1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
|
/*
* The simplest AC-3 encoder
* Copyright (c) 2000 Fabrice Bellard
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* The simplest AC-3 encoder.
*/
#include <stdint.h>
#include "libavutil/attributes.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/crc.h"
#include "libavutil/emms.h"
#include "libavutil/internal.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "libavutil/thread.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "config_components.h"
#include "encode.h"
#include "me_cmp.h"
#include "put_bits.h"
#include "audiodsp.h"
#include "ac3dsp.h"
#include "ac3.h"
#include "ac3defs.h"
#include "ac3tab.h"
#include "ac3enc.h"
#include "eac3enc.h"
typedef struct AC3Mant {
int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
} AC3Mant;
#define CMIXLEV_NUM_OPTIONS 3
static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
};
#define SURMIXLEV_NUM_OPTIONS 3
static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
};
#define EXTMIXLEV_NUM_OPTIONS 8
static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_1POINT5DB,
LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
};
/* The first two options apply only to the AC-3 encoders;
* the rest is also valid for EAC-3. When modifying it,
* it might be necessary to adapt said offset in eac3enc.c. */
#define OFFSET(param) offsetof(AC3EncodeContext, options.param)
#define AC3ENC_PARAM (AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM)
const AVOption ff_ac3_enc_options[] = {
/* AC-3 downmix levels */
{"center_mixlev", "Center Mix Level", OFFSET(center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = LEVEL_MINUS_4POINT5DB }, 0.0, 1.0, AC3ENC_PARAM},
{"surround_mixlev", "Surround Mix Level", OFFSET(surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = LEVEL_MINUS_6DB }, 0.0, 1.0, AC3ENC_PARAM},
/* audio production information */
{"mixing_level", "Mixing Level", OFFSET(mixing_level), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 111, AC3ENC_PARAM},
{"room_type", "Room Type", OFFSET(room_type), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_SMALL_ROOM, AC3ENC_PARAM, "room_type"},
{"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"},
{"large", "Large Room", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_LARGE_ROOM }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"},
{"small", "Small Room", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_SMALL_ROOM }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"},
/* Metadata Options */
{"per_frame_metadata", "Allow Changing Metadata Per-Frame", OFFSET(allow_per_frame_metadata), AV_OPT_TYPE_BOOL, {.i64 = 0 }, 0, 1, AC3ENC_PARAM},
{"copyright", "Copyright Bit", OFFSET(copyright), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 1, AC3ENC_PARAM},
{"dialnorm", "Dialogue Level (dB)", OFFSET(dialogue_level), AV_OPT_TYPE_INT, {.i64 = -31 }, -31, -1, AC3ENC_PARAM},
{"dsur_mode", "Dolby Surround Mode", OFFSET(dolby_surround_mode), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dsur_mode"},
{"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"},
{"on", "Dolby Surround Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_ON }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"},
{"off", "Not Dolby Surround Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_OFF }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"},
{"original", "Original Bit Stream", OFFSET(original), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 1, AC3ENC_PARAM},
/* extended bitstream information */
{"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_DOWNMIX_DPLII, AC3ENC_PARAM, "dmix_mode"},
{"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
{"ltrt", "Lt/Rt Downmix Preferred", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DOWNMIX_LTRT }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
{"loro", "Lo/Ro Downmix Preferred", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DOWNMIX_LORO }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
{"dplii", "Dolby Pro Logic II Downmix Preferred", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DOWNMIX_DPLII }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
{"ltrt_cmixlev", "Lt/Rt Center Mix Level", OFFSET(ltrt_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
{"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
{"loro_cmixlev", "Lo/Ro Center Mix Level", OFFSET(loro_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
{"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
{"dsurex_mode", "Dolby Surround EX Mode", OFFSET(dolby_surround_ex_mode), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_DSUREX_DPLIIZ, AC3ENC_PARAM, "dsurex_mode"},
{"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
{"on", "Dolby Surround EX Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_ON }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
{"off", "Not Dolby Surround EX Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_OFF }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
{"dpliiz", "Dolby Pro Logic IIz-encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DSUREX_DPLIIZ }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
{"dheadphone_mode", "Dolby Headphone Mode", OFFSET(dolby_headphone_mode), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dheadphone_mode"},
{"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"},
{"on", "Dolby Headphone Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_ON }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"},
{"off", "Not Dolby Headphone Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_OFF }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"},
{"ad_conv_type", "A/D Converter Type", OFFSET(ad_converter_type), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_ADCONV_HDCD, AC3ENC_PARAM, "ad_conv_type"},
{"standard", "Standard (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_ADCONV_STANDARD }, INT_MIN, INT_MAX, AC3ENC_PARAM, "ad_conv_type"},
{"hdcd", "HDCD", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_ADCONV_HDCD }, INT_MIN, INT_MAX, AC3ENC_PARAM, "ad_conv_type"},
/* Other Encoding Options */
{"stereo_rematrixing", "Stereo Rematrixing", OFFSET(stereo_rematrixing), AV_OPT_TYPE_BOOL, {.i64 = 1 }, 0, 1, AC3ENC_PARAM},
{"channel_coupling", "Channel Coupling", OFFSET(channel_coupling), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_AUTO }, AC3ENC_OPT_AUTO, AC3ENC_OPT_ON, AC3ENC_PARAM, "channel_coupling"},
{"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_AUTO }, INT_MIN, INT_MAX, AC3ENC_PARAM, "channel_coupling"},
{"cpl_start_band", "Coupling Start Band", OFFSET(cpl_start), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_AUTO }, AC3ENC_OPT_AUTO, 15, AC3ENC_PARAM, "cpl_start_band"},
{"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_AUTO }, INT_MIN, INT_MAX, AC3ENC_PARAM, "cpl_start_band"},
{NULL}
};
const AVClass ff_ac3enc_class = {
.class_name = "AC-3 Encoder",
.option = ff_ac3_enc_options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodecDefault ff_ac3_enc_defaults[] = {
{ "b", "0" },
{ NULL }
};
/**
* LUT for number of exponent groups.
* exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
*/
static uint8_t exponent_group_tab[2][3][256];
/**
* List of supported channel layouts.
*/
#if FF_API_OLD_CHANNEL_LAYOUT
const uint64_t ff_ac3_channel_layouts[19] = {
AV_CH_LAYOUT_MONO,
AV_CH_LAYOUT_STEREO,
AV_CH_LAYOUT_2_1,
AV_CH_LAYOUT_SURROUND,
AV_CH_LAYOUT_2_2,
AV_CH_LAYOUT_QUAD,
AV_CH_LAYOUT_4POINT0,
AV_CH_LAYOUT_5POINT0,
AV_CH_LAYOUT_5POINT0_BACK,
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
AV_CH_LAYOUT_5POINT1,
AV_CH_LAYOUT_5POINT1_BACK,
0
};
#endif
const AVChannelLayout ff_ac3_ch_layouts[19] = {
AV_CHANNEL_LAYOUT_MONO,
AV_CHANNEL_LAYOUT_STEREO,
AV_CHANNEL_LAYOUT_2_1,
AV_CHANNEL_LAYOUT_SURROUND,
AV_CHANNEL_LAYOUT_2_2,
AV_CHANNEL_LAYOUT_QUAD,
AV_CHANNEL_LAYOUT_4POINT0,
AV_CHANNEL_LAYOUT_5POINT0,
AV_CHANNEL_LAYOUT_5POINT0_BACK,
{
.nb_channels = 2,
.order = AV_CHANNEL_ORDER_NATIVE,
.u.mask = AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY,
},
{
.nb_channels = 3,
.order = AV_CHANNEL_ORDER_NATIVE,
.u.mask = AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY,
},
{
.nb_channels = 4,
.order = AV_CHANNEL_ORDER_NATIVE,
.u.mask = AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY,
},
{
.nb_channels = 4,
.order = AV_CHANNEL_ORDER_NATIVE,
.u.mask = AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY,
},
{
.nb_channels = 5,
.order = AV_CHANNEL_ORDER_NATIVE,
.u.mask = AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY,
},
AV_CHANNEL_LAYOUT_5POINT1,
AV_CHANNEL_LAYOUT_5POINT1_BACK,
{ 0 },
};
/**
* Table to remap channels from SMPTE order to AC-3 order.
