOCKS) {
        blk1 = blk + 1;
        while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
            blk1++;
        switch (blk1 - blk) {
        case 1:  exp_strategy[blk] = EXP_D45; break;
        case 2:
        case 3:  exp_strategy[blk] = EXP_D25; break;
        default: exp_strategy[blk] = EXP_D15; break;
        }
        blk = blk1;
    }
}


/**
 * Calculate exponent strategies for all channels.
 * Array arrangement is reversed to simplify the per-channel calculation.
 */
static void compute_exp_strategy(AC3EncodeContext *s)
{
    uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
    uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
    int ch, blk;

    for (ch = 0; ch < s->fbw_channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            exp1[ch][blk]     = s->blocks[blk].exp[ch];
            exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch];
        }

        compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]);

        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
            s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk];
    }
    if (s->lfe_on) {
        ch = s->lfe_channel;
        s->blocks[0].exp_strategy[ch] = EXP_D15;
        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
            s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
    }
}


/**
 * Set each encoded exponent in a block to the minimum of itself and the
 * exponent in the same frequency bin of a following block.
 * exp[i] = min(exp[i], exp1[i]
 */
static void exponent_min(uint8_t *exp, uint8_t *exp1, int n)
{
    int i;
    for (i = 0; i < n; i++) {
        if (exp1[i] < exp[i])
            exp[i] = exp1[i];
    }
}


/**
 * Update the exponents so that they are the ones the decoder will decode.
 */
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy)
{
    int nb_groups, i, k;

    nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3;

    /* for each group, compute the minimum exponent */
    switch(exp_strategy) {
    case EXP_D25:
        for (i = 1, k = 1; i <= nb_groups; i++) {
            uint8_t exp_min = exp[k];
            if (exp[k+1] < exp_min)
                exp_min = exp[k+1];
            exp[i] = exp_min;
            k += 2;
        }
        break;
    case EXP_D45:
        for (i = 1, k = 1; i <= nb_groups; i++) {
            uint8_t exp_min = exp[k];
            if (exp[k+1] < exp_min)
                exp_min = exp[k+1];
            if (exp[k+2] < exp_min)
                exp_min = exp[k+2];
            if (exp[k+3] < exp_min)
                exp_min = exp[k+3];
            exp[i] = exp_min;
            k += 4;
        }
        break;
    }

    /* constraint for DC exponent */
    if (exp[0] > 15)
        exp[0] = 15;

    /* decrease the delta between each groups to within 2 so that they can be
       differentially encoded */
    for (i = 1; i <= nb_groups; i++)
        exp[i] = FFMIN(exp[i], exp[i-1] + 2);
    i--;
    while (--i >= 0)
        exp[i] = FFMIN(exp[i], exp[i+1] + 2);

    /* now we have the exponent values the decoder will see */
    switch (exp_strategy) {
    case EXP_D25:
        for (i = nb_groups, k = nb_groups * 2; i > 0; i--) {
            uint8_t exp1 = exp[i];
            exp[k--] = exp1;
            exp[k--] = exp1;
        }
        break;
    case EXP_D45:
        for (i = nb_groups, k = nb_groups * 4; i > 0; i--) {
            exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i];
            k -= 4;
        }
        break;
    }
}


/**
 * Encode exponents from original extracted form to what the decoder will see.
 * This copies and groups exponents based on exponent strategy and reduces
 * deltas between adjacent exponent groups so that they can be differentially
 * encoded.
 */
static void encode_exponents(AC3EncodeContext *s)
{
    int blk, blk1, blk2, ch;
    AC3Block *block, *block1, *block2;

    for (ch = 0; ch < s->channels; ch++) {
        blk = 0;
        block = &s->blocks[0];
        while (blk < AC3_MAX_BLOCKS) {
            blk1 = blk + 1;
            block1 = block + 1;
            /* for the EXP_REUSE case we select the min of the exponents */
            while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) {
                exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]);
                blk1++;
                block1++;
            }
            encode_exponents_blk_ch(block->exp[ch], s->nb_coefs[ch],
                                    block->exp_strategy[ch]);
            /* copy encoded exponents for reuse case */
            block2 = block + 1;
            for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) {
                memcpy(block2->exp[ch], block->exp[ch],
                       s->nb_coefs[ch] * sizeof(uint8_t));
            }
            blk = blk1;
            block = block1;
        }
    }
}


/**
 * Group exponents.
 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
 * varies depending on exponent strategy and bandwidth.
 */
static void group_exponents(AC3EncodeContext *s)
{
    int blk, ch, i;
    int group_size, nb_groups, bit_count;
    uint8_t *p;
    int delta0, delta1, delta2;
    int exp0, exp1;

    bit_count = 0;
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        for (ch = 0; ch < s->channels; ch++) {
            if (block->exp_strategy[ch] == EXP_REUSE) {
                continue;
            }
            group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45);
            nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
            bit_count += 4 + (nb_groups * 7);
            p = block->exp[ch];

