1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
/*
* Copyright (c) 2013
* MIPS Technologies, Inc., California.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* AAC Spectral Band Replication decoding functions (fixed-point)
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC Spectral Band Replication decoding functions (fixed-point)
* Note: Rounding-to-nearest used unless otherwise stated
* @author Robert Swain ( rob opendot cl )
* @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
*/
#define USE_FIXED 1
#include "aac.h"
#include "sbr.h"
#include "aacsbr.h"
#include "aacsbrdata.h"
#include "aacps.h"
#include "sbrdsp.h"
#include "libavutil/internal.h"
#include "libavutil/libm.h"
#include "libavutil/avassert.h"
#include <stdint.h>
#include <float.h>
#include <math.h>
static void aacsbr_func_ptr_init(AACSBRContext *c);
static const int CONST_LN2 = Q31(0.6931471806/256); // ln(2)/256
static const int CONST_RECIP_LN2 = Q31(0.7213475204); // 0.5/ln(2)
static const int CONST_076923 = Q31(0.76923076923076923077f);
static const int fixed_log_table[10] =
{
Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
};
static int fixed_log(int x)
{
int i, ret, xpow, tmp;
ret = x;
xpow = x;
for (i=0; i<10; i+=2){
xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
ret -= tmp;
xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
ret += tmp;
}
return ret;
}
static const int fixed_exp_table[7] =
{
Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
};
static int fixed_exp(int x)
{
int i, ret, xpow, tmp;
ret = 0x800000 + x;
xpow = x;
for (i=0; i<7; i++){
xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
ret += tmp;
}
return ret;
}
static void make_bands(int16_t* bands, int start, int stop, int num_bands)
{
int k, previous, present;
int base, prod, nz = 0;
base = (stop << 23) / start;
while (base < 0x40000000){
base <<= 1;
nz++;
}
base = fixed_log(base - 0x80000000);
base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
base = fixed_exp(base);
previous = start;
prod = start << 23;
for (k = 0; k < num_bands-1; k++) {
prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
present = (prod + 0x400000) >> 23;
bands[k] = present - previous;
previous = present;
}
bands[num_bands-1] = stop - previous;
}
/// Dequantization and stereo decoding (14496-3 sp04 p203)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
{
int k, e;
int ch;
if (id_aac == TYPE_CPE && sbr->bs_coupling) {
int alpha = sbr->data[0].bs_amp_res ? 2 : 1;
int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
SoftFloat temp1, temp2, fac;
temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14;
if (temp1.exp & 1)
temp1.mant = 759250125;
else
temp1.mant = 0x20000000;
temp1.exp = (temp1.exp >> 1) + 1;
if (temp1.exp > 66) { // temp1 > 1E20
av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
temp1 = FLOAT_1;
}
temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha;
if (temp2.exp & 1)
temp2.mant = 759250125;
else
temp2.mant = 0x20000000;
temp2.exp = (temp2.exp >> 1) + 1;
fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
sbr->data[0].env_facs[e][k] = fac;
sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
}
}
for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
for (k = 0; k < sbr->n_q; k++) {
SoftFloat temp1, temp2, fac;
temp1.exp = NOISE_FLOOR_OFFSET - \
sbr->data[0].noise_facs_q[e][k] + 2;
temp1.mant = 0x20000000;
av_assert0(temp1.exp <= 66);
temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1;
temp2.mant = 0x20000000;
fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
sbr->data[0].noise_facs[e][k] = fac;
sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
}
}
} else { // SCE or one non-coupled CPE
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
SoftFloat temp1;
temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12;
if (temp1.exp & 1)
temp1.mant = 759250125;
else
temp1.mant = 0x20000000;
temp1.exp = (temp1.exp >> 1) + 1;
if (temp1.exp > 66) { // temp1 > 1E20
av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
temp1 = FLOAT_1;
}
sbr->data[ch].env_facs[e][k] = temp1;
}
for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
for (k = 0; k < sbr->n_q; k++){
sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
sbr->data[ch].noise_facs_q[e][k] + 1;
sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
}
}
}
}
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
* (14496-3 sp04 p214)
* Warning: This routine does not seem numerically stable.