* [channel_mode][lfe][ch]
*/
static const uint8_t ac3_enc_channel_map[8][2][6] = {
COMMON_CHANNEL_MAP
{ { 0, 1, 2, 3, }, { 0, 1, 3, 4, 2, } },
{ { 0, 2, 1, 3, 4, }, { 0, 2, 1, 4, 5, 3 } },
};
/**
* LUT to select the bandwidth code based on the bit rate, sample rate, and
* number of full-bandwidth channels.
* bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
*/
static const uint8_t ac3_bandwidth_tab[5][3][19] = {
// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
{ { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
{ 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
{ 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
{ { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
{ 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
{ 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
};
/**
* LUT to select the coupling start band based on the bit rate, sample rate, and
* number of full-bandwidth channels. -1 = coupling off
* ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
*
* TODO: more testing for optimal parameters.
* multi-channel tests at 44.1kHz and 32kHz.
*/
static const int8_t ac3_coupling_start_tab[6][3][19] = {
// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
// 2/0
{ { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
{ 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
{ 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
// 3/0
{ { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
// 2/1 - untested
{ { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
// 3/1
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
// 2/2 - untested
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
// 3/2
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
};
/**
* Adjust the frame size to make the average bit rate match the target bit rate.
* This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
*
* @param s AC-3 encoder private context
*/
void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
{
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
s->bits_written -= s->bit_rate;
s->samples_written -= s->sample_rate;
}
s->frame_size = s->frame_size_min +
2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
s->bits_written += s->frame_size * 8;
s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
}
/**
* Set the initial coupling strategy parameters prior to coupling analysis.
*
* @param s AC-3 encoder private context
*/
void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
{
int blk, ch;
int got_cpl_snr;
int num_cpl_blocks;
/* set coupling use flags for each block/channel */
/* TODO: turn coupling on/off and adjust start band based on bit usage */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
for (ch = 1; ch <= s->fbw_channels; ch++)
block->channel_in_cpl[ch] = s->cpl_on;
}
/* enable coupling for each block if at least 2 channels have coupling
enabled for that block */
got_cpl_snr = 0;
num_cpl_blocks = 0;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
block->num_cpl_channels = 0;
for (ch = 1; ch <= s->fbw_channels; ch++)
block->num_cpl_channels += block->channel_in_cpl[ch];
block->cpl_in_use = block->num_cpl_channels > 1;
num_cpl_blocks += block->cpl_in_use;
if (!block->cpl_in_use) {
block->num_cpl_channels = 0;
for (ch = 1; ch <= s->fbw_channels; ch++)
block->channel_in_cpl[ch] = 0;
}
block->new_cpl_strategy = !blk;
if (blk) {
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
block->new_cpl_strategy = 1;
break;
}
}
}
block->new_cpl_leak = block->new_cpl_strategy;
if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
block->new_snr_offsets = 1;
if (block->cpl_in_use)
got_cpl_snr = 1;
} else {
block->new_snr_offsets = 0;
}
}
if (!num_cpl_blocks)
s->cpl_on = 0;
/* set bandwidth for each channel */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (block->channel_in_cpl[ch])
block->end_freq[ch] = s->start_freq[CPL_CH];
else
block->end_freq[ch] = s->bandwidth_code * 3 + 73;
}
}
}
/**
* Apply stereo rematrixing to coefficients based on rematrixing flags.
*
* @param s AC-3 encoder private context
*/
static void ac3_apply_rematrixing(AC3EncodeContext *s)
{
int nb_coefs;
int blk, bnd, i;
int start, end;
uint8_t *flags = NULL;
if (!s->rematrixing_enabled)
return;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (block->new_rematrixing_strategy)
flags = block->rematrixing_flags;
nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
if (flags[bnd]) {
start = ff_ac3_rematrix_band_tab[bnd];
end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
for (i = start; i < end; i++) {
int32_t lt = block->fixed_coef[1][i];
int32_t rt = block->fixed_coef[2][i];
block->fixed_coef[1][i] = (lt + rt) >> 1;
block->fixed_coef[2][i] = (lt - rt) >> 1;
}
}
}
}
}
/*
* Initialize exponent tables.
*/
static av_cold void exponent_init(void)
{
int expstr, i, grpsize;
for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
grpsize = 3 << expstr;
for (i = 12; i < 256; i++) {
exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
exponent_group_tab[1][expstr][i] = (i ) / grpsize;
}
}
/* LFE */
exponent_group_tab[0][0][7] = 2;
}
/*
* Extract exponents from the MDCT coefficients.
*/
static void extract_exponents(AC3EncodeContext *s)
{
int ch = !s->cpl_on;
int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
AC3Block *block = &s->blocks[0];
s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
}
/**
* Exponent Difference Threshold.
* New exponents are sent if their SAD exceed this number.
*/
#define EXP_DIFF_THRESHOLD 500
/**
* Table used to select exponent strategy based on exponent reuse block interval.
*/
static const uint8_t exp_strategy_reuse_tab[4][6] = {
{ EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
{ EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
{ EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
{ EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
};
/*
* Calculate exponent strategies for all channels.
* Array arrangement is reversed to simplify the per-channel calculation.
*/
static void compute_exp_strategy(AC3EncodeContext *s)
{
int ch, blk, blk1;
for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
uint8_t *exp_strategy = s->exp_strategy[ch];
uint8_t *exp = s->blocks[0].exp[ch];
int exp_diff;
/* estimate if the exponent variation & decide if they should be
reused in the next frame */
exp_strategy[0] = EXP_NEW;
exp += AC3_MAX_COEFS;
for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
if (ch == CPL_CH) {
if (!s->blocks[blk-1].cpl_in_use) {
exp_strategy[blk] = EXP_NEW;
continue;
} else if (!s->blocks[blk].cpl_in_use) {
exp_strategy[blk] = EXP_REUSE;
continue;
}
} else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
exp_strategy[blk] = EXP_NEW;
continue;
}
exp_diff = s->mecc.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
exp_strategy[blk] = EXP_REUSE;
if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
exp_strategy[blk] = EXP_NEW;
else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
exp_strategy[blk] = EXP_NEW;
}
/* now select the encoding strategy type : if exponents are often
recoded, we use a coarse encoding */
blk = 0;
while (blk < s->num_blocks) {
blk1 = blk + 1;
while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
blk1++;
exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
blk = blk1;
}
}
if (s->lfe_on) {
ch = s->lfe_channel;
s->exp_strategy[ch][0] = EXP_D15;
for (blk = 1; blk < s->num_blocks; blk++)
s->exp_strategy[ch][blk] = EXP_REUSE;
}
/* for E-AC-3, determine frame exponent strategy */
if (CONFIG_EAC3_ENCODER && s->eac3)
ff_eac3_get_frame_exp_strategy(s);
}
/**
* Update the exponents so that they are the ones the decoder will decode.
*
* @param[in,out] exp array of exponents for 1 block in 1 channel
* @param nb_exps number of exponents in active bandwidth
* @param exp_strategy exponent strategy for the block
* @param cpl indicates if the block is in the coupling channel
*/
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
int cpl)
{
int nb_groups, i, k;
nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
/* for each group, compute the minimum exponent */
switch(exp_strategy) {
case EXP_D25:
for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
uint8_t exp_min = exp[k];
if (exp[k+1] < exp_min)
exp_min = exp[k+1];
exp[i-cpl] = exp_min;
k += 2;
}
break;
case EXP_D45:
for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
uint8_t exp_min = exp[k];
if (exp[k+1] < exp_min)
exp_min = exp[k+1];
if (exp[k+2] < exp_min)
exp_min = exp[k+2];
if (exp[k+3] < exp_min)
exp_min = exp[k+3];
exp[i-cpl] = exp_min;
k += 4;
}
break;
}
/* constraint for DC exponent */
if (!cpl && exp[0] > 15)
exp[0] = 15;
/* decrease the delta between each groups to within 2 so that they can be
differentially encoded */
for (i = 1; i <= nb_groups; i++)
exp[i] = FFMIN(exp[i], exp[i-1] + 2);
i--;
while (--i >= 0)
exp[i] = FFMIN(exp[i], exp[i+1] + 2);
if (cpl)
exp[-1] = exp[0] & ~1;
/* now we have the exponent values the decoder will see */
switch (exp_strategy) {
case EXP_D25:
for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
uint8_t exp1 = exp[i-cpl];
exp[k--] = exp1;
exp[k--] = exp1;
}
break;
case EXP_D45:
for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
k -= 4;
}
break;
}
}
/*
* Encode exponents from original extracted form to what the decoder will see.