            /* DC exponent */
            exp1 = *p++;
            block->grouped_exp[ch][0] = exp1;

            /* remaining exponents are delta encoded */
            for (i = 1; i <= nb_groups; i++) {
                /* merge three delta in one code */
                exp0   = exp1;
                exp1   = p[0];
                p     += group_size;
                delta0 = exp1 - exp0 + 2;

                exp0   = exp1;
                exp1   = p[0];
                p     += group_size;
                delta1 = exp1 - exp0 + 2;

                exp0   = exp1;
                exp1   = p[0];
                p     += group_size;
                delta2 = exp1 - exp0 + 2;

                block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
            }
        }
    }

    s->exponent_bits = bit_count;
}


/**
 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
 * Extract exponents from MDCT coefficients, calculate exponent strategies,
 * and encode final exponents.
 */
static void process_exponents(AC3EncodeContext *s)
{
    extract_exponents(s);

    compute_exp_strategy(s);

    encode_exponents(s);

    group_exponents(s);
}


/**
 * Count frame bits that are based solely on fixed parameters.
 * This only has to be run once when the encoder is initialized.
 */
static void count_frame_bits_fixed(AC3EncodeContext *s)
{
    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
    int blk;
    int frame_bits;

    /* assumptions:
     *   no dynamic range codes
     *   no channel coupling
     *   no rematrixing
     *   bit allocation parameters do not change between blocks
     *   SNR offsets do not change between blocks
     *   no delta bit allocation
     *   no skipped data
     *   no auxilliary data
     */

    /* header size */
    frame_bits = 65;
    frame_bits += frame_bits_inc[s->channel_mode];

    /* audio blocks */
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
        if (s->channel_mode == AC3_CHMODE_STEREO) {
            frame_bits++; /* rematstr */
            if (!blk)
                frame_bits += 4;
        }
        frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
        if (s->lfe_on)
            frame_bits++; /* lfeexpstr */
        frame_bits++; /* baie */
        frame_bits++; /* snr */
        frame_bits += 2; /* delta / skip */
    }
    frame_bits++; /* cplinu for block 0 */
    /* bit alloc info */
    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
    /* csnroffset[6] */
    /* (fsnoffset[4] + fgaincod[4]) * c */
    frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);

    /* auxdatae, crcrsv */
    frame_bits += 2;

    /* CRC */
    frame_bits += 16;

    s->frame_bits_fixed = frame_bits;
}


/**
 * Initialize bit allocation.
 * Set default parameter codes and calculate parameter values.
 */
static void bit_alloc_init(AC3EncodeContext *s)
{
    int ch;

    /* init default parameters */
    s->slow_decay_code = 2;
    s->fast_decay_code = 1;
    s->slow_gain_code  = 1;
    s->db_per_bit_code = 3;
    s->floor_code      = 4;
    for (ch = 0; ch < s->channels; ch++)
        s->fast_gain_code[ch] = 4;

    /* initial snr offset */
    s->coarse_snr_offset = 40;

    /* compute real values */
    /* currently none of these values change during encoding, so we can just
       set them once at initialization */
    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
    s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
    s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];

    count_frame_bits_fixed(s);
}


/**
 * Count the bits used to encode the frame, minus exponents and mantissas.
 * Bits based on fixed parameters have already been counted, so now we just
 * have to add the bits based on parameters that change during encoding.
 */
static void count_frame_bits(AC3EncodeContext *s)
{
    int blk, ch;
    int frame_bits = 0;

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        uint8_t *exp_strategy = s->blocks[blk].exp_strategy;
        for (ch = 0; ch < s->fbw_channels; ch++) {
            if (exp_strategy[ch] != EXP_REUSE)
                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
        }
    }
    s->frame_bits = s->frame_bits_fixed + frame_bits;
}


/**
 * Calculate the number of bits needed to encode a set of mantissas.
 */
static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs)
{
    int bits, b, i;

    bits = 0;
    for (i = 0; i < nb_coefs; i++) {
        b = bap[i];
        if (b <= 4) {
            // bap=1 to bap=4 will be counted in compute_mantissa_size_final
            mant_cnt[b]++;
        } else if (b <= 13) {
            // bap=5 to bap=13 use (bap-1) bits
            bits += b - 1;
        } else {
            // bap=14 uses 14 bits and bap=15 uses 16 bits
            bits += (b == 14) ? 14 : 16;
        }
    }
    return bits;
}


