aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacdec.c
blob: c9ca0a66a2328fdc9010542cf5d6015593ce4463 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
/*
 * AAC decoder
 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 *
 * AAC LATM decoder
 * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
 * Copyright (c) 2010      Janne Grunau <janne-ffmpeg@jannau.net>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AAC decoder
 * @author Oded Shimon  ( ods15 ods15 dyndns org )
 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 */

/*
 * supported tools
 *
 * Support?             Name
 * N (code in SoC repo) gain control
 * Y                    block switching
 * Y                    window shapes - standard
 * N                    window shapes - Low Delay
 * Y                    filterbank - standard
 * N (code in SoC repo) filterbank - Scalable Sample Rate
 * Y                    Temporal Noise Shaping
 * Y                    Long Term Prediction
 * Y                    intensity stereo
 * Y                    channel coupling
 * Y                    frequency domain prediction
 * Y                    Perceptual Noise Substitution
 * Y                    Mid/Side stereo
 * N                    Scalable Inverse AAC Quantization
 * N                    Frequency Selective Switch
 * N                    upsampling filter
 * Y                    quantization & coding - AAC
 * N                    quantization & coding - TwinVQ
 * N                    quantization & coding - BSAC
 * N                    AAC Error Resilience tools
 * N                    Error Resilience payload syntax
 * N                    Error Protection tool
 * N                    CELP
 * N                    Silence Compression
 * N                    HVXC
 * N                    HVXC 4kbits/s VR
 * N                    Structured Audio tools
 * N                    Structured Audio Sample Bank Format
 * N                    MIDI
 * N                    Harmonic and Individual Lines plus Noise
 * N                    Text-To-Speech Interface
 * Y                    Spectral Band Replication
 * Y (not in this code) Layer-1
 * Y (not in this code) Layer-2
 * Y (not in this code) Layer-3
 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
 * Y                    Parametric Stereo
 * N                    Direct Stream Transfer
 *
 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
           Parametric Stereo.
 */


#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "dsputil.h"
#include "fft.h"
#include "fmtconvert.h"
#include "lpc.h"
#include "kbdwin.h"
#include "sinewin.h"

#include "aac.h"
#include "aactab.h"
#include "aacdectab.h"
#include "cbrt_tablegen.h"
#include "sbr.h"
#include "aacsbr.h"
#include "mpeg4audio.h"
#include "aacadtsdec.h"
#include "libavutil/intfloat.h"

#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>

#if ARCH_ARM
#   include "arm/aac.h"
#endif

static VLC vlc_scalefactors;
static VLC vlc_spectral[11];

static const char overread_err[] = "Input buffer exhausted before END element found\n";

static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
{
    // For PCE based channel configurations map the channels solely based on tags.
    if (!ac->m4ac.chan_config) {
        return ac->tag_che_map[type][elem_id];
    }
    // For indexed channel configurations map the channels solely based on position.
    switch (ac->m4ac.chan_config) {
    case 7:
        if (ac->tags_mapped == 3 && type == TYPE_CPE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
        }
    case 6:
        /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
           instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
           encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
        if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
            ac->tags_mapped++;
            return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
        }
    case 5:
        if (ac->tags_mapped == 2 && type == TYPE_CPE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
        }
    case 4:
        if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
        }
    case 3:
    case 2:
        if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
        } else if (ac->m4ac.chan_config == 2) {
            return NULL;
        }
    case 1:
        if (!ac->tags_mapped && type == TYPE_SCE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
        }
    default:
        return NULL;
    }
}

/**
 * Check for the channel element in the current channel position configuration.
 * If it exists, make sure the appropriate element is allocated and map the
 * channel order to match the internal FFmpeg channel layout.
 *
 * @param   che_pos current channel position configuration
 * @param   type channel element type
 * @param   id channel element id
 * @param   channels count of the number of channels in the configuration
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static av_cold int che_configure(AACContext *ac,
                                 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
                                 int type, int id, int *channels)
{
    if (che_pos[type][id]) {
        if (!ac->che[type][id]) {
            if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
                return AVERROR(ENOMEM);
            ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
        }
        if (type != TYPE_CCE) {
            ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
            if (type == TYPE_CPE ||
                (type == TYPE_SCE && ac->m4ac.ps == 1)) {
                ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
            }
        }
    } else {
        if (ac->che[type][id])
            ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
        av_freep(&ac->che[type][id]);
    }
    return 0;
}

/**
 * Configure output channel order based on the current program configuration element.
 *
 * @param   che_pos current channel position configuration
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static av_cold int output_configure(AACContext *ac,
                                    enum ChannelPosition che_pos[4][MAX_ELEM_ID],
                                    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                                    int channel_config, enum OCStatus oc_type)
{
    AVCodecContext *avctx = ac->avctx;
    int i, type, channels = 0, ret;

    if (new_che_pos != che_pos)
    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));

    if (channel_config) {
        for (i = 0; i < tags_per_config[channel_config]; i++) {
            if ((ret = che_configure(ac, che_pos,
                                     aac_channel_layout_map[channel_config - 1][i][0],
                                     aac_channel_layout_map[channel_config - 1][i][1],
                                     &channels)))
                return ret;
        }

        memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));

        avctx->channel_layout = aac_channel_layout[channel_config - 1];
    } else {
        /* Allocate or free elements depending on if they are in the
         * current program configuration.
         *
         * Set up default 1:1 output mapping.
         *
         * For a 5.1 stream the output order will be:
         *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
         */

        for (i = 0; i < MAX_ELEM_ID; i++) {
            for (type = 0; type < 4; type++) {
                if ((ret = che_configure(ac, che_pos, type, i, &channels)))
                    return ret;
            }
        }

        memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
    }

    avctx->channels = channels;

    ac->output_configured = oc_type;

    return 0;
}

static void flush(AVCodecContext *avctx)
{
    AACContext *ac= avctx->priv_data;
    int type, i, j;

    for (type = 3; type >= 0; type--) {
        for (i = 0; i < MAX_ELEM_ID; i++) {
            ChannelElement *che = ac->che[type][i];
            if (che) {
                for (j = 0; j <= 1; j++) {
                    memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
                }
            }
        }
    }
}

/**
 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 *
 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
 * @param sce_map mono (Single Channel Element) map
 * @param type speaker type/position for these channels
 */
static void decode_channel_map(enum ChannelPosition *cpe_map,
                               enum ChannelPosition *sce_map,
                               enum ChannelPosition type,
                               GetBitContext *gb, int n)
{
    while (n--) {
        enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
        map[get_bits(gb, 4)] = type;
    }
}