* This copies and groups exponents based on exponent strategy and reduces
* deltas between adjacent exponent groups so that they can be differentially
* encoded.
*/
static void encode_exponents(AC3EncodeContext *s)
{
int blk, blk1, ch, cpl;
uint8_t *exp, *exp_strategy;
int nb_coefs, num_reuse_blocks;
for (ch = !s->cpl_on; ch <= s->channels; ch++) {
exp = s->blocks[0].exp[ch] + s->start_freq[ch];
exp_strategy = s->exp_strategy[ch];
cpl = (ch == CPL_CH);
blk = 0;
while (blk < s->num_blocks) {
AC3Block *block = &s->blocks[blk];
if (cpl && !block->cpl_in_use) {
exp += AC3_MAX_COEFS;
blk++;
continue;
}
nb_coefs = block->end_freq[ch] - s->start_freq[ch];
blk1 = blk + 1;
/* count the number of EXP_REUSE blocks after the current block
and set exponent reference block numbers */
s->exp_ref_block[ch][blk] = blk;
while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
s->exp_ref_block[ch][blk1] = blk;
blk1++;
}
num_reuse_blocks = blk1 - blk - 1;
/* for the EXP_REUSE case we select the min of the exponents */
s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
AC3_MAX_COEFS);
encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
blk = blk1;
}
}
/* reference block numbers have been changed, so reset ref_bap_set */
s->ref_bap_set = 0;
}
/*
* Count exponent bits based on bandwidth, coupling, and exponent strategies.
*/
static int count_exponent_bits(AC3EncodeContext *s)
{
int blk, ch;
int nb_groups, bit_count;
bit_count = 0;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
int exp_strategy = s->exp_strategy[ch][blk];
int cpl = (ch == CPL_CH);
int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
if (exp_strategy == EXP_REUSE)
continue;
nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
bit_count += 4 + (nb_groups * 7);
}
}
return bit_count;
}
/**
* Group exponents.
* 3 delta-encoded exponents are in each 7-bit group. The number of groups
* varies depending on exponent strategy and bandwidth.
*
* @param s AC-3 encoder private context
*/
static void ac3_group_exponents(AC3EncodeContext *s)
{
int blk, ch, i, cpl;
int group_size, nb_groups;
uint8_t *p;
int delta0, delta1, delta2;
int exp0, exp1;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
int exp_strategy = s->exp_strategy[ch][blk];
if (exp_strategy == EXP_REUSE)
continue;
cpl = (ch == CPL_CH);
group_size = exp_strategy + (exp_strategy == EXP_D45);
nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
p = block->exp[ch] + s->start_freq[ch] - cpl;
/* DC exponent */
exp1 = *p++;
block->grouped_exp[ch][0] = exp1;
/* remaining exponents are delta encoded */
for (i = 1; i <= nb_groups; i++) {
/* merge three delta in one code */
exp0 = exp1;
exp1 = p[0];
p += group_size;
delta0 = exp1 - exp0 + 2;
av_assert2(delta0 >= 0 && delta0 <= 4);
exp0 = exp1;
exp1 = p[0];
p += group_size;
delta1 = exp1 - exp0 + 2;
av_assert2(delta1 >= 0 && delta1 <= 4);
exp0 = exp1;
exp1 = p[0];
p += group_size;
delta2 = exp1 - exp0 + 2;
av_assert2(delta2 >= 0 && delta2 <= 4);
block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
}
}
}
}
/**
* Calculate final exponents from the supplied MDCT coefficients and exponent shift.
* Extract exponents from MDCT coefficients, calculate exponent strategies,
* and encode final exponents.
*
* @param s AC-3 encoder private context
*/
static void ac3_process_exponents(AC3EncodeContext *s)
{
extract_exponents(s);
compute_exp_strategy(s);
encode_exponents(s);
emms_c();
}
/*
* Count frame bits that are based solely on fixed parameters.
* This only has to be run once when the encoder is initialized.
*/
static void count_frame_bits_fixed(AC3EncodeContext *s)
{
static const uint8_t frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
int blk;
int frame_bits;
/* assumptions:
* no dynamic range codes
* bit allocation parameters do not change between blocks
* no delta bit allocation
* no skipped data
* no auxiliary data
* no E-AC-3 metadata
*/
/* header */
frame_bits = 16; /* sync info */
if (s->eac3) {
/* bitstream info header */
frame_bits += 35;
frame_bits += 1 + 1;
if (s->num_blocks != 0x6)
frame_bits++;
frame_bits++;
/* audio frame header */
if (s->num_blocks == 6)
frame_bits += 2;
frame_bits += 10;
/* exponent strategy */
if (s->use_frame_exp_strategy)
frame_bits += 5 * s->fbw_channels;
else
frame_bits += s->num_blocks * 2 * s->fbw_channels;
if (s->lfe_on)
frame_bits += s->num_blocks;
/* converter exponent strategy */
if (s->num_blks_code != 0x3)
frame_bits++;
else
frame_bits += s->fbw_channels * 5;
/* snr offsets */
frame_bits += 10;
/* block start info */
if (s->num_blocks != 1)
frame_bits++;
} else {
frame_bits += 49;
frame_bits += frame_bits_inc[s->channel_mode];
}
/* audio blocks */
for (blk = 0; blk < s->num_blocks; blk++) {
if (!s->eac3) {
/* block switch flags */
frame_bits += s->fbw_channels;
/* dither flags */
frame_bits += s->fbw_channels;
}
/* dynamic range */
frame_bits++;
/* spectral extension */
if (s->eac3)
frame_bits++;
/* coupling strategy exists: cplstre */
if (!s->eac3)
frame_bits++;
if (!s->eac3) {
/* exponent strategy */
frame_bits += 2 * s->fbw_channels;
if (s->lfe_on)
frame_bits++;
/* bit allocation params */
frame_bits++;
if (!blk)
frame_bits += 2 + 2 + 2 + 2 + 3;
}
/* snroffste for AC-3, convsnroffste for E-AC-3 */
frame_bits++;
if (!s->eac3) {
/* delta bit allocation */
frame_bits++;
/* skipped data */
frame_bits++;
}
}
/* auxiliary data */
frame_bits++;
/* CRC */
frame_bits += 1 + 16;
s->frame_bits_fixed = frame_bits;
}
/*
* Initialize bit allocation.
* Set default parameter codes and calculate parameter values.
*/
static av_cold void bit_alloc_init(AC3EncodeContext *s)
{
int ch;
/* init default parameters */
s->slow_decay_code = 2;
s->fast_decay_code = 1;
s->slow_gain_code = 1;
s->db_per_bit_code = s->eac3 ? 2 : 3;
s->floor_code = 7;
for (ch = 0; ch <= s->channels; ch++)
s->fast_gain_code[ch] = 4;
/* initial snr offset */
s->coarse_snr_offset = 40;
/* compute real values */
/* currently none of these values change during encoding, so we can just
set them once at initialization */
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
s->bit_alloc.cpl_fast_leak = 0;
s->bit_alloc.cpl_slow_leak = 0;
count_frame_bits_fixed(s);
}
/*
* Count the bits used to encode the frame, minus exponents and mantissas.
* Bits based on fixed parameters have already been counted, so now we just
* have to add the bits based on parameters that change during encoding.