/**
 * Finalize the mantissa bit count by adding in the grouped mantissas.
 */
static int compute_mantissa_size_final(int mant_cnt[5])
{
    // bap=1 : 3 mantissas in 5 bits
    int bits = (mant_cnt[1] / 3) * 5;
    // bap=2 : 3 mantissas in 7 bits
    // bap=4 : 2 mantissas in 7 bits
    bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7;
    // bap=3 : each mantissa is 3 bits
    bits += mant_cnt[3] * 3;
    return bits;
}


/**
 * Calculate masking curve based on the final exponents.
 * Also calculate the power spectral densities to use in future calculations.
 */
static void bit_alloc_masking(AC3EncodeContext *s)
{
    int blk, ch;

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        for (ch = 0; ch < s->channels; ch++) {
            /* We only need psd and mask for calculating bap.
               Since we currently do not calculate bap when exponent
               strategy is EXP_REUSE we do not need to calculate psd or mask. */
            if (block->exp_strategy[ch] != EXP_REUSE) {
                ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
                                          s->nb_coefs[ch],
                                          block->psd[ch], block->band_psd[ch]);
                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
                                           0, s->nb_coefs[ch],
                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
                                           ch == s->lfe_channel,
                                           DBA_NONE, 0, NULL, NULL, NULL,
                                           block->mask[ch]);
            }
        }
    }
}


/**
 * Ensure that bap for each block and channel point to the current bap_buffer.
 * They may have been switched during the bit allocation search.
 */
static void reset_block_bap(AC3EncodeContext *s)
{
    int blk, ch;
    if (s->blocks[0].bap[0] == s->bap_buffer)
        return;
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        for (ch = 0; ch < s->channels; ch++) {
            s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
        }
    }
}


/**
 * Run the bit allocation with a given SNR offset.
 * This calculates the bit allocation pointers that will be used to determine
 * the quantization of each mantissa.
 * @return the number of bits needed for mantissas if the given SNR offset is
 *         is used.
 */
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
{
    int blk, ch;
    int mantissa_bits;
    int mant_cnt[5];

    snr_offset = (snr_offset - 240) << 2;

    reset_block_bap(s);
    mantissa_bits = 0;
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        // initialize grouped mantissa counts. these are set so that they are
        // padded to the next whole group size when bits are counted in
        // compute_mantissa_size_final
        mant_cnt[0] = mant_cnt[3] = 0;
        mant_cnt[1] = mant_cnt[2] = 2;
        mant_cnt[4] = 1;
        for (ch = 0; ch < s->channels; ch++) {
            /* Currently the only bit allocation parameters which vary across
               blocks within a frame are the exponent values.  We can take
               advantage of that by reusing the bit allocation pointers
               whenever we reuse exponents. */
            if (block->exp_strategy[ch] == EXP_REUSE) {
                memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
            } else {
                ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
                                          s->nb_coefs[ch], snr_offset,
                                          s->bit_alloc.floor, ff_ac3_bap_tab,
                                          block->bap[ch]);
            }
            mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]);
        }
        mantissa_bits += compute_mantissa_size_final(mant_cnt);
    }
    return mantissa_bits;
}


/**
 * Constant bitrate bit allocation search.
 * Find the largest SNR offset that will allow data to fit in the frame.
 */
static int cbr_bit_allocation(AC3EncodeContext *s)
{
    int ch;
    int bits_left;
    int snr_offset, snr_incr;

    bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);

    snr_offset = s->coarse_snr_offset << 4;

    while (snr_offset >= 0 &&
           bit_alloc(s, snr_offset) > bits_left) {
        snr_offset -= 64;
    }
    if (snr_offset < 0)
        return AVERROR(EINVAL);

    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
    for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
        while (snr_offset + 64 <= 1023 &&
               bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
            snr_offset += snr_incr;
            FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
        }
    }
    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
    reset_block_bap(s);

    s->coarse_snr_offset = snr_offset >> 4;
    for (ch = 0; ch < s->channels; ch++)
        s->fine_snr_offset[ch] = snr_offset & 0xF;

    return 0;
}


/**
 * Downgrade exponent strategies to reduce the bits used by the exponents.
 * This is a fallback for when bit allocation fails with the normal exponent
 * strategies.  Each time this function is run it only downgrades the
 * strategy in 1 channel of 1 block.
 * @return non-zero if downgrade was unsuccessful
 */
static int downgrade_exponents(AC3EncodeContext *s)
{
    int ch, blk;

    for (ch = 0; ch < s->fbw_channels; ch++) {
        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
            if (s->blocks[blk].exp_strategy[ch] == EXP_D15) {
                s->blocks[blk].exp_strategy[ch] = EXP_D25;
                return 0;
            }
        }
    }
    for (ch = 0; ch < s->fbw_channels; ch++) {
        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
            if (s->blocks[blk].exp_strategy[ch] == EXP_D25) {
                s->blocks[blk].exp_strategy[ch] = EXP_D45;
                return 0;
            }
        }
    }
    for (ch = 0; ch < s->fbw_channels; ch++) {
        /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
           the block number > 0 */
        for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
            if (s->blocks[blk].exp_strategy[ch] > EXP_REUSE) {
                s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
                return 0;
            }
        }
    }
    return -1;
}