/**
 * Decode program configuration element; reference: table 4.2.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
                      enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                      GetBitContext *gb)
{
    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
    int comment_len;

    skip_bits(gb, 2);  // object_type

    sampling_index = get_bits(gb, 4);
    if (m4ac->sampling_index != sampling_index)
        av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");

    num_front       = get_bits(gb, 4);
    num_side        = get_bits(gb, 4);
    num_back        = get_bits(gb, 4);
    num_lfe         = get_bits(gb, 2);
    num_assoc_data  = get_bits(gb, 3);
    num_cc          = get_bits(gb, 4);

    if (get_bits1(gb))
        skip_bits(gb, 4); // mono_mixdown_tag
    if (get_bits1(gb))
        skip_bits(gb, 4); // stereo_mixdown_tag

    if (get_bits1(gb))
        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround

    if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
        av_log(avctx, AV_LOG_ERROR, overread_err);
        return -1;
    }
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
    decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );

    skip_bits_long(gb, 4 * num_assoc_data);

    decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );

    align_get_bits(gb);

    /* comment field, first byte is length */
    comment_len = get_bits(gb, 8) * 8;
    if (get_bits_left(gb) < comment_len) {
        av_log(avctx, AV_LOG_ERROR, overread_err);
        return -1;
    }
    skip_bits_long(gb, comment_len);
    return 0;
}

/**
 * Set up channel positions based on a default channel configuration
 * as specified in table 1.17.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static av_cold int set_default_channel_config(AVCodecContext *avctx,
                                              enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                                              int channel_config)
{
    if (channel_config < 1 || channel_config > 7) {
        av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
               channel_config);
        return -1;
    }

    /* default channel configurations:
     *
     * 1ch : front center (mono)
     * 2ch : L + R (stereo)
     * 3ch : front center + L + R
     * 4ch : front center + L + R + back center
     * 5ch : front center + L + R + back stereo
     * 6ch : front center + L + R + back stereo + LFE
     * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
     */

    if (channel_config != 2)
        new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
    if (channel_config > 1)
        new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
    if (channel_config == 4)
        new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
    if (channel_config > 4)
        new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
        = AAC_CHANNEL_BACK;  // back stereo
    if (channel_config > 5)
        new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
    if (channel_config == 7)
        new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right

    return 0;
}

/**
 * Decode GA "General Audio" specific configuration; reference: table 4.1.
 *
 * @param   ac          pointer to AACContext, may be null
 * @param   avctx       pointer to AVCCodecContext, used for logging
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
                                     GetBitContext *gb,
                                     MPEG4AudioConfig *m4ac,
                                     int channel_config)
{
    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
    int extension_flag, ret;

    if (get_bits1(gb)) { // frameLengthFlag
        av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
        return -1;
    }

    if (get_bits1(gb))       // dependsOnCoreCoder
        skip_bits(gb, 14);   // coreCoderDelay
    extension_flag = get_bits1(gb);

    if (m4ac->object_type == AOT_AAC_SCALABLE ||
        m4ac->object_type == AOT_ER_AAC_SCALABLE)
        skip_bits(gb, 3);     // layerNr

    memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
    if (channel_config == 0) {
        skip_bits(gb, 4);  // element_instance_tag
        if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
            return ret;
    } else {
        if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
            return ret;
    }
    if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
        return ret;

    if (extension_flag) {
        switch (m4ac->object_type) {
        case AOT_ER_BSAC:
            skip_bits(gb, 5);    // numOfSubFrame
            skip_bits(gb, 11);   // layer_length
            break;
        case AOT_ER_AAC_LC:
        case AOT_ER_AAC_LTP:
        case AOT_ER_AAC_SCALABLE:
        case AOT_ER_AAC_LD:
            skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
                                    * aacScalefactorDataResilienceFlag
                                    * aacSpectralDataResilienceFlag
                                    */
            break;
        }
        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
    }
    return 0;
}

/**
 * Decode audio specific configuration; reference: table 1.13.
 *
 * @param   ac          pointer to AACContext, may be null
 * @param   avctx       pointer to AVCCodecContext, used for logging
 * @param   m4ac        pointer to MPEG4AudioConfig, used for parsing
 * @param   data        pointer to buffer holding an audio specific config
 * @param   bit_size    size of audio specific config or data in bits
 * @param   sync_extension look for an appended sync extension
 *
 * @return  Returns error status or number of consumed bits. <0 - error
 */
static int decode_audio_specific_config(AACContext *ac,
                                        AVCodecContext *avctx,
                                        MPEG4AudioConfig *m4ac,
                                        const uint8_t *data, int bit_size,
                                        int sync_extension)
{
    GetBitContext gb;
    int i;

    av_dlog(avctx, "extradata size %d\n", avctx->extradata_size);
    for (i = 0; i < avctx->extradata_size; i++)
         av_dlog(avctx, "%02x ", avctx->extradata[i]);
    av_dlog(avctx, "\n");

    init_get_bits(&gb, data, bit_size);

    if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0)
        return -1;
    if (m4ac->sampling_index > 12) {
        av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
        return -1;
    }
    if (m4ac->sbr == 1 && m4ac->ps == -1)
        m4ac->ps = 1;

    skip_bits_long(&gb, i);

    switch (m4ac->object_type) {
    case AOT_AAC_MAIN:
    case AOT_AAC_LC:
    case AOT_AAC_LTP:
        if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
            return -1;
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
               m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
        return -1;
    }

    av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
            m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
            m4ac->sample_rate, m4ac->sbr, m4ac->ps);

    return get_bits_count(&gb);
}

/**
 * linear congruential pseudorandom number generator
 *
 * @param   previous_val    pointer to the current state of the generator
 *
 * @return  Returns a 32-bit pseudorandom integer
 */
static av_always_inline int lcg_random(int previous_val)
{
    return previous_val * 1664525 + 1013904223;
}

static av_always_inline void reset_predict_state(PredictorState *ps)
{
    ps->r0   = 0.0f;
    ps->r1   = 0.0f;
    ps->cor0 = 0.0f;
    ps->cor1 = 0.0f;
    ps->var0 = 1.0f;
    ps->var1 = 1.0f;
}

static void reset_all_predictors(PredictorState *ps)
{
    int i;
    for (i = 0; i < MAX_PREDICTORS; i++)
        reset_predict_state(&ps[i]);
}

static int sample_rate_idx (int rate)
{
         if (92017 <= rate) return 0;
    else if (75132 <= rate) return 1;
    else if (55426 <= rate) return 2;
    else if (46009 <= rate) return 3;
    else if (37566 <= rate) return 4;
    else if (27713 <= rate) return 5;
    else if (23004 <= rate) return 6;
    else if (18783 <= rate) return 7;
    else if (13856 <= rate) return 8;
    else if (11502 <= rate) return 9;
    else if (9391  <= rate) return 10;
    else                    return 11;
}

static void reset_predictor_group(PredictorState *ps, int group_num)
{
    int i;
    for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
        reset_predict_state(&ps[i]);
}