*/
static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
int (*alpha0)[2], int (*alpha1)[2],
const int X_low[32][40][2], int k0)
{
int k;
int shift, round;
for (k = 0; k < k0; k++) {
SoftFloat phi[3][2][2];
SoftFloat a00, a01, a10, a11;
SoftFloat dk;
dsp->autocorrelate(X_low[k], phi);
dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
if (!dk.mant) {
a10 = FLOAT_0;
a11 = FLOAT_0;
} else {
SoftFloat temp_real, temp_im;
temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
av_mul_sf(phi[0][0][1], phi[1][1][1])),
av_mul_sf(phi[0][1][0], phi[1][0][0]));
temp_im = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
av_mul_sf(phi[0][0][1], phi[1][1][0])),
av_mul_sf(phi[0][1][1], phi[1][0][0]));
a10 = av_div_sf(temp_real, dk);
a11 = av_div_sf(temp_im, dk);
}
if (!phi[1][0][0].mant) {
a00 = FLOAT_0;
a01 = FLOAT_0;
} else {
SoftFloat temp_real, temp_im;
temp_real = av_add_sf(phi[0][0][0],
av_add_sf(av_mul_sf(a10, phi[1][1][0]),
av_mul_sf(a11, phi[1][1][1])));
temp_im = av_add_sf(phi[0][0][1],
av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
av_mul_sf(a10, phi[1][1][1])));
temp_real.mant = -temp_real.mant;
temp_im.mant = -temp_im.mant;
a00 = av_div_sf(temp_real, phi[1][0][0]);
a01 = av_div_sf(temp_im, phi[1][0][0]);
}
shift = a00.exp;
if (shift >= 3)
alpha0[k][0] = 0x7fffffff;
else if (shift <= -30)
alpha0[k][0] = 0;
else {
shift = 1-shift;
if (shift <= 0)
alpha0[k][0] = a00.mant * (1<<-shift);
else {
round = 1 << (shift-1);
alpha0[k][0] = (a00.mant + round) >> shift;
}
}
shift = a01.exp;
if (shift >= 3)
alpha0[k][1] = 0x7fffffff;
else if (shift <= -30)
alpha0[k][1] = 0;
else {
shift = 1-shift;
if (shift <= 0)
alpha0[k][1] = a01.mant * (1<<-shift);
else {
round = 1 << (shift-1);
alpha0[k][1] = (a01.mant + round) >> shift;
}
}
shift = a10.exp;
if (shift >= 3)
alpha1[k][0] = 0x7fffffff;
else if (shift <= -30)
alpha1[k][0] = 0;
else {
shift = 1-shift;
if (shift <= 0)
alpha1[k][0] = a10.mant * (1<<-shift);
else {
round = 1 << (shift-1);
alpha1[k][0] = (a10.mant + round) >> shift;
}
}
shift = a11.exp;
if (shift >= 3)
alpha1[k][1] = 0x7fffffff;
else if (shift <= -30)
alpha1[k][1] = 0;
else {
shift = 1-shift;
if (shift <= 0)
alpha1[k][1] = a11.mant * (1<<-shift);
else {
round = 1 << (shift-1);
alpha1[k][1] = (a11.mant + round) >> shift;
}
}
shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
(int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
0x40000000) >> 31);
if (shift >= 0x20000000){
alpha1[k][0] = 0;
alpha1[k][1] = 0;
alpha0[k][0] = 0;
alpha0[k][1] = 0;
}
shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
(int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
0x40000000) >> 31);
if (shift >= 0x20000000){
alpha1[k][0] = 0;
alpha1[k][1] = 0;
alpha0[k][0] = 0;
alpha0[k][1] = 0;
}
}
}
/// Chirp Factors (14496-3 sp04 p214)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
{
int i;
int new_bw;
static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
int64_t accu;
for (i = 0; i < sbr->n_q; i++) {
if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
new_bw = 1288490189;
else
new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
if (new_bw < ch_data->bw_array[i]){
accu = (int64_t)new_bw * 1610612736;
accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
new_bw = (int)((accu + 0x40000000) >> 31);
} else {
accu = (int64_t)new_bw * 1946157056;
accu += (int64_t)ch_data->bw_array[i] * 201326592;
new_bw = (int)((accu + 0x40000000) >> 31);
}
ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
}
}
/**
* Calculation of levels of additional HF signal components (14496-3 sp04 p219)
* and Calculation of gain (14496-3 sp04 p219)
*/
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
SBRData *ch_data, const int e_a[2])
{
int e, k, m;
// max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 },
{ 758351638, 1 }, { 625000000, 34 } };
for (e = 0; e < ch_data->bs_num_env; e++) {
int delta = !((e == e_a[1]) || (e == e_a[0]));
for (k = 0; k < sbr->n_lim; k++) {
SoftFloat gain_boost, gain_max;
SoftFloat sum[2];
sum[0] = sum[1] = FLOAT_0;
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
if (!sbr->s_mapped[e][m]) {
if (delta) {
sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
} else {
sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
}
} else {
sbr->gain[e][m] = av_sqrt_sf(
av_div_sf(
av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