/**
 * Reduce the bandwidth to reduce the number of bits used for a given SNR offset.
 * This is a second fallback for when bit allocation still fails after exponents
 * have been downgraded.
 * @return non-zero if bandwidth reduction was unsuccessful
 */
static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code)
{
    int ch;

    if (s->bandwidth_code[0] > min_bw_code) {
        for (ch = 0; ch < s->fbw_channels; ch++) {
            s->bandwidth_code[ch]--;
            s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73;
        }
        return 0;
    }
    return -1;
}


/**
 * Perform bit allocation search.
 * Finds the SNR offset value that maximizes quality and fits in the specified
 * frame size.  Output is the SNR offset and a set of bit allocation pointers
 * used to quantize the mantissas.
 */
static int compute_bit_allocation(AC3EncodeContext *s)
{
    int ret;

    count_frame_bits(s);

    bit_alloc_masking(s);

    ret = cbr_bit_allocation(s);
    while (ret) {
        /* fallback 1: downgrade exponents */
        if (!downgrade_exponents(s)) {
            extract_exponents(s);
            encode_exponents(s);
            group_exponents(s);
            ret = compute_bit_allocation(s);
            continue;
        }

        /* fallback 2: reduce bandwidth */
        /* only do this if the user has not specified a specific cutoff
           frequency */
        if (!s->cutoff && !reduce_bandwidth(s, 0)) {
            process_exponents(s);
            ret = compute_bit_allocation(s);
            continue;
        }

        /* fallbacks were not enough... */
        break;
    }

    return ret;
}


/**
 * Symmetric quantization on 'levels' levels.
 */
static inline int sym_quant(int c, int e, int levels)
{
    int v;

    if (c >= 0) {
        v = (levels * (c << e)) >> 24;
        v = (v + 1) >> 1;
        v = (levels >> 1) + v;
    } else {
        v = (levels * ((-c) << e)) >> 24;
        v = (v + 1) >> 1;
        v = (levels >> 1) - v;
    }
    assert(v >= 0 && v < levels);
    return v;
}


/**
 * Asymmetric quantization on 2^qbits levels.
 */
static inline int asym_quant(int c, int e, int qbits)
{
    int lshift, m, v;

    lshift = e + qbits - 24;
    if (lshift >= 0)
        v = c << lshift;
    else
        v = c >> (-lshift);
    /* rounding */
    v = (v + 1) >> 1;
    m = (1 << (qbits-1));
    if (v >= m)
        v = m - 1;
    assert(v >= -m);
    return v & ((1 << qbits)-1);
}


/**
 * Quantize a set of mantissas for a single channel in a single block.
 */
static void quantize_mantissas_blk_ch(AC3EncodeContext *s, CoefType *mdct_coef,
                                      int8_t exp_shift, uint8_t *exp,
                                      uint8_t *bap, uint16_t *qmant, int n)
{
    int i;

    for (i = 0; i < n; i++) {
        int v;
        int c = SCALE_COEF(mdct_coef[i]);
        int e = exp[i] - exp_shift;
        int b = bap[i];
        switch (b) {
        case 0:
            v = 0;
            break;
        case 1:
            v = sym_quant(c, e, 3);
            switch (s->mant1_cnt) {
            case 0:
                s->qmant1_ptr = &qmant[i];
                v = 9 * v;
                s->mant1_cnt = 1;
                break;
            case 1:
                *s->qmant1_ptr += 3 * v;
                s->mant1_cnt = 2;
                v = 128;
                break;
            default:
                *s->qmant1_ptr += v;
                s->mant1_cnt = 0;
                v = 128;
                break;
            }
            break;
        case 2:
            v = sym_quant(c, e, 5);
            switch (s->mant2_cnt) {
            case 0:
                s->qmant2_ptr = &qmant[i];
                v = 25 * v;
                s->mant2_cnt = 1;
                break;
            case 1:
                *s->qmant2_ptr += 5 * v;
                s->mant2_cnt = 2;
                v = 128;
                break;
            default:
                *s->qmant2_ptr += v;
                s->mant2_cnt = 0;
                v = 128;
                break;
            }
            break;
        case 3:
            v = sym_quant(c, e, 7);
            break;
        case 4:
            v = sym_quant(c, e, 11);
            switch (s->mant4_cnt) {
            case 0:
                s->qmant4_ptr = &qmant[i];
                v = 11 * v;
                s->mant4_cnt = 1;
                break;
            default:
                *s->qmant4_ptr += v;
                s->mant4_cnt = 0;
                v = 128;
                break;
            }
            break;
        case 5:
            v = sym_quant(c, e, 15);
            break;
        case 14:
            v = asym_quant(c, e, 14);
            break;
        case 15:
            v = asym_quant(c, e, 16);
            break;
        default:
            v = asym_quant(c, e, b - 1);
            break;
        }
        qmant[i] = v;
    }
}