*/
static void count_frame_bits(AC3EncodeContext *s)
{
AC3EncOptions *opt = &s->options;
int blk, ch;
int frame_bits = 0;
/* header */
if (s->eac3) {
if (opt->eac3_mixing_metadata) {
if (s->channel_mode > AC3_CHMODE_STEREO)
frame_bits += 2;
if (s->has_center)
frame_bits += 6;
if (s->has_surround)
frame_bits += 6;
frame_bits += s->lfe_on;
frame_bits += 1 + 1 + 2;
if (s->channel_mode < AC3_CHMODE_STEREO)
frame_bits++;
frame_bits++;
}
if (opt->eac3_info_metadata) {
frame_bits += 3 + 1 + 1;
if (s->channel_mode == AC3_CHMODE_STEREO)
frame_bits += 2 + 2;
if (s->channel_mode >= AC3_CHMODE_2F2R)
frame_bits += 2;
frame_bits++;
if (opt->audio_production_info)
frame_bits += 5 + 2 + 1;
frame_bits++;
}
/* coupling */
if (s->channel_mode > AC3_CHMODE_MONO) {
frame_bits++;
for (blk = 1; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
frame_bits++;
if (block->new_cpl_strategy)
frame_bits++;
}
}
/* coupling exponent strategy */
if (s->cpl_on) {
if (s->use_frame_exp_strategy) {
frame_bits += 5;
} else {
for (blk = 0; blk < s->num_blocks; blk++)
frame_bits += 2 * s->blocks[blk].cpl_in_use;
}
}
} else {
if (opt->audio_production_info)
frame_bits += 7;
if (s->bitstream_id == 6) {
if (opt->extended_bsi_1)
frame_bits += 14;
if (opt->extended_bsi_2)
frame_bits += 14;
}
}
/* audio blocks */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
/* coupling strategy */
if (block->new_cpl_strategy) {
if (!s->eac3)
frame_bits++;
if (block->cpl_in_use) {
if (s->eac3)
frame_bits++;
if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
frame_bits += s->fbw_channels;
if (s->channel_mode == AC3_CHMODE_STEREO)
frame_bits++;
frame_bits += 4 + 4;
if (s->eac3)
frame_bits++;
else
frame_bits += s->num_cpl_subbands - 1;
}
}
/* coupling coordinates */
if (block->cpl_in_use) {
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (block->channel_in_cpl[ch]) {
if (!s->eac3 || block->new_cpl_coords[ch] != 2)
frame_bits++;
if (block->new_cpl_coords[ch]) {
frame_bits += 2;
frame_bits += (4 + 4) * s->num_cpl_bands;
}
}
}
}
/* stereo rematrixing */
if (s->channel_mode == AC3_CHMODE_STEREO) {
if (!s->eac3 || blk > 0)
frame_bits++;
if (s->blocks[blk].new_rematrixing_strategy)
frame_bits += block->num_rematrixing_bands;
}
/* bandwidth codes & gain range */
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (s->exp_strategy[ch][blk] != EXP_REUSE) {
if (!block->channel_in_cpl[ch])
frame_bits += 6;
frame_bits += 2;
}
}
/* coupling exponent strategy */
if (!s->eac3 && block->cpl_in_use)
frame_bits += 2;
/* snr offsets and fast gain codes */
if (!s->eac3) {
if (block->new_snr_offsets)
frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
}
/* coupling leak info */
if (block->cpl_in_use) {
if (!s->eac3 || block->new_cpl_leak != 2)
frame_bits++;
if (block->new_cpl_leak)
frame_bits += 3 + 3;
}
}
s->frame_bits = s->frame_bits_fixed + frame_bits;
}
/*
* Calculate masking curve based on the final exponents.
* Also calculate the power spectral densities to use in future calculations.
*/
static void bit_alloc_masking(AC3EncodeContext *s)
{
int blk, ch;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
/* We only need psd and mask for calculating bap.
Since we currently do not calculate bap when exponent
strategy is EXP_REUSE we do not need to calculate psd or mask. */
if (s->exp_strategy[ch][blk] != EXP_REUSE) {
ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
block->end_freq[ch], block->psd[ch],
block->band_psd[ch]);
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
s->start_freq[ch], block->end_freq[ch],
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
ch == s->lfe_channel,
DBA_NONE, 0, NULL, NULL, NULL,
block->mask[ch]);
}
}
}
}
/*
* Ensure that bap for each block and channel point to the current bap_buffer.
* They may have been switched during the bit allocation search.
*/
static void reset_block_bap(AC3EncodeContext *s)
{
int blk, ch;
uint8_t *ref_bap;
if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
return;
ref_bap = s->bap_buffer;
for (ch = 0; ch <= s->channels; ch++) {
for (blk = 0; blk < s->num_blocks; blk++)
s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
ref_bap += AC3_MAX_COEFS * s->num_blocks;
}
s->ref_bap_set = 1;
}
/**
* Initialize mantissa counts.
* These are set so that they are padded to the next whole group size when bits
* are counted in compute_mantissa_size.
*
* @param[in,out] mant_cnt running counts for each bap value for each block
*/
static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
{
int blk;
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
mant_cnt[blk][4] = 1;
}
}
/**
* Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
* range.
*
* @param s AC-3 encoder private context
* @param ch channel index
* @param[in,out] mant_cnt running counts for each bap value for each block
* @param start starting coefficient bin
* @param end ending coefficient bin
*/
static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
int start, int end)
{
int blk;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (ch == CPL_CH && !block->cpl_in_use)
continue;
s->ac3dsp.update_bap_counts(mant_cnt[blk],
s->ref_bap[ch][blk] + start,
FFMIN(end, block->end_freq[ch]) - start);
}
}
/*
* Count the number of mantissa bits in the frame based on the bap values.
*/
static int count_mantissa_bits(AC3EncodeContext *s)
{
int ch, max_end_freq;
LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
count_mantissa_bits_init(mant_cnt);
max_end_freq = s->bandwidth_code * 3 + 73;
for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
max_end_freq);
return s->ac3dsp.compute_mantissa_size(mant_cnt);
}
/**
* Run the bit allocation with a given SNR offset.
* This calculates the bit allocation pointers that will be used to determine
* the quantization of each mantissa.
*
* @param s AC-3 encoder private context
* @param snr_offset SNR offset, 0 to 1023
* @return the number of bits needed for mantissas if the given SNR offset is
* is used.
*/
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
{
int blk, ch;
snr_offset = (snr_offset - 240) * 4;
reset_block_bap(s);
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
/* Currently the only bit allocation parameters which vary across
blocks within a frame are the exponent values. We can take
advantage of that by reusing the bit allocation pointers
whenever we reuse exponents. */
if (s->exp_strategy[ch][blk] != EXP_REUSE) {
s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
s->start_freq[ch], block->end_freq[ch],
snr_offset, s->bit_alloc.floor,
ff_ac3_bap_tab, s->ref_bap[ch][blk]);
}
}
}
return count_mantissa_bits(s);
}
/*
* Constant bitrate bit allocation search.
* Find the largest SNR offset that will allow data to fit in the frame.
*/
static int cbr_bit_allocation(AC3EncodeContext *s)
{
int ch;
int bits_left;
int snr_offset, snr_incr;
bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
if (bits_left < 0)
return AVERROR(EINVAL);
snr_offset = s->coarse_snr_offset << 4;
/* if previous frame SNR offset was 1023, check if current frame can also
use SNR offset of 1023. if so, skip the search. */
if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
if (bit_alloc(s, 1023) <= bits_left)
return 0;
}
while (snr_offset >= 0 &&
bit_alloc(s, snr_offset) > bits_left) {
snr_offset -= 64;
}
if (snr_offset < 0)
return AVERROR(EINVAL);
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
while (snr_offset + snr_incr <= 1023 &&
bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
snr_offset += snr_incr;
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
}
}
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
reset_block_bap(s);
s->coarse_snr_offset = snr_offset >> 4;
for (ch = !s->cpl_on; ch <= s->channels; ch++)
s->fine_snr_offset[ch] = snr_offset & 0xF;
return 0;
}
/*
* Perform bit allocation search.
* Finds the SNR offset value that maximizes quality and fits in the specified
* frame size. Output is the SNR offset and a set of bit allocation pointers
* used to quantize the mantissas.
*/
static int ac3_compute_bit_allocation(AC3EncodeContext *s)
{
count_frame_bits(s);
s->exponent_bits = count_exponent_bits(s);
bit_alloc_masking(s);
return cbr_bit_allocation(s);
}
/**
* Symmetric quantization on 'levels' levels.
*
* @param c unquantized coefficient
* @param e exponent
* @param levels number of quantization levels
* @return quantized coefficient
*/
static inline int sym_quant(int c, int e, int levels)
{
int v = (((levels * c) >> (24 - e)) + levels) >> 1;
av_assert2(v >= 0 && v < levels);
return v;
}
/**
* Asymmetric quantization on 2^qbits levels.
*
* @param c unquantized coefficient
* @param e exponent
* @param qbits number of quantization bits
* @return quantized coefficient
*/
static inline int asym_quant(int c, int e, int qbits)
{
int m;
c = (((c * (1<<e)) >> (24 - qbits)) + 1) >> 1;
m = (1 << (qbits-1));
if (c >= m)
c = m - 1;
av_assert2(c >= -m);
return c;
}
/**
* Quantize a set of mantissas for a single channel in a single block.
