aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacenc_utils.h
blob: cc747c3ea6e1ba54771391c0f41f65208b21ee6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * AAC encoder utilities
 * Copyright (C) 2015 Rostislav Pehlivanov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AAC encoder utilities
 * @author Rostislav Pehlivanov ( atomnuker gmail com )
 */

#ifndef AVCODEC_AACENC_UTILS_H
#define AVCODEC_AACENC_UTILS_H

#include "libavutil/ffmath.h"
#include "aacenc.h"
#include "aacenctab.h"
#include "aactab.h"

#define ROUND_STANDARD 0.4054f
#define ROUND_TO_ZERO 0.1054f
#define C_QUANT 0.4054f

static inline float pos_pow34(float a)
{
    return sqrtf(a * sqrtf(a));
}

/**
 * Quantize one coefficient.
 * @return absolute value of the quantized coefficient
 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
 */
static inline int quant(float coef, const float Q, const float rounding)
{
    float a = coef * Q;
    return sqrtf(a * sqrtf(a)) + rounding;
}

static inline float find_max_val(int group_len, int swb_size, const float *scaled)
{
    float maxval = 0.0f;
    int w2, i;
    for (w2 = 0; w2 < group_len; w2++) {
        for (i = 0; i < swb_size; i++) {
            maxval = FFMAX(maxval, scaled[w2*128+i]);
        }
    }
    return maxval;
}

static inline int find_min_book(float maxval, int sf)
{
    float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
    int qmaxval, cb;
    qmaxval = maxval * Q34 + C_QUANT;
    if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
        cb = 11;
    else
        cb = aac_maxval_cb[qmaxval];
    return cb;
}

static inline float find_form_factor(int group_len, int swb_size, float thresh,
                                     const float *scaled, float nzslope) {
    const float iswb_size = 1.0f / swb_size;
    const float iswb_sizem1 = 1.0f / (swb_size - 1);
    const float ethresh = thresh;
    float form = 0.0f, weight = 0.0f;
    int w2, i;
    for (w2 = 0; w2 < group_len; w2++) {
        float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
        float nzl = 0;
        for (i = 0; i < swb_size; i++) {
            float s = fabsf(scaled[w2*128+i]);
            maxval = FFMAX(maxval, s);
            e += s;
            e2 += s *= s;
            /* We really don't want a hard non-zero-line count, since
             * even below-threshold lines do add up towards band spectral power.
             * So, fall steeply towards zero, but smoothly
             */
            if (s >= ethresh) {
                nzl += 1.0f;
            } else {
                if (nzslope == 2.f)
                    nzl += (s / ethresh) * (s / ethresh);
                else
                    nzl += ff_fast_powf(s / ethresh, nzslope);
            }
        }
        if (e2 > thresh) {
            float frm;
            e *= iswb_size;

            /** compute variance */
            for (i = 0; i < swb_size; i++) {
                float d = fabsf(scaled[w2*128+i]) - e;
                var += d*d;
            }
            var = sqrtf(var * iswb_sizem1);

            e2 *= iswb_size;
            frm = e / FFMIN(e+4*var,maxval);
            form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
            weight += e2;
        }
    }
    if (weight > 0) {
        return form / weight;
    } else {
        return 1.0f;
    }
}

/** Return the minimum scalefactor where the quantized coef does not clip. */
static inline uint8_t coef2minsf(float coef)
{
    return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
}

/** Return the maximum scalefactor where the quantized coef is not zero. */
static inline uint8_t coef2maxsf(float coef)
{
    return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
}

/*
 * Returns the closest possible index to an array of float values, given a value.
 */
static inline int quant_array_idx(const float val, const float *arr, const int num)
{
    int i, index = 0;
    float quant_min_err = INFINITY;
    for (i = 0; i < num; i++) {
        float error = (val - arr[i])*(val - arr[i]);
        if (error < quant_min_err) {
            quant_min_err = error;
            index = i;
        }
    }
    return index;
}

/**
 * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
 */
static av_always_inline float bval2bmax(float b)
{
    return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
}

/*
 * Compute a nextband map to be used with SF delta constraint utilities.
 * The nextband array should contain 128 elements, and positions that don't
 * map to valid, nonzero bands of the form w*16+g (with w being the initial
 * window of the window group, only) are left indetermined.
 */
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
{
    unsigned char prevband = 0;
    int w, g;
    /** Just a safe default */
    for (g = 0; g < 128; g++)
        nextband[g] = g;

    /** Now really navigate the nonzero band chain */
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
        for (g = 0; g < sce->ics.num_swb; g++) {
            if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
                prevband = nextband[prevband] = w*16+g;
        }
    }
    nextband[prevband] = prevband; /* terminate */
}

/*
 * Updates nextband to reflect a removed band (equivalent to
 * calling ff_init_nextband_map after marking a band as zero)
 */
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
{
    nextband[prevband] = nextband[band];
}

/*
 * Checks whether the specified band could be removed without inducing
 * scalefactor delta that violates SF delta encoding constraints.
 * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
 * band, in encoding order, or negative if there was no such band.
 */
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
    const uint8_t *nextband, int prev_sf, int band)
{
    return prev_sf >= 0
        && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
        && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
}

/*
 * Checks whether the specified band's scalefactor could be replaced
 * with another one without violating SF delta encoding constraints.
 * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
 * band, in encoding order, or negative if there was no such band.
 */
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
    const uint8_t *nextband, int prev_sf, int new_sf, int band)
{
    return new_sf >= (prev_sf - SCALE_MAX_DIFF)
        && new_sf <= (prev_sf + SCALE_MAX_DIFF)
        && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
        && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
}

/**
 * linear congruential pseudorandom number generator
 *
 * @param   previous_val    pointer to the current state of the generator
 *
 * @return  Returns a 32-bit pseudorandom integer
 */
static av_always_inline int lcg_random(unsigned previous_val)
{
    union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
    return v.s;
}

#define ERROR_IF(cond, ...) \
    if (cond) { \
        av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
        return AVERROR(EINVAL); \
    }

#define WARN_IF(cond, ...) \
    if (cond) { \
        av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
    }

#endif /* AVCODEC_AACENC_UTILS_H */