/**
 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
 */
static void quantize_mantissas(AC3EncodeContext *s)
{
    int blk, ch;


    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        s->mant1_cnt  = s->mant2_cnt  = s->mant4_cnt  = 0;
        s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;

        for (ch = 0; ch < s->channels; ch++) {
            quantize_mantissas_blk_ch(s, block->mdct_coef[ch], block->exp_shift[ch],
                                      block->exp[ch], block->bap[ch],
                                      block->qmant[ch], s->nb_coefs[ch]);
        }
    }
}


/**
 * Write the AC-3 frame header to the output bitstream.
 */
static void output_frame_header(AC3EncodeContext *s)
{
    put_bits(&s->pb, 16, 0x0b77);   /* frame header */
    put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
    put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
    put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
    put_bits(&s->pb, 5,  s->bitstream_id);
    put_bits(&s->pb, 3,  s->bitstream_mode);
    put_bits(&s->pb, 3,  s->channel_mode);
    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
        put_bits(&s->pb, 2, 1);     /* XXX -4.5 dB */
    if (s->channel_mode & 0x04)
        put_bits(&s->pb, 2, 1);     /* XXX -6 dB */
    if (s->channel_mode == AC3_CHMODE_STEREO)
        put_bits(&s->pb, 2, 0);     /* surround not indicated */
    put_bits(&s->pb, 1, s->lfe_on); /* LFE */
    put_bits(&s->pb, 5, 31);        /* dialog norm: -31 db */
    put_bits(&s->pb, 1, 0);         /* no compression control word */
    put_bits(&s->pb, 1, 0);         /* no lang code */
    put_bits(&s->pb, 1, 0);         /* no audio production info */
    put_bits(&s->pb, 1, 0);         /* no copyright */
    put_bits(&s->pb, 1, 1);         /* original bitstream */
    put_bits(&s->pb, 1, 0);         /* no time code 1 */
    put_bits(&s->pb, 1, 0);         /* no time code 2 */
    put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
}


/**
 * Write one audio block to the output bitstream.
 */
static void output_audio_block(AC3EncodeContext *s, int block_num)
{
    int ch, i, baie, rbnd;
    AC3Block *block = &s->blocks[block_num];

    /* block switching */
    for (ch = 0; ch < s->fbw_channels; ch++)
        put_bits(&s->pb, 1, 0);

    /* dither flags */
    for (ch = 0; ch < s->fbw_channels; ch++)
        put_bits(&s->pb, 1, 1);

    /* dynamic range codes */
    put_bits(&s->pb, 1, 0);

    /* channel coupling */
    if (!block_num) {
        put_bits(&s->pb, 1, 1); /* coupling strategy present */
        put_bits(&s->pb, 1, 0); /* no coupling strategy */
    } else {
        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
    }

    /* stereo rematrixing */
    if (s->channel_mode == AC3_CHMODE_STEREO) {
        if (!block_num) {
            /* first block must define rematrixing (rematstr) */
            put_bits(&s->pb, 1, 1);

            /* dummy rematrixing rematflg(1:4)=0 */
            for (rbnd = 0; rbnd < 4; rbnd++)
                put_bits(&s->pb, 1, 0);
        } else {
            /* no matrixing (but should be used in the future) */
            put_bits(&s->pb, 1, 0);
        }
    }

    /* exponent strategy */
    for (ch = 0; ch < s->fbw_channels; ch++)
        put_bits(&s->pb, 2, block->exp_strategy[ch]);
    if (s->lfe_on)
        put_bits(&s->pb, 1, block->exp_strategy[s->lfe_channel]);

    /* bandwidth */
    for (ch = 0; ch < s->fbw_channels; ch++) {
        if (block->exp_strategy[ch] != EXP_REUSE)
            put_bits(&s->pb, 6, s->bandwidth_code[ch]);
    }

    /* exponents */
    for (ch = 0; ch < s->channels; ch++) {
        int nb_groups;

        if (block->exp_strategy[ch] == EXP_REUSE)
            continue;

        /* DC exponent */
        put_bits(&s->pb, 4, block->grouped_exp[ch][0]);

        /* exponent groups */
        nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
        for (i = 1; i <= nb_groups; i++)
            put_bits(&s->pb, 7, block->grouped_exp[ch][i]);

        /* gain range info */
        if (ch != s->lfe_channel)
            put_bits(&s->pb, 2, 0);
    }