*
* @param s Mantissa count context
* @param fixed_coef unquantized fixed-point coefficients
* @param exp exponents
* @param bap bit allocation pointer indices
* @param[out] qmant quantized coefficients
* @param start_freq starting coefficient bin
* @param end_freq ending coefficient bin
*/
static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
uint8_t *exp, uint8_t *bap,
int16_t *qmant, int start_freq,
int end_freq)
{
int i;
for (i = start_freq; i < end_freq; i++) {
int c = fixed_coef[i];
int e = exp[i];
int v = bap[i];
switch (v) {
case 0:
break;
case 1:
v = sym_quant(c, e, 3);
switch (s->mant1_cnt) {
case 0:
s->qmant1_ptr = &qmant[i];
v = 9 * v;
s->mant1_cnt = 1;
break;
case 1:
*s->qmant1_ptr += 3 * v;
s->mant1_cnt = 2;
v = 128;
break;
default:
*s->qmant1_ptr += v;
s->mant1_cnt = 0;
v = 128;
break;
}
break;
case 2:
v = sym_quant(c, e, 5);
switch (s->mant2_cnt) {
case 0:
s->qmant2_ptr = &qmant[i];
v = 25 * v;
s->mant2_cnt = 1;
break;
case 1:
*s->qmant2_ptr += 5 * v;
s->mant2_cnt = 2;
v = 128;
break;
default:
*s->qmant2_ptr += v;
s->mant2_cnt = 0;
v = 128;
break;
}
break;
case 3:
v = sym_quant(c, e, 7);
break;
case 4:
v = sym_quant(c, e, 11);
switch (s->mant4_cnt) {
case 0:
s->qmant4_ptr = &qmant[i];
v = 11 * v;
s->mant4_cnt = 1;
break;
default:
*s->qmant4_ptr += v;
s->mant4_cnt = 0;
v = 128;
break;
}
break;
case 5:
v = sym_quant(c, e, 15);
break;
case 14:
v = asym_quant(c, e, 14);
break;
case 15:
v = asym_quant(c, e, 16);
break;
default:
v = asym_quant(c, e, v - 1);
break;
}
qmant[i] = v;
}
}
/**
* Quantize mantissas using coefficients, exponents, and bit allocation pointers.
*
* @param s AC-3 encoder private context
*/
static void ac3_quantize_mantissas(AC3EncodeContext *s)
{
int blk, ch, ch0=0, got_cpl;
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
AC3Mant m = { 0 };
got_cpl = !block->cpl_in_use;
for (ch = 1; ch <= s->channels; ch++) {
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
ch0 = ch - 1;
ch = CPL_CH;
got_cpl = 1;
}
quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
s->ref_bap[ch][blk], block->qmant[ch],
s->start_freq[ch], block->end_freq[ch]);
if (ch == CPL_CH)
ch = ch0;
}
}
}
/*
* Write the AC-3 frame header to the output bitstream.
*/
static void ac3_output_frame_header(AC3EncodeContext *s)
{
AC3EncOptions *opt = &s->options;
put_bits(&s->pb, 16, 0x0b77); /* frame header */
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
put_bits(&s->pb, 2, s->bit_alloc.sr_code);
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
put_bits(&s->pb, 5, s->bitstream_id);
put_bits(&s->pb, 3, s->bitstream_mode);
put_bits(&s->pb, 3, s->channel_mode);
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
put_bits(&s->pb, 2, s->center_mix_level);
if (s->channel_mode & 0x04)
put_bits(&s->pb, 2, s->surround_mix_level);
if (s->channel_mode == AC3_CHMODE_STEREO)
put_bits(&s->pb, 2, opt->dolby_surround_mode);
put_bits(&s->pb, 1, s->lfe_on); /* LFE */
put_bits(&s->pb, 5, -opt->dialogue_level);
put_bits(&s->pb, 1, 0); /* no compression control word */
put_bits(&s->pb, 1, 0); /* no lang code */
put_bits(&s->pb, 1, opt->audio_production_info);
if (opt->audio_production_info) {
put_bits(&s->pb, 5, opt->mixing_level - 80);
put_bits(&s->pb, 2, opt->room_type);
}
put_bits(&s->pb, 1, opt->copyright);
put_bits(&s->pb, 1, opt->original);
if (s->bitstream_id == 6) {
/* alternate bit stream syntax */
put_bits(&s->pb, 1, opt->extended_bsi_1);
if (opt->extended_bsi_1) {
put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
put_bits(&s->pb, 3, s->ltrt_center_mix_level);
put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
put_bits(&s->pb, 3, s->loro_center_mix_level);
put_bits(&s->pb, 3, s->loro_surround_mix_level);
}
put_bits(&s->pb, 1, opt->extended_bsi_2);
if (opt->extended_bsi_2) {
put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
put_bits(&s->pb, 2, opt->dolby_headphone_mode);
put_bits(&s->pb, 1, opt->ad_converter_type);
put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
}
} else {
put_bits(&s->pb, 1, 0); /* no time code 1 */
put_bits(&s->pb, 1, 0); /* no time code 2 */
}
put_bits(&s->pb, 1, 0); /* no additional bit stream info */
}
/*
* Write one audio block to the output bitstream.
*/
static void output_audio_block(AC3EncodeContext *s, int blk)
{
int ch, i, baie, bnd, got_cpl, av_uninit(ch0);
AC3Block *block = &s->blocks[blk];
/* block switching */
if (!s->eac3) {
for (ch = 0; ch < s->fbw_channels; ch++)
put_bits(&s->pb, 1, 0);
}
/* dither flags */
if (!s->eac3) {
for (ch = 0; ch < s->fbw_channels; ch++)
put_bits(&s->pb, 1, 1);
}
/* dynamic range codes */
put_bits(&s->pb, 1, 0);
/* spectral extension */
if (s->eac3)
put_bits(&s->pb, 1, 0);
/* channel coupling */
if (!s->eac3)
put_bits(&s->pb, 1, block->new_cpl_strategy);
if (block->new_cpl_strategy) {
if (!s->eac3)
put_bits(&s->pb, 1, block->cpl_in_use);
if (block->cpl_in_use) {
int start_sub, end_sub;
if (s->eac3)
put_bits(&s->pb, 1, 0); /* enhanced coupling */
if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
for (ch = 1; ch <= s->fbw_channels; ch++)
put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
}
if (s->channel_mode == AC3_CHMODE_STEREO)
put_bits(&s->pb, 1, 0); /* phase flags in use */
start_sub = (s->start_freq[CPL_CH] - 37) / 12;
end_sub = (s->cpl_end_freq - 37) / 12;
put_bits(&s->pb, 4, start_sub);
put_bits(&s->pb, 4, end_sub - 3);
/* coupling band structure */
if (s->eac3) {
put_bits(&s->pb, 1, 0); /* use default */
} else {
for (bnd = start_sub+1; bnd < end_sub; bnd++)
put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
}
}
}
/* coupling coordinates */
if (block->cpl_in_use) {
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (block->channel_in_cpl[ch]) {
if (!s->eac3 || block->new_cpl_coords[ch] != 2)
put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
if (block->new_cpl_coords[ch]) {
put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
}
}
}
}
}
/* stereo rematrixing */
if (s->channel_mode == AC3_CHMODE_STEREO) {
if (!s->eac3 || blk > 0)
put_bits(&s->pb, 1, block->new_rematrixing_strategy);
if (block->new_rematrixing_strategy) {
/* rematrixing flags */
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
}
}
/* exponent strategy */
if (!s->eac3) {
for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
if (s->lfe_on)
put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
}
/* bandwidth */
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
put_bits(&s->pb, 6, s->bandwidth_code);
}
/* exponents */
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
int nb_groups;
int cpl = (ch == CPL_CH);
if (s->exp_strategy[ch][blk] == EXP_REUSE)
continue;
/* DC exponent */
put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
/* exponent groups */
nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
for (i = 1; i <= nb_groups; i++)
put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
/* gain range info */
if (ch != s->lfe_channel && !cpl)
put_bits(&s->pb, 2, 0);
}
/* bit allocation info */
if (!s->eac3) {
baie = (blk == 0);
put_bits(&s->pb, 1, baie);
if (baie) {
put_bits(&s->pb, 2, s->slow_decay_code);
put_bits(&s->pb, 2, s->fast_decay_code);
put_bits(&s->pb, 2, s->slow_gain_code);
put_bits(&s->pb, 2, s->db_per_bit_code);
put_bits(&s->pb, 3, s->floor_code);
}
}
/* snr offset */
if (!s->eac3) {
put_bits(&s->pb, 1, block->new_snr_offsets);
if (block->new_snr_offsets) {
put_bits(&s->pb, 6, s->coarse_snr_offset);
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
put_bits(&s->pb, 3, s->fast_gain_code[ch]);
}
}
} else {
put_bits(&s->pb, 1, 0); /* no converter snr offset */
}
/* coupling leak */
if (block->cpl_in_use) {
if (!s->eac3 || block->new_cpl_leak != 2)
put_bits(&s->pb, 1, block->new_cpl_leak);
if (block->new_cpl_leak) {
put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
}
}
if (!s->eac3) {
put_bits(&s->pb, 1, 0); /* no delta bit allocation */
put_bits(&s->pb, 1, 0); /* no data to skip */
}
/* mantissas */
got_cpl = !block->cpl_in_use;
for (ch = 1; ch <= s->channels; ch++) {
int b, q;
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
ch0 = ch - 1;
ch = CPL_CH;
got_cpl = 1;
}
for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
q = block->qmant[ch][i];
b = s->ref_bap[ch][blk][i];
switch (b) {
case 0: break;
case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
case 3: put_sbits(&s->pb, 3, q); break;
case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
case 14: put_sbits(&s->pb, 14, q); break;
case 15: put_sbits(&s->pb, 16, q); break;
default: put_sbits(&s->pb, b-1, q); break;
}
}
if (ch == CPL_CH)
ch = ch0;
}
}
/** CRC-16 Polynomial */
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
{
unsigned int c;
c = 0;
while (a) {
if (a & 1)
c ^= b;
a = a >> 1;
b = b << 1;
if (b & (1 << 16))
b ^= poly;
}
return c;
}
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
{
unsigned int r;
r = 1;
while (n) {
if (n & 1)
r = mul_poly(r, a, poly);
a = mul_poly(a, a, poly);
n >>= 1;
}
return r;
}
/*
* Fill the end of the frame with 0's and compute the two CRCs.