av_mul_sf(
av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
}
sbr->gain[e][m] = av_add_sf(sbr->gain[e][m], FLOAT_MIN);
}
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
}
gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
av_sqrt_sf(
av_div_sf(
av_add_sf(FLOAT_EPSILON, sum[0]),
av_add_sf(FLOAT_EPSILON, sum[1]))));
if (av_gt_sf(gain_max, FLOAT_100000))
gain_max = FLOAT_100000;
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
SoftFloat q_m_max = av_div_sf(
av_mul_sf(sbr->q_m[e][m], gain_max),
sbr->gain[e][m]);
if (av_gt_sf(sbr->q_m[e][m], q_m_max))
sbr->q_m[e][m] = q_m_max;
if (av_gt_sf(sbr->gain[e][m], gain_max))
sbr->gain[e][m] = gain_max;
}
sum[0] = sum[1] = FLOAT_0;
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
sum[1] = av_add_sf(sum[1],
av_mul_sf(
av_mul_sf(sbr->e_curr[e][m],
sbr->gain[e][m]),
sbr->gain[e][m]));
sum[1] = av_add_sf(sum[1],
av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
if (delta && !sbr->s_m[e][m].mant)
sum[1] = av_add_sf(sum[1],
av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
}
gain_boost = av_sqrt_sf(
av_div_sf(
av_add_sf(FLOAT_EPSILON, sum[0]),
av_add_sf(FLOAT_EPSILON, sum[1])));
if (av_gt_sf(gain_boost, FLOAT_1584893192))
gain_boost = FLOAT_1584893192;
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
sbr->q_m[e][m] = av_mul_sf(sbr->q_m[e][m], gain_boost);
sbr->s_m[e][m] = av_mul_sf(sbr->s_m[e][m], gain_boost);
}
}
}
}
/// Assembling HF Signals (14496-3 sp04 p220)
static void sbr_hf_assemble(int Y1[38][64][2],
const int X_high[64][40][2],
SpectralBandReplication *sbr, SBRData *ch_data,
const int e_a[2])
{
int e, i, j, m;
const int h_SL = 4 * !sbr->bs_smoothing_mode;
const int kx = sbr->kx[1];
const int m_max = sbr->m[1];
static const SoftFloat h_smooth[5] = {
{ 715827883, -1 },
{ 647472402, -1 },
{ 937030863, -2 },
{ 989249804, -3 },
{ 546843842, -4 },
};
SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
int indexnoise = ch_data->f_indexnoise;
int indexsine = ch_data->f_indexsine;
if (sbr->reset) {
for (i = 0; i < h_SL; i++) {
memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
}
} else if (h_SL) {
for (i = 0; i < 4; i++) {
memcpy(g_temp[i + 2 * ch_data->t_env[0]],
g_temp[i + 2 * ch_data->t_env_num_env_old],
sizeof(g_temp[0]));
memcpy(q_temp[i + 2 * ch_data->t_env[0]],
q_temp[i + 2 * ch_data->t_env_num_env_old],
sizeof(q_temp[0]));
}
}
for (e = 0; e < ch_data->bs_num_env; e++) {
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
}
}
for (e = 0; e < ch_data->bs_num_env; e++) {
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
SoftFloat g_filt_tab[48];
SoftFloat q_filt_tab[48];
SoftFloat *g_filt, *q_filt;
if (h_SL && e != e_a[0] && e != e_a[1]) {
g_filt = g_filt_tab;
q_filt = q_filt_tab;
for (m = 0; m < m_max; m++) {
const int idx1 = i + h_SL;
g_filt[m].mant = g_filt[m].exp = 0;
q_filt[m].mant = q_filt[m].exp = 0;
for (j = 0; j <= h_SL; j++) {
g_filt[m] = av_add_sf(g_filt[m],
av_mul_sf(g_temp[idx1 - j][m],
h_smooth[j]));
q_filt[m] = av_add_sf(q_filt[m],
av_mul_sf(q_temp[idx1 - j][m],
h_smooth[j]));
}
}
} else {
g_filt = g_temp[i + h_SL];
q_filt = q_temp[i];
}
sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
i + ENVELOPE_ADJUSTMENT_OFFSET);
if (e != e_a[0] && e != e_a[1]) {
sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
q_filt, indexnoise,
kx, m_max);
} else {
int idx = indexsine&1;
int A = (1-((indexsine+(kx & 1))&2));
int B = (A^(-idx)) + idx;
unsigned *out = &Y1[i][kx][idx];
int shift;
unsigned round;
SoftFloat *in = sbr->s_m[e];
for (m = 0; m+1 < m_max; m+=2) {
int shift2;
shift = 22 - in[m ].exp;
shift2= 22 - in[m+1].exp;
if (shift < 1 || shift2 < 1) {
av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d,%d\n", shift, shift2);
return;
}
if (shift < 32) {
round = 1 << (shift-1);
out[2*m ] += (int)(in[m ].mant * A + round) >> shift;
}
if (shift2 < 32) {
round = 1 << (shift2-1);
out[2*m+2] += (int)(in[m+1].mant * B + round) >> shift2;
}
}
if(m_max&1)
{
shift = 22 - in[m ].exp;
if (shift < 1) {
av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d\n", shift);
return;
} else if (shift < 32) {
round = 1 << (shift-1);
out[2*m ] += (int)(in[m ].mant * A + round) >> shift;
}
}
}
indexnoise = (indexnoise + m_max) & 0x1ff;
indexsine = (indexsine + 1) & 3;
}
}
ch_data->f_indexnoise = indexnoise;
ch_data->f_indexsine = indexsine;
}
#include "aacsbr_template.c"
|