#define AAC_INIT_VLC_STATIC(num, size) \
    INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
         ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
        ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
        size);

static av_cold int aac_decode_init(AVCodecContext *avctx)
{
    AACContext *ac = avctx->priv_data;
    float output_scale_factor;

    ac->avctx = avctx;
    ac->m4ac.sample_rate = avctx->sample_rate;

    if (avctx->extradata_size > 0) {
        if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
                                         avctx->extradata,
                                         avctx->extradata_size*8, 1) < 0)
            return -1;
    } else {
        int sr, i;
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];

        sr = sample_rate_idx(avctx->sample_rate);
        ac->m4ac.sampling_index = sr;
        ac->m4ac.channels = avctx->channels;
        ac->m4ac.sbr = -1;
        ac->m4ac.ps = -1;

        for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
            if (ff_mpeg4audio_channels[i] == avctx->channels)
                break;
        if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
            i = 0;
        }
        ac->m4ac.chan_config = i;

        if (ac->m4ac.chan_config) {
            int ret = set_default_channel_config(avctx, new_che_pos, ac->m4ac.chan_config);
            if (!ret)
                output_configure(ac, ac->che_pos, new_che_pos, ac->m4ac.chan_config, OC_GLOBAL_HDR);
            else if (avctx->err_recognition & AV_EF_EXPLODE)
                return AVERROR_INVALIDDATA;
        }
    }

    if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
        avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
        output_scale_factor = 1.0 / 32768.0;
    } else {
        avctx->sample_fmt = AV_SAMPLE_FMT_S16;
        output_scale_factor = 1.0;
    }

    AAC_INIT_VLC_STATIC( 0, 304);
    AAC_INIT_VLC_STATIC( 1, 270);
    AAC_INIT_VLC_STATIC( 2, 550);
    AAC_INIT_VLC_STATIC( 3, 300);
    AAC_INIT_VLC_STATIC( 4, 328);
    AAC_INIT_VLC_STATIC( 5, 294);
    AAC_INIT_VLC_STATIC( 6, 306);
    AAC_INIT_VLC_STATIC( 7, 268);
    AAC_INIT_VLC_STATIC( 8, 510);
    AAC_INIT_VLC_STATIC( 9, 366);
    AAC_INIT_VLC_STATIC(10, 462);

    ff_aac_sbr_init();

    dsputil_init(&ac->dsp, avctx);
    ff_fmt_convert_init(&ac->fmt_conv, avctx);

    ac->random_state = 0x1f2e3d4c;

    ff_aac_tableinit();

    INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
                    ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
                    ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
                    352);

    ff_mdct_init(&ac->mdct,       11, 1, output_scale_factor/1024.0);
    ff_mdct_init(&ac->mdct_small,  8, 1, output_scale_factor/128.0);
    ff_mdct_init(&ac->mdct_ltp,   11, 0, -2.0/output_scale_factor);
    // window initialization
    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
    ff_init_ff_sine_windows(10);
    ff_init_ff_sine_windows( 7);

    cbrt_tableinit();

    avcodec_get_frame_defaults(&ac->frame);
    avctx->coded_frame = &ac->frame;

    return 0;
}

/**
 * Skip data_stream_element; reference: table 4.10.
 */
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
{
    int byte_align = get_bits1(gb);
    int count = get_bits(gb, 8);
    if (count == 255)
        count += get_bits(gb, 8);
    if (byte_align)
        align_get_bits(gb);

    if (get_bits_left(gb) < 8 * count) {
        av_log(ac->avctx, AV_LOG_ERROR, overread_err);
        return -1;
    }
    skip_bits_long(gb, 8 * count);
    return 0;
}

static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
                             GetBitContext *gb)
{
    int sfb;
    if (get_bits1(gb)) {
        ics->predictor_reset_group = get_bits(gb, 5);
        if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
            return -1;
        }
    }
    for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
        ics->prediction_used[sfb] = get_bits1(gb);
    }
    return 0;
}

/**
 * Decode Long Term Prediction data; reference: table 4.xx.
 */
static void decode_ltp(AACContext *ac, LongTermPrediction *ltp,
                       GetBitContext *gb, uint8_t max_sfb)
{
    int sfb;

    ltp->lag  = get_bits(gb, 11);
    ltp->coef = ltp_coef[get_bits(gb, 3)];
    for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
        ltp->used[sfb] = get_bits1(gb);
}

/**
 * Decode Individual Channel Stream info; reference: table 4.6.
 */
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
                           GetBitContext *gb)
{
    if (get_bits1(gb)) {
        av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
        return AVERROR_INVALIDDATA;
    }
    ics->window_sequence[1] = ics->window_sequence[0];
    ics->window_sequence[0] = get_bits(gb, 2);
    ics->use_kb_window[1]   = ics->use_kb_window[0];
    ics->use_kb_window[0]   = get_bits1(gb);
    ics->num_window_groups  = 1;
    ics->group_len[0]       = 1;
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        int i;
        ics->max_sfb = get_bits(gb, 4);
        for (i = 0; i < 7; i++) {
            if (get_bits1(gb)) {
                ics->group_len[ics->num_window_groups - 1]++;
            } else {
                ics->num_window_groups++;
                ics->group_len[ics->num_window_groups - 1] = 1;
            }
        }
        ics->num_windows       = 8;
        ics->swb_offset        =    ff_swb_offset_128[ac->m4ac.sampling_index];
        ics->num_swb           =   ff_aac_num_swb_128[ac->m4ac.sampling_index];
        ics->tns_max_bands     = ff_tns_max_bands_128[ac->m4ac.sampling_index];
        ics->predictor_present = 0;
    } else {
        ics->max_sfb               = get_bits(gb, 6);
        ics->num_windows           = 1;
        ics->swb_offset            =    ff_swb_offset_1024[ac->m4ac.sampling_index];
        ics->num_swb               =   ff_aac_num_swb_1024[ac->m4ac.sampling_index];
        ics->tns_max_bands         = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
        ics->predictor_present     = get_bits1(gb);
        ics->predictor_reset_group = 0;
        if (ics->predictor_present) {
            if (ac->m4ac.object_type == AOT_AAC_MAIN) {
                if (decode_prediction(ac, ics, gb)) {
                    return AVERROR_INVALIDDATA;
                }
            } else if (ac->m4ac.object_type == AOT_AAC_LC) {
                av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
                return AVERROR_INVALIDDATA;
            } else {
                if ((ics->ltp.present = get_bits(gb, 1)))
                    decode_ltp(ac, &ics->ltp, gb, ics->max_sfb);
            }
        }
    }

    if (ics->max_sfb > ics->num_swb) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
               ics->max_sfb, ics->num_swb);
        return AVERROR_INVALIDDATA;
    }