*/
static void output_frame_end(AC3EncodeContext *s)
{
const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
uint8_t *frame;
frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
/* pad the remainder of the frame with zeros */
av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
flush_put_bits(&s->pb);
frame = s->pb.buf;
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
av_assert2(pad_bytes >= 0);
if (pad_bytes > 0)
memset(put_bits_ptr(&s->pb), 0, pad_bytes);
if (s->eac3) {
/* compute crc2 */
crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
} else {
/* compute crc1 */
/* this is not so easy because it is at the beginning of the data... */
crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
AV_WB16(frame + 2, crc1);
/* compute crc2 */
crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
s->frame_size - frame_size_58 - 3);
}
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
/* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
if (crc2 == 0x770B) {
frame[s->frame_size - 3] ^= 0x1;
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
}
crc2 = av_bswap16(crc2);
AV_WB16(frame + s->frame_size - 2, crc2);
}
/**
* Write the frame to the output bitstream.
*
* @param s AC-3 encoder private context
* @param frame output data buffer
*/
static void ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
{
int blk;
init_put_bits(&s->pb, frame, s->frame_size);
s->output_frame_header(s);
for (blk = 0; blk < s->num_blocks; blk++)
output_audio_block(s, blk);
output_frame_end(s);
}
int ff_ac3_encode_frame_common_end(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
AC3EncodeContext *const s = avctx->priv_data;
int ret;
ac3_apply_rematrixing(s);
ac3_process_exponents(s);
ret = ac3_compute_bit_allocation(s);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
return ret;
}
ac3_group_exponents(s);
ac3_quantize_mantissas(s);
ret = ff_get_encode_buffer(avctx, avpkt, s->frame_size, 0);
if (ret < 0)
return ret;
ac3_output_frame(s, avpkt->data);
if (frame->pts != AV_NOPTS_VALUE)
avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
*got_packet_ptr = 1;
return 0;
}
static void dprint_options(AC3EncodeContext *s)
{
#ifdef DEBUG
AVCodecContext *avctx = s->avctx;
AC3EncOptions *opt = &s->options;
char strbuf[32];
switch (s->bitstream_id) {
case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
default: snprintf(strbuf, 32, "ERROR");
}
ff_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
ff_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
av_channel_layout_describe(&avctx->ch_layout, strbuf, sizeof(strbuf));
ff_dlog(avctx, "channel_layout: %s\n", strbuf);
ff_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
ff_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
ff_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
if (s->cutoff)
ff_dlog(avctx, "cutoff: %d\n", s->cutoff);
ff_dlog(avctx, "per_frame_metadata: %s\n",
opt->allow_per_frame_metadata?"on":"off");
if (s->has_center)
ff_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
s->center_mix_level);
else
ff_dlog(avctx, "center_mixlev: {not written}\n");
if (s->has_surround)
ff_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
s->surround_mix_level);
else
ff_dlog(avctx, "surround_mixlev: {not written}\n");
if (opt->audio_production_info) {
ff_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
switch (opt->room_type) {
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
}
ff_dlog(avctx, "room_type: %s\n", strbuf);
} else {
ff_dlog(avctx, "mixing_level: {not written}\n");
ff_dlog(avctx, "room_type: {not written}\n");
}
ff_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
ff_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
if (s->channel_mode == AC3_CHMODE_STEREO) {
switch (opt->dolby_surround_mode) {
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
}
ff_dlog(avctx, "dsur_mode: %s\n", strbuf);
} else {
ff_dlog(avctx, "dsur_mode: {not written}\n");
}
ff_dlog(avctx, "original: %s\n", opt->original?"on":"off");
if (s->bitstream_id == 6) {
if (opt->extended_bsi_1) {
switch (opt->preferred_stereo_downmix) {
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
}
ff_dlog(avctx, "dmix_mode: %s\n", strbuf);
ff_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
ff_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
ff_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
opt->loro_center_mix_level, s->loro_center_mix_level);
ff_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
opt->loro_surround_mix_level, s->loro_surround_mix_level);
} else {
ff_dlog(avctx, "extended bitstream info 1: {not written}\n");
}
if (opt->extended_bsi_2) {
switch (opt->dolby_surround_ex_mode) {
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
}
ff_dlog(avctx, "dsurex_mode: %s\n", strbuf);
switch (opt->dolby_headphone_mode) {
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
}
ff_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
switch (opt->ad_converter_type) {
case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
}
ff_dlog(avctx, "ad_conv_type: %s\n", strbuf);
} else {
ff_dlog(avctx, "extended bitstream info 2: {not written}\n");
}
}
#endif
}
#define FLT_OPTION_THRESHOLD 0.01
static int validate_float_option(float v, const float *v_list, int v_list_size)
{
int i;
for (i = 0; i < v_list_size; i++) {
if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
v > (v_list[i] - FLT_OPTION_THRESHOLD))
break;
}
if (i == v_list_size)
return AVERROR(EINVAL);
return i;
}
static void validate_mix_level(void *log_ctx, const char *opt_name,
float *opt_param, const float *list,
int list_size, int default_value, int min_value,
int *ctx_param)
{
int mixlev = validate_float_option(*opt_param, list, list_size);
if (mixlev < min_value) {
mixlev = default_value;
if (*opt_param >= 0.0) {
av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
"default value: %0.3f\n", opt_name, list[mixlev]);
}
}
*opt_param = list[mixlev];
*ctx_param = mixlev;
}
/**
* Validate metadata options as set by AVOption system.
* These values can optionally be changed per-frame.