    /* bit allocation info */
    baie = (block_num == 0);
    put_bits(&s->pb, 1, baie);
    if (baie) {
        put_bits(&s->pb, 2, s->slow_decay_code);
        put_bits(&s->pb, 2, s->fast_decay_code);
        put_bits(&s->pb, 2, s->slow_gain_code);
        put_bits(&s->pb, 2, s->db_per_bit_code);
        put_bits(&s->pb, 3, s->floor_code);
    }

    /* snr offset */
    put_bits(&s->pb, 1, baie);
    if (baie) {
        put_bits(&s->pb, 6, s->coarse_snr_offset);
        for (ch = 0; ch < s->channels; ch++) {
            put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
            put_bits(&s->pb, 3, s->fast_gain_code[ch]);
        }
    }

    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
    put_bits(&s->pb, 1, 0); /* no data to skip */

    /* mantissas */
    for (ch = 0; ch < s->channels; ch++) {
        int b, q;
        for (i = 0; i < s->nb_coefs[ch]; i++) {
            q = block->qmant[ch][i];
            b = block->bap[ch][i];
            switch (b) {
            case 0:                                         break;
            case 1: if (q != 128) put_bits(&s->pb,   5, q); break;
            case 2: if (q != 128) put_bits(&s->pb,   7, q); break;
            case 3:               put_bits(&s->pb,   3, q); break;
            case 4: if (q != 128) put_bits(&s->pb,   7, q); break;
            case 14:              put_bits(&s->pb,  14, q); break;
            case 15:              put_bits(&s->pb,  16, q); break;
            default:              put_bits(&s->pb, b-1, q); break;
            }
        }
    }
}


/** CRC-16 Polynomial */
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))


static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
{
    unsigned int c;

    c = 0;
    while (a) {
        if (a & 1)
            c ^= b;
        a = a >> 1;
        b = b << 1;
        if (b & (1 << 16))
            b ^= poly;
    }
    return c;
}


static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
{
    unsigned int r;
    r = 1;
    while (n) {
        if (n & 1)
            r = mul_poly(r, a, poly);
        a = mul_poly(a, a, poly);
        n >>= 1;
    }
    return r;
}


/**
 * Fill the end of the frame with 0's and compute the two CRCs.
 */
static void output_frame_end(AC3EncodeContext *s)
{
    const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
    int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
    uint8_t *frame;

    frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;

    /* pad the remainder of the frame with zeros */
    flush_put_bits(&s->pb);
    frame = s->pb.buf;
    pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
    assert(pad_bytes >= 0);
    if (pad_bytes > 0)
        memset(put_bits_ptr(&s->pb), 0, pad_bytes);

    /* compute crc1 */
    /* this is not so easy because it is at the beginning of the data... */
    crc1    = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
    crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
    crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
    AV_WB16(frame + 2, crc1);

    /* compute crc2 */
    crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
                          s->frame_size - frame_size_58 - 3);
    crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
    /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
    if (crc2 == 0x770B) {
        frame[s->frame_size - 3] ^= 0x1;
        crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
    }
    crc2 = av_bswap16(crc2);
    AV_WB16(frame + s->frame_size - 2, crc2);
}


/**
 * Write the frame to the output bitstream.
 */
static void output_frame(AC3EncodeContext *s, unsigned char *frame)
{
    int blk;

    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);

    output_frame_header(s);

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
        output_audio_block(s, blk);

    output_frame_end(s);
}


/**
 * Encode a single AC-3 frame.
 */
static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame,
                            int buf_size, void *data)
{
    AC3EncodeContext *s = avctx->priv_data;
    const SampleType *samples = data;
    int ret;

    if (s->bit_alloc.sr_code == 1)
        adjust_frame_size(s);

    deinterleave_input_samples(s, samples);

    apply_mdct(s);

    process_exponents(s);

    ret = compute_bit_allocation(s);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
        return ret;
    }

    quantize_mantissas(s);

    output_frame(s, frame);

    return s->frame_size;
}


/**
 * Finalize encoding and free any memory allocated by the encoder.
 */
static av_cold int ac3_encode_close(AVCodecContext *avctx)
{
    int blk, ch;
    AC3EncodeContext *s = avctx->priv_data;

    for (ch = 0; ch < s->channels; ch++)
        av_freep(&s->planar_samples[ch]);
    av_freep(&s->planar_samples);
    av_freep(&s->bap_buffer);
    av_freep(&s->bap1_buffer);
    av_freep(&s->mdct_coef_buffer);
    av_freep(&s->exp_buffer);
    av_freep(&s->grouped_exp_buffer);
    av_freep(&s->psd_buffer);
    av_freep(&s->band_psd_buffer);
    av_freep(&s->mask_buffer);
    av_freep(&s->qmant_buffer);
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        av_freep(&block->bap);
        av_freep(&block->mdct_coef);
        av_freep(&block->exp);
        av_freep(&block->grouped_exp);
        av_freep(&block->psd);
        av_freep(&block->band_psd);
        av_freep(&block->mask);
        av_freep(&block->qmant);
    }

