1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/*
* AAC encoder main-type prediction
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder main prediction
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aactab.h"
#include "aacenc_pred.h"
#include "aacenc_utils.h"
#include "aacenc_quantization.h"
static inline float flt16_round(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
return tmp.f;
}
static inline float flt16_even(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
return tmp.f;
}
static inline float flt16_trunc(float pf)
{
union av_intfloat32 pun;
pun.f = pf;
pun.i &= 0xFFFF0000U;
return pun.f;
}
static inline void predict(PredictorState *ps, float *coef, float *rcoef,
int output_enable)
{
const float a = 0.953125; // 61.0 / 64
float k2;
float r0 = ps->r0, r1 = ps->r1;
float cor0 = ps->cor0, cor1 = ps->cor1;
float var0 = ps->var0, var1 = ps->var1;
ps->k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
ps->x_est = flt16_round(ps->k1*r0 + k2*r1);
if (output_enable)
*coef -= ps->x_est;
else
*rcoef = *coef - ps->x_est;
}
static inline void update_predictor(PredictorState *ps, float qcoef)
{
const float alpha = 0.90625; // 29.0 / 32
const float a = 0.953125; // 61.0 / 64
float k1 = ps->k1;
float r0 = ps->r0;
float r1 = ps->r1;
float e0 = qcoef + ps->x_est;
float e1 = e0 - k1 * r0;
float cor0 = ps->cor0, cor1 = ps->cor1;
float var0 = ps->var0, var1 = ps->var1;
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
ps->r0 = flt16_trunc(a * e0);
}
static inline void reset_predict_state(PredictorState *ps)
{
ps->r0 = 0.0f;
ps->r1 = 0.0f;
ps->cor0 = 0.0f;
ps->cor1 = 0.0f;
ps->var0 = 1.0f;
ps->var1 = 1.0f;
ps->k1 = 0.0f;
ps->x_est= 0.0f;
}
static inline void reset_all_predictors(SingleChannelElement *sce)
{
int i;
for (i = 0; i < MAX_PREDICTORS; i++)
reset_predict_state(&sce->predictor_state[i]);
for (i = 1; i < 31; i++)
sce->ics.predictor_reset_count[i] = 0;
}
static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
{
int i;
PredictorState *ps = sce->predictor_state;
sce->ics.predictor_reset_count[group_num] = 0;
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
reset_predict_state(&ps[i]);
}
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb, k;
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
for (sfb = 0; sfb < ff_aac_pred_sfb_max[s->samplerate_index]; sfb++) {
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++)
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
(sce->ics.predictor_present && sce->ics.prediction_used[sfb]));
}
}
}
static void decode_joint_stereo(ChannelElement *cpe)
{
int i, w, w2, g;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
IndividualChannelStream *ics;
for (i = 0; i < MAX_PREDICTORS; i++)
sce0->prcoeffs[i] = sce0->predictor_state[i].x_est;
ics = &sce0->ics;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
int start = (w+w2) * 128;
for (g = 0; g < ics->num_swb; g++) {
int sfb = w*16 + g;
//apply Intensity stereo coeffs transformation
if (cpe->is_mask[sfb]) {
int p = -1 + 2 * (sce1->band_type[sfb] - 14);
float rscale = ff_aac_pow2sf_tab[-sce1->sf_idx[sfb] + POW_SF2_ZERO];
p *= 1 - 2 * cpe->ms_mask[sfb];
for (i = 0; i < ics->swb_sizes[g]; i++) {
sce0->pqcoeffs[start+i] = (sce0->prcoeffs[start+i] + p*sce0->pqcoeffs[start+i]) * rscale;
}
} else if (cpe->ms_mask[sfb] &&
sce0->band_type[sfb] < NOISE_BT &&
sce1->band_type[sfb] < NOISE_BT) {
for (i = 0; i < ics->swb_sizes[g]; i++) {
float L = sce0->pqcoeffs[start+i] + sce1->pqcoeffs[start+i];
float R = sce0->pqcoeffs[start+i] - sce1->pqcoeffs[start+i];
sce0->pqcoeffs[start+i] = L;
sce1->pqcoeffs[start+i] = R;
}
}
start += ics->swb_sizes[g];
}
}
}
}
static inline void prepare_predictors(SingleChannelElement *sce)
{
int k;
for (k = 0; k < MAX_PREDICTORS; k++)
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k], 0);
}
void ff_aac_update_main_pred(AACEncContext *s, SingleChannelElement *sce, ChannelElement *cpe)
{
int k;
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
if (cpe && cpe->common_window)
decode_joint_stereo(cpe);
for (k = 0; k < MAX_PREDICTORS; k++)
update_predictor(&sce->predictor_state[k], sce->pqcoeffs[k]);
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
reset_all_predictors(sce);
}
if (sce->ics.predictor_reset_group)
reset_predictor_group(sce, sce->ics.predictor_reset_group);
}
/* If inc == 0 check if it returns 0 to see if you can reset freely */
static inline int update_counters(IndividualChannelStream *ics, int inc)
{
int i, rg = 0;
for (i = 1; i < 31; i++) {