*
* @param s AC-3 encoder private context
*/
int ff_ac3_validate_metadata(AC3EncodeContext *s)
{
AVCodecContext *avctx = s->avctx;
AC3EncOptions *opt = &s->options;
opt->audio_production_info = 0;
opt->extended_bsi_1 = 0;
opt->extended_bsi_2 = 0;
opt->eac3_mixing_metadata = 0;
opt->eac3_info_metadata = 0;
/* determine mixing metadata / xbsi1 use */
if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
opt->extended_bsi_1 = 1;
opt->eac3_mixing_metadata = 1;
}
if (s->has_center &&
(opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
opt->extended_bsi_1 = 1;
opt->eac3_mixing_metadata = 1;
}
if (s->has_surround &&
(opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
opt->extended_bsi_1 = 1;
opt->eac3_mixing_metadata = 1;
}
if (s->eac3) {
/* determine info metadata use */
if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
opt->eac3_info_metadata = 1;
if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
opt->eac3_info_metadata = 1;
if (s->channel_mode == AC3_CHMODE_STEREO &&
(opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
opt->eac3_info_metadata = 1;
if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
opt->eac3_info_metadata = 1;
if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
opt->ad_converter_type != AC3ENC_OPT_NONE) {
opt->audio_production_info = 1;
opt->eac3_info_metadata = 1;
}
} else {
/* determine audio production info use */
if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
opt->audio_production_info = 1;
/* determine xbsi2 use */
if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
opt->extended_bsi_2 = 1;
if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
opt->extended_bsi_2 = 1;
if (opt->ad_converter_type != AC3ENC_OPT_NONE)
opt->extended_bsi_2 = 1;
}
/* validate AC-3 mixing levels */
if (!s->eac3) {
if (s->has_center) {
validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
&s->center_mix_level);
}
if (s->has_surround) {
validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
&s->surround_mix_level);
}
}
/* validate extended bsi 1 / mixing metadata */
if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
/* default preferred stereo downmix */
if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
if (!s->eac3 || s->has_center) {
/* validate Lt/Rt center mix level */
validate_mix_level(avctx, "ltrt_center_mix_level",
&opt->ltrt_center_mix_level, extmixlev_options,
EXTMIXLEV_NUM_OPTIONS, 5, 0,
&s->ltrt_center_mix_level);
/* validate Lo/Ro center mix level */
validate_mix_level(avctx, "loro_center_mix_level",
&opt->loro_center_mix_level, extmixlev_options,
EXTMIXLEV_NUM_OPTIONS, 5, 0,
&s->loro_center_mix_level);
}
if (!s->eac3 || s->has_surround) {
/* validate Lt/Rt surround mix level */
validate_mix_level(avctx, "ltrt_surround_mix_level",
&opt->ltrt_surround_mix_level, extmixlev_options,
EXTMIXLEV_NUM_OPTIONS, 6, 3,
&s->ltrt_surround_mix_level);
/* validate Lo/Ro surround mix level */
validate_mix_level(avctx, "loro_surround_mix_level",
&opt->loro_surround_mix_level, extmixlev_options,
EXTMIXLEV_NUM_OPTIONS, 6, 3,
&s->loro_surround_mix_level);
}
}
/* validate audio service type / channels combination */
if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
avctx->ch_layout.nb_channels == 1) ||
((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY ||
avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
&& avctx->ch_layout.nb_channels > 1)) {
av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
"specified number of channels\n");
return AVERROR(EINVAL);
}
/* validate extended bsi 2 / info metadata */
if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
/* default dolby headphone mode */
if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
/* default dolby surround ex mode */
if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
/* default A/D converter type */
if (opt->ad_converter_type == AC3ENC_OPT_NONE)
opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
}
/* copyright & original defaults */
if (!s->eac3 || opt->eac3_info_metadata) {
/* default copyright */
if (opt->copyright == AC3ENC_OPT_NONE)
opt->copyright = AC3ENC_OPT_OFF;
/* default original */
if (opt->original == AC3ENC_OPT_NONE)
opt->original = AC3ENC_OPT_ON;
}
/* dolby surround mode default */
if (!s->eac3 || opt->eac3_info_metadata) {
if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
}
/* validate audio production info */
if (opt->audio_production_info) {
if (opt->mixing_level == AC3ENC_OPT_NONE) {
av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
"room_type is set\n");
return AVERROR(EINVAL);
}
if (opt->mixing_level < 80) {
av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
"80dB and 111dB\n");
return AVERROR(EINVAL);
}
/* default room type */
if (opt->room_type == AC3ENC_OPT_NONE)
opt->room_type = AC3ENC_OPT_NOT_INDICATED;
}
/* set bitstream id for alternate bitstream syntax */
if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
if (s->bitstream_id > 8 && s->bitstream_id < 11) {
if (!s->warned_alternate_bitstream) {
av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
"not compatible with reduced samplerates. writing of "
"extended bitstream information will be disabled.\n");
s->warned_alternate_bitstream = 1;
}
} else {
s->bitstream_id = 6;
}
}
return 0;
}
/**
* Finalize encoding and free any memory allocated by the encoder.
*
* @param avctx Codec context
*/
av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
{
int blk, ch;
AC3EncodeContext *s = avctx->priv_data;
av_freep(&s->mdct_window);
av_freep(&s->windowed_samples);
if (s->planar_samples)
for (ch = 0; ch < s->channels; ch++)
av_freep(&s->planar_samples[ch]);
av_freep(&s->planar_samples);
av_freep(&s->bap_buffer);
av_freep(&s->bap1_buffer);
av_freep(&s->mdct_coef_buffer);
av_freep(&s->fixed_coef_buffer);
av_freep(&s->exp_buffer);
av_freep(&s->grouped_exp_buffer);
av_freep(&s->psd_buffer);
av_freep(&s->band_psd_buffer);
av_freep(&s->mask_buffer);
av_freep(&s->qmant_buffer);
av_freep(&s->cpl_coord_exp_buffer);
av_freep(&s->cpl_coord_mant_buffer);
av_freep(&s->fdsp);
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
av_freep(&block->mdct_coef);
av_freep(&block->fixed_coef);
av_freep(&block->exp);
av_freep(&block->grouped_exp);
av_freep(&block->psd);
av_freep(&block->band_psd);
av_freep(&block->mask);
av_freep(&block->qmant);
av_freep(&block->cpl_coord_exp);
av_freep(&block->cpl_coord_mant);
}
av_tx_uninit(&s->tx);
return 0;
}
/*
* Set channel information during initialization.
*/
static av_cold int set_channel_info(AVCodecContext *avctx)
{
AC3EncodeContext *s = avctx->priv_data;
int channels = avctx->ch_layout.nb_channels;
uint64_t mask = avctx->ch_layout.u.mask;
if (channels < 1 || channels > AC3_MAX_CHANNELS)
return AVERROR(EINVAL);
if (mask > 0x7FF)
return AVERROR(EINVAL);
if (!mask)
av_channel_layout_default(&avctx->ch_layout, channels);
mask = avctx->ch_layout.u.mask;
s->lfe_on = !!(mask & AV_CH_LOW_FREQUENCY);
s->channels = channels;
s->fbw_channels = channels - s->lfe_on;
s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
if (s->lfe_on)
mask -= AV_CH_LOW_FREQUENCY;
switch (mask) {
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
case AV_CH_LAYOUT_QUAD:
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
case AV_CH_LAYOUT_5POINT0:
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
default:
return AVERROR(EINVAL);
}
s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
s->has_surround = s->channel_mode & 0x04;
s->channel_map = ac3_enc_channel_map[s->channel_mode][s->lfe_on];
if (s->lfe_on)
mask |= AV_CH_LOW_FREQUENCY;
av_channel_layout_from_mask(&avctx->ch_layout, mask);
return 0;
}
static av_cold int validate_options(AC3EncodeContext *s)
{
AVCodecContext *avctx = s->avctx;
int i, ret, max_sr;
/* validate channel layout */
if (!avctx->ch_layout.nb_channels) {
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
"encoder will guess the layout, but it "
"might be incorrect.\n");
}
ret = set_channel_info(avctx);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
return ret;
}
/* validate sample rate */
/* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
decoder that supports half sample rate so we can validate that
the generated files are correct. */
max_sr = s->eac3 ? 2 : 8;
for (i = 0; i <= max_sr; i++) {
if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
break;
}
if (i > max_sr) {
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
return AVERROR(EINVAL);
}
s->sample_rate = avctx->sample_rate;
s->bit_alloc.sr_shift = i / 3;
s->bit_alloc.sr_code = i % 3;
s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
/* select a default bit rate if not set by the user */
if (!avctx->bit_rate) {
switch (s->fbw_channels) {
case 1: avctx->bit_rate = 96000; break;
case 2: avctx->bit_rate = 192000; break;
case 3: avctx->bit_rate = 320000; break;
case 4: avctx->bit_rate = 384000; break;
case 5: avctx->bit_rate = 448000; break;
}
}
/* validate bit rate */
if (s->eac3) {
int max_br, min_br, wpf, min_br_code;
int num_blks_code, num_blocks, frame_samples;
long long min_br_dist;
/* calculate min/max bitrate */
/* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
found use either 6 blocks or 1 block, even though 2 or 3 blocks
would work as far as the bit rate is concerned. */
for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
frame_samples = AC3_BLOCK_SIZE * num_blocks;
max_br = 2048 * s->sample_rate / frame_samples * 16;
min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
if (avctx->bit_rate <= max_br)
break;
}
if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
"for this sample rate\n", min_br, max_br);
return AVERROR(EINVAL);
}
s->num_blks_code = num_blks_code;
s->num_blocks = num_blocks;
/* calculate words-per-frame for the selected bitrate */
wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
av_assert1(wpf > 0 && wpf <= 2048);
/* find the closest AC-3 bitrate code to the selected bitrate.
