aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacenc_is.c
blob: a4b8916197758e42ab62e02d9d3b4c9a8cafcaf1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * AAC encoder intensity stereo
 * Copyright (C) 2015 Rostislav Pehlivanov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AAC encoder Intensity Stereo
 * @author Rostislav Pehlivanov ( atomnuker gmail com )
 */

#include "aacenc.h"
#include "aacenc_utils.h"
#include "aacenc_is.h"
#include "aacenc_quantization.h"

struct AACISError ff_aac_is_encoding_err(AACEncContext *s, ChannelElement *cpe,
                                         int start, int w, int g, float ener0,
                                         float ener1, float ener01,
                                         int use_pcoeffs, int phase)
{
    int i, w2;
    SingleChannelElement *sce0 = &cpe->ch[0];
    SingleChannelElement *sce1 = &cpe->ch[1];
    float *L = use_pcoeffs ? sce0->pcoeffs : sce0->coeffs;
    float *R = use_pcoeffs ? sce1->pcoeffs : sce1->coeffs;
    float *L34 = &s->scoefs[256*0], *R34 = &s->scoefs[256*1];
    float *IS  = &s->scoefs[256*2], *I34 = &s->scoefs[256*3];
    float dist1 = 0.0f, dist2 = 0.0f;
    struct AACISError is_error = {0};

    if (ener01 <= 0 || ener0 <= 0) {
        is_error.pass = 0;
        return is_error;
    }

    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
        FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
        FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
        int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[(w+w2)*16+g]-4);
        float e01_34 = phase*pow(ener1/ener0, 3.0/4.0);
        float maxval, dist_spec_err = 0.0f;
        float minthr = FFMIN(band0->threshold, band1->threshold);
        for (i = 0; i < sce0->ics.swb_sizes[g]; i++)
            IS[i] = (L[start+(w+w2)*128+i] + phase*R[start+(w+w2)*128+i])*sqrt(ener0/ener01);
        abs_pow34_v(L34, &L[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
        abs_pow34_v(R34, &R[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
        abs_pow34_v(I34, IS,                   sce0->ics.swb_sizes[g]);
        maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
        is_band_type = find_min_book(maxval, is_sf_idx);
        dist1 += quantize_band_cost(s, &L[start + (w+w2)*128], L34,
                                    sce0->ics.swb_sizes[g],
                                    sce0->sf_idx[(w+w2)*16+g],
                                    sce0->band_type[(w+w2)*16+g],
                                    s->lambda / band0->threshold, INFINITY, NULL, NULL, 0);
        dist1 += quantize_band_cost(s, &R[start + (w+w2)*128], R34,
                                    sce1->ics.swb_sizes[g],
                                    sce1->sf_idx[(w+w2)*16+g],
                                    sce1->band_type[(w+w2)*16+g],
                                    s->lambda / band1->threshold, INFINITY, NULL, NULL, 0);
        dist2 += quantize_band_cost(s, IS, I34, sce0->ics.swb_sizes[g],
                                    is_sf_idx, is_band_type,
                                    s->lambda / minthr, INFINITY, NULL, NULL, 0);
        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
            dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
            dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
        }
        dist_spec_err *= s->lambda / minthr;
        dist2 += dist_spec_err;
    }

    is_error.pass = dist2 <= dist1;
    is_error.phase = phase;
    is_error.error = fabsf(dist1 - dist2);
    is_error.dist1 = dist1;
    is_error.dist2 = dist2;
    is_error.ener01 = ener01;

    return is_error;
}

void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
{
    SingleChannelElement *sce0 = &cpe->ch[0];
    SingleChannelElement *sce1 = &cpe->ch[1];
    int start = 0, count = 0, w, w2, g, i, prev_sf1 = -1;
    const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
    uint8_t nextband1[128];

    if (!cpe->common_window)
        return;

    /** Scout out next nonzero bands */
    ff_init_nextband_map(sce1, nextband1);

    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
        start = 0;
        for (g = 0;  g < sce0->ics.num_swb; g++) {
            if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
                cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
                cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g] &&
                ff_sfdelta_can_remove_band(sce1, nextband1, prev_sf1, w*16+g)) {
                float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f, ener01p = 0.0f;
                struct AACISError ph_err1, ph_err2, *erf;
                if (sce0->band_type[w*16+g] == NOISE_BT ||
                    sce1->band_type[w*16+g] == NOISE_BT) {
                    start += sce0->ics.swb_sizes[g];
                    continue;
                }
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                        float coef0 = fabsf(sce0->coeffs[start+(w+w2)*128+i]);
                        float coef1 = fabsf(sce1->coeffs[start+(w+w2)*128+i]);
                        ener0  += coef0*coef0;
                        ener1  += coef1*coef1;
                        ener01 += (coef0 + coef1)*(coef0 + coef1);
                        ener01p += (coef0 - coef1)*(coef0 - coef1);
                    }
                }
                ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
                                                 ener0, ener1, ener01p, 0, -1);
                ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
                                                 ener0, ener1, ener01, 0, +1);
                erf = (ph_err1.pass && ph_err1.error < ph_err2.error) ? &ph_err1 : &ph_err2;
                if (erf->pass) {
                    cpe->is_mask[w*16+g] = 1;
                    cpe->ms_mask[w*16+g] = 0;
                    cpe->ch[0].is_ener[w*16+g] = sqrt(ener0 / erf->ener01);
                    cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
                    cpe->ch[1].band_type[w*16+g] = (erf->phase > 0) ? INTENSITY_BT : INTENSITY_BT2;
                    count++;
                }
            }
            if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
                prev_sf1 = sce1->sf_idx[w*16+g];
            start += sce0->ics.swb_sizes[g];
        }
    }
    cpe->is_mode = !!count;
}