    return 0;
}

/**
 * Decode band types (section_data payload); reference: table 4.46.
 *
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_band_types(AACContext *ac, enum BandType band_type[120],
                             int band_type_run_end[120], GetBitContext *gb,
                             IndividualChannelStream *ics)
{
    int g, idx = 0;
    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
    for (g = 0; g < ics->num_window_groups; g++) {
        int k = 0;
        while (k < ics->max_sfb) {
            uint8_t sect_end = k;
            int sect_len_incr;
            int sect_band_type = get_bits(gb, 4);
            if (sect_band_type == 12) {
                av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
                return -1;
            }
            while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
                sect_end += sect_len_incr;
            sect_end += sect_len_incr;
            if (get_bits_left(gb) < 0) {
                av_log(ac->avctx, AV_LOG_ERROR, overread_err);
                return -1;
            }
            if (sect_end > ics->max_sfb) {
                av_log(ac->avctx, AV_LOG_ERROR,
                       "Number of bands (%d) exceeds limit (%d).\n",
                       sect_end, ics->max_sfb);
                return -1;
            }
            for (; k < sect_end; k++) {
                band_type        [idx]   = sect_band_type;
                band_type_run_end[idx++] = sect_end;
            }
        }
    }
    return 0;
}

/**
 * Decode scalefactors; reference: table 4.47.
 *
 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 * @param   sf                  array of scalefactors or intensity stereo positions
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
                               unsigned int global_gain,
                               IndividualChannelStream *ics,
                               enum BandType band_type[120],
                               int band_type_run_end[120])
{
    int g, i, idx = 0;
    int offset[3] = { global_gain, global_gain - 90, 0 };
    int clipped_offset;
    int noise_flag = 1;
    static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            int run_end = band_type_run_end[idx];
            if (band_type[idx] == ZERO_BT) {
                for (; i < run_end; i++, idx++)
                    sf[idx] = 0.;
            } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                for (; i < run_end; i++, idx++) {
                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    clipped_offset = av_clip(offset[2], -155, 100);
                    if (offset[2] != clipped_offset) {
                        av_log_ask_for_sample(ac->avctx, "Intensity stereo "
                                "position clipped (%d -> %d).\nIf you heard an "
                                "audible artifact, there may be a bug in the "
                                "decoder. ", offset[2], clipped_offset);
                    }
                    sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
                }
            } else if (band_type[idx] == NOISE_BT) {
                for (; i < run_end; i++, idx++) {
                    if (noise_flag-- > 0)
                        offset[1] += get_bits(gb, 9) - 256;
                    else
                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    clipped_offset = av_clip(offset[1], -100, 155);
                    if (offset[1] != clipped_offset) {
                        av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
                                "(%d -> %d).\nIf you heard an audible "
                                "artifact, there may be a bug in the decoder. ",
                                offset[1], clipped_offset);
                    }
                    sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
                }
            } else {
                for (; i < run_end; i++, idx++) {
                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if (offset[0] > 255U) {
                        av_log(ac->avctx, AV_LOG_ERROR,
                               "%s (%d) out of range.\n", sf_str[0], offset[0]);
                        return -1;
                    }
                    sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
                }
            }
        }
    }
    return 0;
}

/**
 * Decode pulse data; reference: table 4.7.
 */
static int decode_pulses(Pulse *pulse, GetBitContext *gb,
                         const uint16_t *swb_offset, int num_swb)
{
    int i, pulse_swb;
    pulse->num_pulse = get_bits(gb, 2) + 1;
    pulse_swb        = get_bits(gb, 6);
    if (pulse_swb >= num_swb)
        return -1;
    pulse->pos[0]    = swb_offset[pulse_swb];
    pulse->pos[0]   += get_bits(gb, 5);
    if (pulse->pos[0] > 1023)
        return -1;
    pulse->amp[0]    = get_bits(gb, 4);
    for (i = 1; i < pulse->num_pulse; i++) {
        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
        if (pulse->pos[i] > 1023)
            return -1;
        pulse->amp[i] = get_bits(gb, 4);
    }
    return 0;
}

/**
 * Decode Temporal Noise Shaping data; reference: table 4.48.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
                      GetBitContext *gb, const IndividualChannelStream *ics)
{
    int w, filt, i, coef_len, coef_res, coef_compress;
    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
    for (w = 0; w < ics->num_windows; w++) {
        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
            coef_res = get_bits1(gb);

            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                int tmp2_idx;
                tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);

                if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
                    av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
                           tns->order[w][filt], tns_max_order);
                    tns->order[w][filt] = 0;
                    return -1;
                }
                if (tns->order[w][filt]) {
                    tns->direction[w][filt] = get_bits1(gb);
                    coef_compress = get_bits1(gb);
                    coef_len = coef_res + 3 - coef_compress;
                    tmp2_idx = 2 * coef_compress + coef_res;

                    for (i = 0; i < tns->order[w][filt]; i++)
                        tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
                }
            }
        }
    }
    return 0;
}

/**
 * Decode Mid/Side data; reference: table 4.54.
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
                                   int ms_present)
{
    int idx;
    if (ms_present == 1) {
        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
            cpe->ms_mask[idx] = get_bits1(gb);
    } else if (ms_present == 2) {
        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
    }
}

#ifndef VMUL2
static inline float *VMUL2(float *dst, const float *v, unsigned idx,
                           const float *scale)
{
    float s = *scale;
    *dst++ = v[idx    & 15] * s;
    *dst++ = v[idx>>4 & 15] * s;
    return dst;
}
#endif

#ifndef VMUL4
static inline float *VMUL4(float *dst, const float *v, unsigned idx,
                           const float *scale)
{
    float s = *scale;
    *dst++ = v[idx    & 3] * s;
    *dst++ = v[idx>>2 & 3] * s;
    *dst++ = v[idx>>4 & 3] * s;
    *dst++ = v[idx>>6 & 3] * s;
    return dst;
}
#endif

#ifndef VMUL2S
static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
                            unsigned sign, const float *scale)
{
    union av_intfloat32 s0, s1;

    s0.f = s1.f = *scale;
    s0.i ^= sign >> 1 << 31;
    s1.i ^= sign      << 31;