this is needed for lookup tables for bandwidth and coupling
parameter selection */
min_br_code = -1;
min_br_dist = INT64_MAX;
for (i = 0; i < 19; i++) {
long long br_dist = llabs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
if (br_dist < min_br_dist) {
min_br_dist = br_dist;
min_br_code = i;
}
}
/* make sure the minimum frame size is below the average frame size */
s->frame_size_code = min_br_code << 1;
while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
wpf--;
s->frame_size_min = 2 * wpf;
} else {
int best_br = 0, best_code = 0;
long long best_diff = INT64_MAX;
for (i = 0; i < 19; i++) {
int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
long long diff = llabs(br - avctx->bit_rate);
if (diff < best_diff) {
best_br = br;
best_code = i;
best_diff = diff;
}
if (!best_diff)
break;
}
avctx->bit_rate = best_br;
s->frame_size_code = best_code << 1;
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
s->num_blks_code = 0x3;
s->num_blocks = 6;
}
s->bit_rate = avctx->bit_rate;
s->frame_size = s->frame_size_min;
/* validate cutoff */
if (avctx->cutoff < 0) {
av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
return AVERROR(EINVAL);
}
s->cutoff = avctx->cutoff;
if (s->cutoff > (s->sample_rate >> 1))
s->cutoff = s->sample_rate >> 1;
ret = ff_ac3_validate_metadata(s);
if (ret)
return ret;
s->rematrixing_enabled = s->options.stereo_rematrixing &&
(s->channel_mode == AC3_CHMODE_STEREO);
s->cpl_enabled = s->options.channel_coupling &&
s->channel_mode >= AC3_CHMODE_STEREO;
return 0;
}
/*
* Set bandwidth for all channels.
* The user can optionally supply a cutoff frequency. Otherwise an appropriate
* default value will be used.
*/
static av_cold void set_bandwidth(AC3EncodeContext *s)
{
int blk, ch, av_uninit(cpl_start);
if (s->cutoff) {
/* calculate bandwidth based on user-specified cutoff frequency */
int fbw_coeffs;
fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
} else {
/* use default bandwidth setting */
s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
}
/* set number of coefficients for each channel */
for (ch = 1; ch <= s->fbw_channels; ch++) {
s->start_freq[ch] = 0;
for (blk = 0; blk < s->num_blocks; blk++)
s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
}
/* LFE channel always has 7 coefs */
if (s->lfe_on) {
s->start_freq[s->lfe_channel] = 0;
for (blk = 0; blk < s->num_blocks; blk++)
s->blocks[blk].end_freq[ch] = 7;
}
/* initialize coupling strategy */
if (s->cpl_enabled) {
if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
cpl_start = s->options.cpl_start;
} else {
cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
if (cpl_start < 0) {
if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
s->cpl_enabled = 0;
else
cpl_start = 15;
}
}
}
if (s->cpl_enabled) {
int i, cpl_start_band, cpl_end_band;
uint8_t *cpl_band_sizes = s->cpl_band_sizes;
cpl_end_band = s->bandwidth_code / 4 + 3;
cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
s->num_cpl_subbands = cpl_end_band - cpl_start_band;
s->num_cpl_bands = 1;
*cpl_band_sizes = 12;
for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
if (ff_eac3_default_cpl_band_struct[i]) {
*cpl_band_sizes += 12;
} else {
s->num_cpl_bands++;
cpl_band_sizes++;
*cpl_band_sizes = 12;
}
}
s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
s->cpl_end_freq = cpl_end_band * 12 + 37;
for (blk = 0; blk < s->num_blocks; blk++)
s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
}
}
static av_cold int allocate_buffers(AC3EncodeContext *s)
{
int blk, ch;
int channels = s->channels + 1; /* includes coupling channel */
int channel_blocks = channels * s->num_blocks;
int total_coefs = AC3_MAX_COEFS * channel_blocks;
if (s->allocate_sample_buffers(s))
return AVERROR(ENOMEM);
if (!FF_ALLOC_TYPED_ARRAY(s->bap_buffer, total_coefs) ||
!FF_ALLOC_TYPED_ARRAY(s->bap1_buffer, total_coefs) ||
!FF_ALLOCZ_TYPED_ARRAY(s->mdct_coef_buffer, total_coefs) ||
!FF_ALLOC_TYPED_ARRAY(s->exp_buffer, total_coefs) ||
!FF_ALLOC_TYPED_ARRAY(s->grouped_exp_buffer, channel_blocks * 128) ||
!FF_ALLOC_TYPED_ARRAY(s->psd_buffer, total_coefs) ||
!FF_ALLOC_TYPED_ARRAY(s->band_psd_buffer, channel_blocks * 64) ||
!FF_ALLOC_TYPED_ARRAY(s->mask_buffer, channel_blocks * 64) ||
!FF_ALLOC_TYPED_ARRAY(s->qmant_buffer, total_coefs))
return AVERROR(ENOMEM);
if (s->cpl_enabled) {
if (!FF_ALLOC_TYPED_ARRAY(s->cpl_coord_exp_buffer, channel_blocks * 16) ||
!FF_ALLOC_TYPED_ARRAY(s->cpl_coord_mant_buffer, channel_blocks * 16))
return AVERROR(ENOMEM);
}
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (!FF_ALLOCZ_TYPED_ARRAY(block->mdct_coef, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->exp, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->grouped_exp, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->psd, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->band_psd, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->mask, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->qmant, channels))
return AVERROR(ENOMEM);
if (s->cpl_enabled) {
if (!FF_ALLOCZ_TYPED_ARRAY(block->cpl_coord_exp, channels) ||
!FF_ALLOCZ_TYPED_ARRAY(block->cpl_coord_mant, channels))
return AVERROR(ENOMEM);
}
for (ch = 0; ch < channels; ch++) {
/* arrangement: block, channel, coeff */
block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
if (s->cpl_enabled) {
block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
}
/* arrangement: channel, block, coeff */
block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
}
}
if (!s->fixed_point) {
if (!FF_ALLOCZ_TYPED_ARRAY(s->fixed_coef_buffer, total_coefs))
return AVERROR(ENOMEM);
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (!FF_ALLOCZ_TYPED_ARRAY(block->fixed_coef, channels))
return AVERROR(ENOMEM);
for (ch = 0; ch < channels; ch++)
block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
}
} else {
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (!FF_ALLOCZ_TYPED_ARRAY(block->fixed_coef, channels))
return AVERROR(ENOMEM);
for (ch = 0; ch < channels; ch++)
block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
}
}
return 0;
}
av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
{
static AVOnce init_static_once = AV_ONCE_INIT;
AC3EncodeContext *s = avctx->priv_data;
int ret, frame_size_58;
s->avctx = avctx;
s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
ret = validate_options(s);
if (ret)
return ret;
avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
avctx->initial_padding = AC3_BLOCK_SIZE;
s->bitstream_mode = avctx->audio_service_type;
if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
s->bitstream_mode = 0x7;
s->bits_written = 0;
s->samples_written = 0;
/* calculate crc_inv for both possible frame sizes */
frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
if (s->bit_alloc.sr_code == 1) {
frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
}
if (CONFIG_EAC3_ENCODER && s->eac3) {
static AVOnce init_static_once_eac3 = AV_ONCE_INIT;
ff_thread_once(&init_static_once_eac3, ff_eac3_exponent_init);
s->output_frame_header = ff_eac3_output_frame_header;
} else
s->output_frame_header = ac3_output_frame_header;
set_bandwidth(s);
bit_alloc_init(s);
ret = s->mdct_init(s);
if (ret)
return ret;
ret = allocate_buffers(s);
if (ret)
return ret;
ff_audiodsp_init(&s->adsp);
ff_me_cmp_init(&s->mecc, avctx);
ff_ac3dsp_init(&s->ac3dsp);
dprint_options(s);
ff_thread_once(&init_static_once, exponent_init);
return 0;
}
|