    mdct_end(&s->mdct);

    av_freep(&avctx->coded_frame);
    return 0;
}


/**
 * Set channel information during initialization.
 */
static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
                                    int64_t *channel_layout)
{
    int ch_layout;

    if (channels < 1 || channels > AC3_MAX_CHANNELS)
        return AVERROR(EINVAL);
    if ((uint64_t)*channel_layout > 0x7FF)
        return AVERROR(EINVAL);
    ch_layout = *channel_layout;
    if (!ch_layout)
        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
    if (av_get_channel_layout_nb_channels(ch_layout) != channels)
        return AVERROR(EINVAL);

    s->lfe_on       = !!(ch_layout & AV_CH_LOW_FREQUENCY);
    s->channels     = channels;
    s->fbw_channels = channels - s->lfe_on;
    s->lfe_channel  = s->lfe_on ? s->fbw_channels : -1;
    if (s->lfe_on)
        ch_layout -= AV_CH_LOW_FREQUENCY;

    switch (ch_layout) {
    case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
    case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
    case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
    case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
    case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
    case AV_CH_LAYOUT_QUAD:
    case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
    case AV_CH_LAYOUT_5POINT0:
    case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
    default:
        return AVERROR(EINVAL);
    }

    s->channel_map  = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
    *channel_layout = ch_layout;
    if (s->lfe_on)
        *channel_layout |= AV_CH_LOW_FREQUENCY;

    return 0;
}


static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
{
    int i, ret;

    /* validate channel layout */
    if (!avctx->channel_layout) {
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
                                      "encoder will guess the layout, but it "
                                      "might be incorrect.\n");
    }
    ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
        return ret;
    }

    /* validate sample rate */
    for (i = 0; i < 9; i++) {
        if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
            break;
    }
    if (i == 9) {
        av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
        return AVERROR(EINVAL);
    }
    s->sample_rate        = avctx->sample_rate;
    s->bit_alloc.sr_shift = i % 3;
    s->bit_alloc.sr_code  = i / 3;

    /* validate bit rate */
    for (i = 0; i < 19; i++) {
        if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
            break;
    }
    if (i == 19) {
        av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
        return AVERROR(EINVAL);
    }
    s->bit_rate        = avctx->bit_rate;
    s->frame_size_code = i << 1;

    /* validate cutoff */
    if (avctx->cutoff < 0) {
        av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
        return AVERROR(EINVAL);
    }
    s->cutoff = avctx->cutoff;
    if (s->cutoff > (s->sample_rate >> 1))
        s->cutoff = s->sample_rate >> 1;

    return 0;
}


/**
 * Set bandwidth for all channels.
 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
 * default value will be used.
 */
static av_cold void set_bandwidth(AC3EncodeContext *s)
{
    int ch, bw_code;

    if (s->cutoff) {
        /* calculate bandwidth based on user-specified cutoff frequency */
        int fbw_coeffs;
        fbw_coeffs     = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
        bw_code        = av_clip((fbw_coeffs - 73) / 3, 0, 60);
    } else {
        /* use default bandwidth setting */
        /* XXX: should compute the bandwidth according to the frame
           size, so that we avoid annoying high frequency artifacts */
        bw_code = 50;
    }

    /* set number of coefficients for each channel */
    for (ch = 0; ch < s->fbw_channels; ch++) {
        s->bandwidth_code[ch] = bw_code;
        s->nb_coefs[ch]       = bw_code * 3 + 73;
    }
    if (s->lfe_on)
        s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
}


static av_cold int allocate_buffers(AVCodecContext *avctx)
{
    int blk, ch;
    AC3EncodeContext *s = avctx->priv_data;

    FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
                     alloc_fail);
    for (ch = 0; ch < s->channels; ch++) {
        FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch],
                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
                          alloc_fail);
    }
    FF_ALLOC_OR_GOTO(avctx, s->bap_buffer,  AC3_MAX_BLOCKS * s->channels *
                     AC3_MAX_COEFS * sizeof(*s->bap_buffer),  alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels *
                     AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels *
                     AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels *
                     AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels *
                     128 * sizeof(*s->grouped_exp_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels *
                     AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels *
                     64 * sizeof(*s->band_psd_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels *
                     64 * sizeof(*s->mask_buffer), alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels *
                     AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap),
                         alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef),
                          alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp),
                          alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp),
                          alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd),
                          alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd),
                          alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask),
                          alloc_fail);
        FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant),
                          alloc_fail);