    *dst++ = v[idx    & 15] * s0.f;
    *dst++ = v[idx>>4 & 15] * s1.f;

    return dst;
}
#endif

#ifndef VMUL4S
static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
                            unsigned sign, const float *scale)
{
    unsigned nz = idx >> 12;
    union av_intfloat32 s = { .f = *scale };
    union av_intfloat32 t;

    t.i = s.i ^ (sign & 1U<<31);
    *dst++ = v[idx    & 3] * t.f;

    sign <<= nz & 1; nz >>= 1;
    t.i = s.i ^ (sign & 1U<<31);
    *dst++ = v[idx>>2 & 3] * t.f;

    sign <<= nz & 1; nz >>= 1;
    t.i = s.i ^ (sign & 1U<<31);
    *dst++ = v[idx>>4 & 3] * t.f;

    sign <<= nz & 1; nz >>= 1;
    t.i = s.i ^ (sign & 1U<<31);
    *dst++ = v[idx>>6 & 3] * t.f;

    return dst;
}
#endif

/**
 * Decode spectral data; reference: table 4.50.
 * Dequantize and scale spectral data; reference: 4.6.3.3.
 *
 * @param   coef            array of dequantized, scaled spectral data
 * @param   sf              array of scalefactors or intensity stereo positions
 * @param   pulse_present   set if pulses are present
 * @param   pulse           pointer to pulse data struct
 * @param   band_type       array of the used band type
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
                                       GetBitContext *gb, const float sf[120],
                                       int pulse_present, const Pulse *pulse,
                                       const IndividualChannelStream *ics,
                                       enum BandType band_type[120])
{
    int i, k, g, idx = 0;
    const int c = 1024 / ics->num_windows;
    const uint16_t *offsets = ics->swb_offset;
    float *coef_base = coef;

    for (g = 0; g < ics->num_windows; g++)
        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));

    for (g = 0; g < ics->num_window_groups; g++) {
        unsigned g_len = ics->group_len[g];

        for (i = 0; i < ics->max_sfb; i++, idx++) {
            const unsigned cbt_m1 = band_type[idx] - 1;
            float *cfo = coef + offsets[i];
            int off_len = offsets[i + 1] - offsets[i];
            int group;

            if (cbt_m1 >= INTENSITY_BT2 - 1) {
                for (group = 0; group < g_len; group++, cfo+=128) {
                    memset(cfo, 0, off_len * sizeof(float));
                }
            } else if (cbt_m1 == NOISE_BT - 1) {
                for (group = 0; group < g_len; group++, cfo+=128) {
                    float scale;
                    float band_energy;

                    for (k = 0; k < off_len; k++) {
                        ac->random_state  = lcg_random(ac->random_state);
                        cfo[k] = ac->random_state;
                    }

                    band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
                    scale = sf[idx] / sqrtf(band_energy);
                    ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
                }
            } else {
                const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
                const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
                VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
                OPEN_READER(re, gb);

                switch (cbt_m1 >> 1) {
                case 0:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

                        do {
                            int code;
                            unsigned cb_idx;

                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
                            cf = VMUL4(cf, vq, cb_idx, sf + idx);
                        } while (len -= 4);
                    }
                    break;

                case 1:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

                        do {
                            int code;
                            unsigned nnz;
                            unsigned cb_idx;
                            uint32_t bits;

                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
                            nnz = cb_idx >> 8 & 15;
                            bits = nnz ? GET_CACHE(re, gb) : 0;
                            LAST_SKIP_BITS(re, gb, nnz);
                            cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
                        } while (len -= 4);
                    }
                    break;

                case 2:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

                        do {
                            int code;
                            unsigned cb_idx;

                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
                            cf = VMUL2(cf, vq, cb_idx, sf + idx);
                        } while (len -= 2);
                    }
                    break;

                case 3:
                case 4:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

                        do {
                            int code;
                            unsigned nnz;
                            unsigned cb_idx;
                            unsigned sign;

                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
                            nnz = cb_idx >> 8 & 15;
                            sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0;
                            LAST_SKIP_BITS(re, gb, nnz);
                            cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
                        } while (len -= 2);
                    }
                    break;

                default:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        uint32_t *icf = (uint32_t *) cf;
                        int len = off_len;

                        do {
                            int code;
                            unsigned nzt, nnz;
                            unsigned cb_idx;
                            uint32_t bits;
                            int j;

                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);

                            if (!code) {
                                *icf++ = 0;
                                *icf++ = 0;
                                continue;
                            }

                            cb_idx = cb_vector_idx[code];
                            nnz = cb_idx >> 12;
                            nzt = cb_idx >> 8;
                            bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
                            LAST_SKIP_BITS(re, gb, nnz);

                            for (j = 0; j < 2; j++) {
                                if (nzt & 1<<j) {
                                    uint32_t b;
                                    int n;
                                    /* The total length of escape_sequence must be < 22 bits according
                                       to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
                                    UPDATE_CACHE(re, gb);
                                    b = GET_CACHE(re, gb);
                                    b = 31 - av_log2(~b);

                                    if (b > 8) {
                                        av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
                                        return -1;
                                    }

                                    SKIP_BITS(re, gb, b + 1);
                                    b += 4;
                                    n = (1 << b) + SHOW_UBITS(re, gb, b);
                                    LAST_SKIP_BITS(re, gb, b);
                                    *icf++ = cbrt_tab[n] | (bits & 1U<<31);
                                    bits <<= 1;
                                } else {
                                    unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
                                    *icf++ = (bits & 1U<<31) | v;
                                    bits <<= !!v;
                                }
                                cb_idx >>= 4;
                            }
                        } while (len -= 2);

                        ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
                    }
                }

                CLOSE_READER(re, gb);
            }
        }
        coef += g_len << 7;
    }

    if (pulse_present) {
        idx = 0;
        for (i = 0; i < pulse->num_pulse; i++) {
            float co = coef_base[ pulse->pos[i] ];
            while (offsets[idx + 1] <= pulse->pos[i])
                idx++;
            if (band_type[idx] != NOISE_BT && sf[idx]) {
                float ico = -pulse->amp[i];
                if (co) {
                    co /= sf[idx];
                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
                }
                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
            }
        }
    }
    return 0;
}

static av_always_inline float flt16_round(float pf)
{
    union av_intfloat32 tmp;
    tmp.f = pf;
    tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
    return tmp.f;
}

static av_always_inline float flt16_even(float pf)
{
    union av_intfloat32 tmp;
    tmp.f = pf;
    tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
    return tmp.f;
}

static av_always_inline float flt16_trunc(float pf)
{
    union av_intfloat32 pun;
    pun.f = pf;
    pun.i &= 0xFFFF0000U;
    return pun.f;
}

static av_always_inline void predict(PredictorState *ps, float *coef,
                                     int output_enable)
{
    const float a     = 0.953125; // 61.0 / 64
    const float alpha = 0.90625;  // 29.0 / 32
    float e0, e1;
    float pv;
    float k1, k2;
    float   r0 = ps->r0,     r1 = ps->r1;
    float cor0 = ps->cor0, cor1 = ps->cor1;
    float var0 = ps->var0, var1 = ps->var1;

    k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
    k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;

    pv = flt16_round(k1 * r0 + k2 * r1);
    if (output_enable)
        *coef += pv;

    e0 = *coef;
    e1 = e0 - k1 * r0;

    ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
    ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
    ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
    ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));

    ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
    ps->r0 = flt16_trunc(a * e0);
}