ics->predictor_reset_count[i] += inc;
if (!rg && ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
rg = i; /* Reset this immediately */
}
return rg;
}
void ff_aac_adjust_common_prediction(AACEncContext *s, ChannelElement *cpe)
{
int start, w, g, count = 0;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
if (!cpe->common_window || sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
/* Predict if IS or MS is on and at least one channel is marked or when both are */
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) {
int sfb = w*16+g;
if (sfb < PRED_SFB_START || sfb > ff_aac_pred_sfb_max[s->samplerate_index]) {
;
} else if ((cpe->is_mask[sfb] || cpe->ms_mask[sfb]) &&
(sce0->ics.prediction_used[sfb] || sce1->ics.prediction_used[sfb])) {
sce0->ics.prediction_used[sfb] = sce1->ics.prediction_used[sfb] = 1;
count++;
} else if (sce0->ics.prediction_used[sfb] && sce1->ics.prediction_used[sfb]) {
count++;
} else {
/* Restore band types, if changed - prediction never sets > RESERVED_BT */
if (sce0->ics.prediction_used[sfb] && sce0->band_type[sfb] < RESERVED_BT)
sce0->band_type[sfb] = sce0->orig_band_type[sfb];
if (sce1->ics.prediction_used[sfb] && sce1->band_type[sfb] < RESERVED_BT)
sce1->band_type[sfb] = sce1->orig_band_type[sfb];
sce0->ics.prediction_used[sfb] = sce1->ics.prediction_used[sfb] = 0;
}
start += sce0->ics.swb_sizes[g];
}
}
sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
if (!count)
return;
sce1->ics.predictor_reset_group = sce0->ics.predictor_reset_group;
}
static void update_pred_resets(SingleChannelElement *sce)
{
int i, max_group_id_c, max_frame = 0;
float avg_frame = 0.0f;
IndividualChannelStream *ics = &sce->ics;
/* Some other code probably chose the reset group */
if (ics->predictor_reset_group)
return;
if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
return;
for (i = 1; i < 31; i++) {
if (ics->predictor_reset_count[i] > max_frame) {
max_group_id_c = i;
max_frame = ics->predictor_reset_count[i];
}
avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
}
if (avg_frame*2 > max_frame && max_frame > PRED_RESET_MIN ||
max_frame > (2*PRED_RESET_MIN)/3) {
ics->predictor_reset_group = max_group_id_c;
} else {
ics->predictor_reset_group = 0;
}
}
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb, i, count = 0;
float *O34 = &s->scoefs[256*0], *P34 = &s->scoefs[256*1];
int cost_coeffs = PRICE_OFFSET;
int cost_pred = 1+(sce->ics.predictor_reset_group ? 5 : 0) +
FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
memcpy(sce->orig_band_type, sce->band_type, 128*sizeof(enum BandType));
if (!sce->ics.predictor_initialized ||
sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
reset_all_predictors(sce);
for (i = 1; i < 31; i++)
sce->ics.predictor_reset_count[i] = i;
sce->ics.predictor_initialized = 1;
}
update_pred_resets(sce);
prepare_predictors(sce);
sce->ics.predictor_reset_group = 0;
for (sfb = PRED_SFB_START; sfb < ff_aac_pred_sfb_max[s->samplerate_index]; sfb++) {
float dist1 = 0.0f, dist2 = 0.0f;
int swb_start = sce->ics.swb_offset[sfb];
int swb_len = sce->ics.swb_offset[sfb + 1] - swb_start;
int cb1 = sce->band_type[sfb], cb2, bits1 = 0, bits2 = 0;
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
abs_pow34_v(O34, &sce->coeffs[swb_start], swb_len);
abs_pow34_v(P34, &sce->prcoeffs[swb_start], swb_len);
cb2 = find_min_book(find_max_val(1, swb_len, P34), sce->sf_idx[sfb]);
if (cb2 <= cb1) {
dist1 += quantize_band_cost(s, &sce->coeffs[swb_start], O34, swb_len,
sce->sf_idx[sfb], cb1, s->lambda / band->threshold,
INFINITY, &bits1, 0);
dist2 += quantize_band_cost(s, &sce->prcoeffs[swb_start], P34, swb_len,
sce->sf_idx[sfb], cb2, s->lambda / band->threshold,
INFINITY, &bits2, 0);
if (dist2 <= dist1) {
sce->ics.prediction_used[sfb] = 1;
sce->band_type[sfb] = cb2;
count++;
}
cost_coeffs += bits1;
cost_pred += bits2;
}
}
if (count && cost_pred > cost_coeffs) {
memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
memcpy(sce->band_type, sce->orig_band_type, sizeof(sce->band_type));
count = 0;
}
sce->ics.predictor_present = !!count;
}
/**
* Encoder predictors data.
*/
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb;
if (!sce->ics.predictor_present ||
sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
put_bits(&s->pb, 1, !!sce->ics.predictor_reset_group);
if (sce->ics.predictor_reset_group)
put_bits(&s->pb, 5, sce->ics.predictor_reset_group);
for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); sfb++)
put_bits(&s->pb, 1, sce->ics.prediction_used[sfb]);
}
|