        for (ch = 0; ch < s->channels; ch++) {
            block->bap[ch]         = &s->bap_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
            block->mdct_coef[ch]   = &s->mdct_coef_buffer  [AC3_MAX_COEFS * (blk * s->channels + ch)];
            block->exp[ch]         = &s->exp_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
            block->grouped_exp[ch] = &s->grouped_exp_buffer[128           * (blk * s->channels + ch)];
            block->psd[ch]         = &s->psd_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
            block->band_psd[ch]    = &s->band_psd_buffer   [64            * (blk * s->channels + ch)];
            block->mask[ch]        = &s->mask_buffer       [64            * (blk * s->channels + ch)];
            block->qmant[ch]       = &s->qmant_buffer      [AC3_MAX_COEFS * (blk * s->channels + ch)];
        }
    }

    return 0;
alloc_fail:
    return AVERROR(ENOMEM);
}


/**
 * Initialize the encoder.
 */
static av_cold int ac3_encode_init(AVCodecContext *avctx)
{
    AC3EncodeContext *s = avctx->priv_data;
    int ret, frame_size_58;

    avctx->frame_size = AC3_FRAME_SIZE;

    ac3_common_init();

    ret = validate_options(avctx, s);
    if (ret)
        return ret;

    s->bitstream_id   = 8 + s->bit_alloc.sr_shift;
    s->bitstream_mode = 0; /* complete main audio service */

    s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
    s->bits_written    = 0;
    s->samples_written = 0;
    s->frame_size      = s->frame_size_min;

    /* calculate crc_inv for both possible frame sizes */
    frame_size_58 = (( s->frame_size    >> 2) + ( s->frame_size    >> 4)) << 1;
    s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
    if (s->bit_alloc.sr_code == 1) {
        frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
        s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
    }

    set_bandwidth(s);

    exponent_init(s);

    bit_alloc_init(s);

    ret = mdct_init(avctx, &s->mdct, 9);
    if (ret)
        goto init_fail;

    ret = allocate_buffers(avctx);
    if (ret)
        goto init_fail;

    avctx->coded_frame= avcodec_alloc_frame();

    dsputil_init(&s->dsp, avctx);

    return 0;
init_fail:
    ac3_encode_close(avctx);
    return ret;
}


#ifdef TEST
/*************************************************************************/
/* TEST */

#include "libavutil/lfg.h"

#define MDCT_NBITS 9
#define MDCT_SAMPLES (1 << MDCT_NBITS)
#define FN (MDCT_SAMPLES/4)


static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
{
    IComplex in[FN], in1[FN];
    int k, n, i;
    float sum_re, sum_im, a;

    for (i = 0; i < FN; i++) {
        in[i].re = av_lfg_get(lfg) % 65535 - 32767;
        in[i].im = av_lfg_get(lfg) % 65535 - 32767;
        in1[i]   = in[i];
    }
    fft(mdct, in, 7);

    /* do it by hand */
    for (k = 0; k < FN; k++) {
        sum_re = 0;
        sum_im = 0;
        for (n = 0; n < FN; n++) {
            a = -2 * M_PI * (n * k) / FN;
            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
        }
        av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
    }
}


static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
{
    int16_t input[MDCT_SAMPLES];
    int32_t output[AC3_MAX_COEFS];
    float input1[MDCT_SAMPLES];
    float output1[AC3_MAX_COEFS];
    float s, a, err, e, emax;
    int i, k, n;

    for (i = 0; i < MDCT_SAMPLES; i++) {
        input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
        input1[i] = input[i];
    }

    mdct512(mdct, output, input);

    /* do it by hand */
    for (k = 0; k < AC3_MAX_COEFS; k++) {
        s = 0;
        for (n = 0; n < MDCT_SAMPLES; n++) {
            a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
            s += input1[n] * cos(a);
        }
        output1[k] = -2 * s / MDCT_SAMPLES;
    }

    err  = 0;
    emax = 0;
    for (i = 0; i < AC3_MAX_COEFS; i++) {
        av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
        e = output[i] - output1[i];
        if (e > emax)
            emax = e;
        err += e * e;
    }
    av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
}


int main(void)
{
    AVLFG lfg;
    AC3MDCTContext mdct;

    mdct.avctx = NULL;
    av_log_set_level(AV_LOG_DEBUG);
    mdct_init(&mdct, 9);

    fft_test(&mdct, &lfg);
    mdct_test(&mdct, &lfg);

    return 0;
}
#endif /* TEST */


AVCodec ac3_encoder = {
    "ac3",
    AVMEDIA_TYPE_AUDIO,
    CODEC_ID_AC3,
    sizeof(AC3EncodeContext),
    ac3_encode_init,
    ac3_encode_frame,
    ac3_encode_close,
    NULL,
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
    .channel_layouts = ac3_channel_layouts,
};