/**
 * Apply AAC-Main style frequency domain prediction.
 */
static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
{
    int sfb, k;

    if (!sce->ics.predictor_initialized) {
        reset_all_predictors(sce->predictor_state);
        sce->ics.predictor_initialized = 1;
    }

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
                predict(&sce->predictor_state[k], &sce->coeffs[k],
                        sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
            }
        }
        if (sce->ics.predictor_reset_group)
            reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
    } else
        reset_all_predictors(sce->predictor_state);
}

/**
 * Decode an individual_channel_stream payload; reference: table 4.44.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ics(AACContext *ac, SingleChannelElement *sce,
                      GetBitContext *gb, int common_window, int scale_flag)
{
    Pulse pulse;
    TemporalNoiseShaping    *tns = &sce->tns;
    IndividualChannelStream *ics = &sce->ics;
    float *out = sce->coeffs;
    int global_gain, pulse_present = 0;

    /* This assignment is to silence a GCC warning about the variable being used
     * uninitialized when in fact it always is.
     */
    pulse.num_pulse = 0;

    global_gain = get_bits(gb, 8);

    if (!common_window && !scale_flag) {
        if (decode_ics_info(ac, ics, gb) < 0)
            return AVERROR_INVALIDDATA;
    }

    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
        return -1;
    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
        return -1;

    pulse_present = 0;
    if (!scale_flag) {
        if ((pulse_present = get_bits1(gb))) {
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
                av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                return -1;
            }
            if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
                av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
                return -1;
            }
        }
        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
            return -1;
        if (get_bits1(gb)) {
            av_log_missing_feature(ac->avctx, "SSR", 1);
            return -1;
        }
    }

    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
        return -1;

    if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
        apply_prediction(ac, sce);

    return 0;
}

/**
 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 */
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
{
    const IndividualChannelStream *ics = &cpe->ch[0].ics;
    float *ch0 = cpe->ch[0].coeffs;
    float *ch1 = cpe->ch[1].coeffs;
    int g, i, group, idx = 0;
    const uint16_t *offsets = ics->swb_offset;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cpe->ms_mask[idx] &&
                    cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
                                              ch1 + group * 128 + offsets[i],
                                              offsets[i+1] - offsets[i]);
                }
            }
        }
        ch0 += ics->group_len[g] * 128;
        ch1 += ics->group_len[g] * 128;
    }
}

/**
 * intensity stereo decoding; reference: 4.6.8.2.3
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
{
    const IndividualChannelStream *ics = &cpe->ch[1].ics;
    SingleChannelElement         *sce1 = &cpe->ch[1];
    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
    const uint16_t *offsets = ics->swb_offset;
    int g, group, i, idx = 0;
    int c;
    float scale;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                const int bt_run_end = sce1->band_type_run_end[idx];
                for (; i < bt_run_end; i++, idx++) {
                    c = -1 + 2 * (sce1->band_type[idx] - 14);
                    if (ms_present)
                        c *= 1 - 2 * cpe->ms_mask[idx];
                    scale = c * sce1->sf[idx];
                    for (group = 0; group < ics->group_len[g]; group++)
                        ac->dsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
                                                   coef0 + group * 128 + offsets[i],
                                                   scale,
                                                   offsets[i + 1] - offsets[i]);
                }
            } else {
                int bt_run_end = sce1->band_type_run_end[idx];
                idx += bt_run_end - i;
                i    = bt_run_end;
            }
        }
        coef0 += ics->group_len[g] * 128;
        coef1 += ics->group_len[g] * 128;
    }
}

/**
 * Decode a channel_pair_element; reference: table 4.4.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
{
    int i, ret, common_window, ms_present = 0;

    common_window = get_bits1(gb);
    if (common_window) {
        if (decode_ics_info(ac, &cpe->ch[0].ics, gb))
            return AVERROR_INVALIDDATA;
        i = cpe->ch[1].ics.use_kb_window[0];
        cpe->ch[1].ics = cpe->ch[0].ics;
        cpe->ch[1].ics.use_kb_window[1] = i;
        if (cpe->ch[1].ics.predictor_present && (ac->m4ac.object_type != AOT_AAC_MAIN))
            if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
                decode_ltp(ac, &cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
        ms_present = get_bits(gb, 2);
        if (ms_present == 3) {
            av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
            return -1;
        } else if (ms_present)
            decode_mid_side_stereo(cpe, gb, ms_present);
    }
    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
        return ret;
    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
        return ret;

    if (common_window) {
        if (ms_present)
            apply_mid_side_stereo(ac, cpe);
        if (ac->m4ac.object_type == AOT_AAC_MAIN) {
            apply_prediction(ac, &cpe->ch[0]);
            apply_prediction(ac, &cpe->ch[1]);
        }
    }

    apply_intensity_stereo(ac, cpe, ms_present);
    return 0;
}

static const float cce_scale[] = {
    1.09050773266525765921, //2^(1/8)
    1.18920711500272106672, //2^(1/4)
    M_SQRT2,
    2,
};

/**
 * Decode coupling_channel_element; reference: table 4.8.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
{
    int num_gain = 0;
    int c, g, sfb, ret;
    int sign;
    float scale;
    SingleChannelElement *sce = &che->ch[0];
    ChannelCoupling     *coup = &che->coup;

    coup->coupling_point = 2 * get_bits1(gb);
    coup->num_coupled = get_bits(gb, 3);
    for (c = 0; c <= coup->num_coupled; c++) {
        num_gain++;
        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
        coup->id_select[c] = get_bits(gb, 4);
        if (coup->type[c] == TYPE_CPE) {
            coup->ch_select[c] = get_bits(gb, 2);
            if (coup->ch_select[c] == 3)
                num_gain++;
        } else
            coup->ch_select[c] = 2;
    }
    coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);

    sign  = get_bits(gb, 1);
    scale = cce_scale[get_bits(gb, 2)];

    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
        return ret;

    for (c = 0; c < num_gain; c++) {
        int idx  = 0;
        int cge  = 1;
        int gain = 0;
        float gain_cache = 1.;
        if (c) {
            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
            gain_cache = powf(scale, -gain);
        }
        if (coup->coupling_point == AFTER_IMDCT) {
            coup->gain[c][0] = gain_cache;
        } else {
            for (g = 0; g < sce->ics.num_window_groups; g++) {
                for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
                    if (sce->band_type[idx] != ZERO_BT) {
                        if (!cge) {
                            int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                            if (t) {
                                int s = 1;
                                t = gain += t;
                                if (sign) {
                                    s  -= 2 * (t & 0x1);
                                    t >>= 1;
                                }
                                gain_cache = powf(scale, -t) * s;
                            }
                        }
                        coup->gain[c][idx] = gain_cache;
                    }
                }
            }
        }
    }
    return 0;
}

