1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/*
* AAC encoder TNS
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder temporal noise shaping
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aacenc.h"
#include "aacenc_tns.h"
#include "aactab.h"
#include "aacenc_utils.h"
#include "aacenc_quantization.h"
static inline int compress_coef(int *coefs, int num)
{
int i, c = 0;
for (i = 0; i < num; i++)
c += coefs[i] < 4 || coefs[i] > 11;
return c == num;
}
/**
* Encode TNS data.
* Coefficient compression saves a single bit per coefficient.
*/
void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
{
int i, w, filt, coef_len, coef_compress;
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
if (!sce->tns.present)
return;
for (i = 0; i < sce->ics.num_windows; i++) {
put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]);
if (sce->tns.n_filt[i]) {
put_bits(&s->pb, 1, 1);
for (filt = 0; filt < sce->tns.n_filt[i]; filt++) {
put_bits(&s->pb, 6 - 2 * is8, sce->tns.length[i][filt]);
put_bits(&s->pb, 5 - 2 * is8, sce->tns.order[i][filt]);
if (sce->tns.order[i][filt]) {
coef_compress = compress_coef(sce->tns.coef_idx[i][filt],
sce->tns.order[i][filt]);
put_bits(&s->pb, 1, !!sce->tns.direction[i][filt]);
put_bits(&s->pb, 1, !!coef_compress);
coef_len = 4 - coef_compress;
for (w = 0; w < sce->tns.order[i][filt]; w++)
put_bits(&s->pb, coef_len, sce->tns.coef_idx[i][filt][w]);
}
}
}
}
}
static void process_tns_coeffs(TemporalNoiseShaping *tns, double *coef_raw,
int *order_p, int w, int filt)
{
int i, j, order = *order_p;
int *idx = tns->coef_idx[w][filt];
float *lpc = tns->coef[w][filt];
float temp[TNS_MAX_ORDER] = {0.0f}, out[TNS_MAX_ORDER] = {0.0f};
if (!order)
return;
/* Not what the specs say, but it's better */
for (i = 0; i < order; i++) {
idx[i] = quant_array_idx(coef_raw[i], tns_tmp2_map_0_4, 16);
lpc[i] = tns_tmp2_map_0_4[idx[i]];
}
/* Trim any coeff less than 0.1f from the end */
for (i = order-1; i > -1; i--) {
lpc[i] = (fabs(lpc[i]) > 0.1f) ? lpc[i] : 0.0f;
if (lpc[i] != 0.0 ) {
order = i;
break;
}
}
order = av_clip(order, 0, TNS_MAX_ORDER - 1);
*order_p = order;
if (!order)
return;
/* Step up procedure, convert to LPC coeffs */
out[0] = 1.0f;
for (i = 1; i <= order; i++) {
for (j = 1; j < i; j++) {
temp[j] = out[j] + lpc[i]*out[i-j];
}
for (j = 1; j <= i; j++) {
out[j] = temp[j];
}
out[i] = lpc[i-1];
}
memcpy(lpc, out, TNS_MAX_ORDER*sizeof(float));
}
/* Apply TNS filter */
void ff_aac_apply_tns(SingleChannelElement *sce)
{
float *coef = sce->pcoeffs;
TemporalNoiseShaping *tns = &sce->tns;
int w, filt, m, i;
int bottom, top, order, start, end, size, inc;
float *lpc, tmp[TNS_MAX_ORDER+1];
for (w = 0; w < sce->ics.num_windows; w++) {
bottom = sce->ics.num_swb;
for (filt = 0; filt < tns->n_filt[w]; filt++) {
top = bottom;
bottom = FFMAX(0, top - tns->length[w][filt]);
order = tns->order[w][filt];
lpc = tns->coef[w][filt];
if (!order)
continue;
start = sce->ics.swb_offset[bottom];
end = sce->ics.swb_offset[top];
if ((size = end - start) <= 0)
continue;
if (tns->direction[w][filt]) {
inc = -1;
start = end - 1;
} else {
inc = 1;
}
start += w * 128;
if (!sce->ics.ltp.present) {
// ar filter
for (m = 0; m < size; m++, start += inc)
for (i = 1; i <= FFMIN(m, order); i++)
coef[start] += coef[start - i * inc]*lpc[i - 1];
} else {
// ma filter
for (m = 0; m < size; m++, start += inc) {
tmp[0] = coef[start];
for (i = 1; i <= FFMIN(m, order); i++)
coef[start] += tmp[i]*lpc[i - 1];
for (i = order; i > 0; i--)
tmp[i] = tmp[i - 1];
}
}
}
}
}
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
{
TemporalNoiseShaping *tns = &sce->tns;
int w, g, w2, prev_end_sfb = 0, count = 0;
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
const int tns_max_order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
for (w = 0; w < sce->ics.num_windows; w++) {
int order = 0, filters = 1;
int sfb_start = 0, sfb_len = 0;
int coef_start = 0, coef_len = 0;
float energy = 0.0f, threshold = 0.0f;
double coefs[MAX_LPC_ORDER][MAX_LPC_ORDER] = {{0}};
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sfb_start && w*16+g > TNS_LOW_LIMIT && w*16+g > prev_end_sfb) {
sfb_start = w*16+g;
coef_start = sce->ics.swb_offset[sfb_start];
}
if (sfb_start) {
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
if (!sfb_len && band->energy < band->threshold*1.3f) {
sfb_len = (w+w2)*16+g - sfb_start;
prev_end_sfb = sfb_start + sfb_len;
coef_len = sce->ics.swb_offset[sfb_start + sfb_len] - coef_start;
break;
}
energy += band->energy;
threshold += band->threshold;
}
if (!sfb_len) {
sfb_len = (w+1)*16+g - sfb_start - 1;
coef_len = sce->ics.swb_offset[sfb_start + sfb_len] - coef_start;
}
}
}
if (sfb_len <= 0 || coef_len <= 0)
continue;
if (coef_start + coef_len >= 1024)
coef_len = 1024 - coef_start;
/* LPC */
order = ff_lpc_calc_levinson(&s->lpc, &sce->coeffs[coef_start], coef_len,
coefs, 0, tns_max_order, ORDER_METHOD_LOG);
if (energy > threshold) {
int direction = 0;
tns->n_filt[w] = filters++;
for (g = 0; g < tns->n_filt[w]; g++) {
process_tns_coeffs(tns, coefs[order], &order, w, g);
tns->order[w][g] = order;
tns->length[w][g] = sfb_len;
tns->direction[w][g] = direction;
}
count++;
}
}
sce->tns.present = !!count;
}
|