/**
 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
                                         GetBitContext *gb)
{
    int i;
    int num_excl_chan = 0;

    do {
        for (i = 0; i < 7; i++)
            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));

    return num_excl_chan / 7;
}

/**
 * Decode dynamic range information; reference: table 4.52.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_dynamic_range(DynamicRangeControl *che_drc,
                                GetBitContext *gb, int cnt)
{
    int n             = 1;
    int drc_num_bands = 1;
    int i;

    /* pce_tag_present? */
    if (get_bits1(gb)) {
        che_drc->pce_instance_tag  = get_bits(gb, 4);
        skip_bits(gb, 4); // tag_reserved_bits
        n++;
    }

    /* excluded_chns_present? */
    if (get_bits1(gb)) {
        n += decode_drc_channel_exclusions(che_drc, gb);
    }

    /* drc_bands_present? */
    if (get_bits1(gb)) {
        che_drc->band_incr            = get_bits(gb, 4);
        che_drc->interpolation_scheme = get_bits(gb, 4);
        n++;
        drc_num_bands += che_drc->band_incr;
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->band_top[i] = get_bits(gb, 8);
            n++;
        }
    }

    /* prog_ref_level_present? */
    if (get_bits1(gb)) {
        che_drc->prog_ref_level = get_bits(gb, 7);
        skip_bits1(gb); // prog_ref_level_reserved_bits
        n++;
    }

    for (i = 0; i < drc_num_bands; i++) {
        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
        n++;
    }

    return n;
}

/**
 * Decode extension data (incomplete); reference: table 4.51.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return Returns number of bytes consumed
 */
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
                                    ChannelElement *che, enum RawDataBlockType elem_type)
{
    int crc_flag = 0;
    int res = cnt;
    switch (get_bits(gb, 4)) { // extension type
    case EXT_SBR_DATA_CRC:
        crc_flag++;
    case EXT_SBR_DATA:
        if (!che) {
            av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
            return res;
        } else if (!ac->m4ac.sbr) {
            av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
            skip_bits_long(gb, 8 * cnt - 4);
            return res;
        } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
            av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
            skip_bits_long(gb, 8 * cnt - 4);
            return res;
        } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
            ac->m4ac.sbr = 1;
            ac->m4ac.ps = 1;
            output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
        } else {
            ac->m4ac.sbr = 1;
        }
        res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
        break;
    case EXT_DYNAMIC_RANGE:
        res = decode_dynamic_range(&ac->che_drc, gb, cnt);
        break;
    case EXT_FILL:
    case EXT_FILL_DATA:
    case EXT_DATA_ELEMENT:
    default:
        skip_bits_long(gb, 8 * cnt - 4);
        break;
    };
    return res;
}

/**
 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 *
 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 * @param   coef    spectral coefficients
 */
static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
                      IndividualChannelStream *ics, int decode)
{
    const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
    int w, filt, m, i;
    int bottom, top, order, start, end, size, inc;
    float lpc[TNS_MAX_ORDER];
    float tmp[TNS_MAX_ORDER];

    for (w = 0; w < ics->num_windows; w++) {
        bottom = ics->num_swb;
        for (filt = 0; filt < tns->n_filt[w]; filt++) {
            top    = bottom;
            bottom = FFMAX(0, top - tns->length[w][filt]);
            order  = tns->order[w][filt];
            if (order == 0)
                continue;

            // tns_decode_coef
            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);

            start = ics->swb_offset[FFMIN(bottom, mmm)];
            end   = ics->swb_offset[FFMIN(   top, mmm)];
            if ((size = end - start) <= 0)
                continue;
            if (tns->direction[w][filt]) {
                inc = -1;
                start = end - 1;
            } else {
                inc = 1;
            }
            start += w * 128;

            if (decode) {
                // ar filter
                for (m = 0; m < size; m++, start += inc)
                    for (i = 1; i <= FFMIN(m, order); i++)
                        coef[start] -= coef[start - i * inc] * lpc[i - 1];
            } else {
                // ma filter
                for (m = 0; m < size; m++, start += inc) {
                    tmp[0] = coef[start];
                    for (i = 1; i <= FFMIN(m, order); i++)
                        coef[start] += tmp[i] * lpc[i - 1];
                    for (i = order; i > 0; i--)
                        tmp[i] = tmp[i - 1];
                }
            }
        }
    }
}

/**
 *  Apply windowing and MDCT to obtain the spectral
 *  coefficient from the predicted sample by LTP.
 */
static void windowing_and_mdct_ltp(AACContext *ac, float *out,
                                   float *in, IndividualChannelStream *ics)
{
    const float *lwindow      = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;

    if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
        ac->dsp.vector_fmul(in, in, lwindow_prev, 1024);
    } else {
        memset(in, 0, 448 * sizeof(float));
        ac->dsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
    }
    if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
        ac->dsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
    } else {
        ac->dsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
        memset(in + 1024 + 576, 0, 448 * sizeof(float));
    }
    ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
}

/**
 * Apply the long term prediction
 */
static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
{
    const LongTermPrediction *ltp = &sce->ics.ltp;
    const uint16_t *offsets = sce->ics.swb_offset;
    int i, sfb;

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        float *predTime = sce->ret;
        float *predFreq = ac->buf_mdct;
        int16_t num_samples = 2048;

        if (ltp->lag < 1024)
            num_samples = ltp->lag + 1024;
        for (i = 0; i < num_samples; i++)
            predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
        memset(&predTime[i], 0, (2048 - i) * sizeof(float));

        windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);

        if (sce->tns.present)
            apply_tns(predFreq, &sce->tns, &sce->ics, 0);

        for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
            if (ltp->used[sfb])
                for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
                    sce->coeffs[i] += predFreq[i];
    }
}

/**
 * Update the LTP buffer for next frame
 */
static void update_ltp(AACContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    float *saved     = sce->saved;
    float *saved_ltp = sce->coeffs;
    const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    int i;

    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        memcpy(saved_ltp,       saved, 512 * sizeof(float));
        memset(saved_ltp + 576, 0,     448 * sizeof(float));
        ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960,     &swindow[64],      64);
        for (i = 0; i < 64; i++)
            saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(saved_ltp,       ac->buf_mdct + 512, 448 * sizeof(float));
        memset(saved_ltp + 576, 0,                  448 * sizeof(float));
        ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960,     &swindow[64],      64);
        for (i = 0; i < 64; i++)
            saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
    } else { // LONG_STOP or ONLY_LONG
        ac->dsp.vector_fmul_reverse(saved_ltp,       ac->buf_mdct + 512,     &lwindow[512],     512);
        for (i = 0; i < 512; i++)
            saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
    }

    memcpy(sce->ltp_state,      sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
    memcpy(sce->ltp_state+1024, sce->ret,            1024 * sizeof(*sce->ltp_state));
    memcpy(sce->ltp_state+2048, saved_ltp,           1024 * sizeof(*sce->ltp_state));
}

/**
 * Conduct IMDCT and windowing.
 */
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    float *in    = sce->coeffs;
    float *out   = sce->ret;
    float *saved = sce->saved;
    const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
    float *buf  = ac->buf_mdct;
    float *temp = ac->temp;
    int i;

    // imdct
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        for (i = 0; i < 1024; i += 128)
            ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
    } else
        ac->mdct.imdct_half(&ac->mdct, buf, in);

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */
    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
            (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, 512);
    } else {
        memcpy(                        out,               saved,            448 * sizeof(float));

        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, 64);
            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      64);
            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      64);
            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      64);
            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      64);
            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
        } else {
            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, 64);
            memcpy(                    out + 576,         buf + 64,         448 * sizeof(float));
        }
    }

    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        memcpy(                    saved,       temp + 64,         64 * sizeof(float));
        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 64);
        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    } else { // LONG_STOP or ONLY_LONG
        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
    }
}

/**
 * Apply dependent channel coupling (applied before IMDCT).
 *
 * @param   index   index into coupling gain array
 */
static void apply_dependent_coupling(AACContext *ac,
                                     SingleChannelElement *target,
                                     ChannelElement *cce, int index)
{
    IndividualChannelStream *ics = &cce->ch[0].ics;
    const uint16_t *offsets = ics->swb_offset;
    float *dest = target->coeffs;
    const float *src = cce->ch[0].coeffs;
    int g, i, group, k, idx = 0;
    if (ac->m4ac.object_type == AOT_AAC_LTP) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Dependent coupling is not supported together with LTP\n");
        return;
    }
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cce->ch[0].band_type[idx] != ZERO_BT) {
                const float gain = cce->coup.gain[index][idx];
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i + 1]; k++) {
                        // XXX dsputil-ize
                        dest[group * 128 + k] += gain * src[group * 128 + k];
                    }
                }
            }
        }
        dest += ics->group_len[g] * 128;
        src  += ics->group_len[g] * 128;
    }
}

/**
 * Apply independent channel coupling (applied after IMDCT).
 *
 * @param   index   index into coupling gain array
 */
static void apply_independent_coupling(AACContext *ac,
                                       SingleChannelElement *target,
                                       ChannelElement *cce, int index)
{
    int i;
    const float gain = cce->coup.gain[index][0];
    const float *src = cce->ch[0].ret;
    float *dest = target->ret;
    const int len = 1024 << (ac->m4ac.sbr == 1);

    for (i = 0; i < len; i++)
        dest[i] += gain * src[i];
}

/**
 * channel coupling transformation interface
 *
 * @param   apply_coupling_method   pointer to (in)dependent coupling function
 */
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
                                   enum RawDataBlockType type, int elem_id,
                                   enum CouplingPoint coupling_point,
                                   void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
{
    int i, c;

    for (i = 0; i < MAX_ELEM_ID; i++) {
        ChannelElement *cce = ac->che[TYPE_CCE][i];
        int index = 0;

        if (cce && cce->coup.coupling_point == coupling_point) {
            ChannelCoupling *coup = &cce->coup;

            for (c = 0; c <= coup->num_coupled; c++) {
                if (coup->type[c] == type && coup->id_select[c] == elem_id) {
                    if (coup->ch_select[c] != 1) {
                        apply_coupling_method(ac, &cc->ch[0], cce, index);
                        if (coup->ch_select[c] != 0)
                            index++;
                    }
                    if (coup->ch_select[c] != 2)
                        apply_coupling_method(ac, &cc->ch[1], cce, index++);
                } else
                    index += 1 + (coup->ch_select[c] == 3);
            }
        }
    }
}

/**
 * Convert spectral data to float samples, applying all supported tools as appropriate.
 */
static void spectral_to_sample(AACContext *ac)
{
    int i, type;
    for (type = 3; type >= 0; type--) {
        for (i = 0; i < MAX_ELEM_ID; i++) {
            ChannelElement *che = ac->che[type][i];
            if (che) {
                if (type <= TYPE_CPE)
                    apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
                if (ac->m4ac.object_type == AOT_AAC_LTP) {
                    if (che->ch[0].ics.predictor_present) {
                        if (che->ch[0].ics.ltp.present)
                            apply_ltp(ac, &che->ch[0]);
                        if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
                            apply_ltp(ac, &che->ch[1]);
                    }
                }
                if (che->ch[0].tns.present)
                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
                if (che->ch[1].tns.present)
                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
                if (type <= TYPE_CPE)
                    apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
                if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
                    imdct_and_windowing(ac, &che->ch[0]);
                    if (ac->m4ac.object_type == AOT_AAC_LTP)
                        update_ltp(ac, &che->ch[0]);
                    if (type == TYPE_CPE) {
                        imdct_and_windowing(ac, &che->ch[1]);
                        if (ac->m4ac.object_type == AOT_AAC_LTP)
                            update_ltp(ac, &che->ch[1]);
                    }
                    if (ac->m4ac.sbr > 0) {
                        ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
                    }
                }
                if (type <= TYPE_CCE)
                    apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
            }
        }
    }
}

static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
{
    int size;
    AACADTSHeaderInfo hdr_info;

    size = avpriv_aac_parse_header(gb, &hdr_info);
    if (size > 0) {
        if (hdr_info.chan_config && (hdr_info.chan_config!=ac->m4ac.chan_config || ac->m4ac.sample_rate!=hdr_info.sample_rate)) {
            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
            ac->m4ac.chan_config = hdr_info.chan_config;
            if (set_default_channel_config(ac->avctx, new_che_pos, hdr_info.chan_config))
                return -7;
            if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config,
                                 FFMAX(ac->output_configured, OC_TRIAL_FRAME)))
                return -7;
        } else if (ac->output_configured != OC_LOCKED) {
            ac->m4ac.chan_config = 0;
            ac->output_configured = OC_NONE;
        }
        if (ac->output_configured != OC_LOCKED) {
            ac->m4ac.sbr = -1;
            ac->m4ac.ps  = -1;
            ac->m4ac.sample_rate     = hdr_info.sample_rate;
            ac->m4ac.sampling_index  = hdr_info.sampling_index;
            ac->m4ac.object_type     = hdr_info.object_type;
        }
        if (!ac->avctx->sample_rate)
            ac->avctx->sample_rate = hdr_info.sample_rate;
        if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) {
            // This is 2 for "VLB " audio in NSV files.
            // See samples/nsv/vlb_audio.
            av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
            ac->warned_num_aac_frames = 1;
        }
        if (!hdr_info.crc_absent)
            skip_bits(gb, 16);
    }
    return size;
}

static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
                                int *got_frame_ptr, GetBitContext *gb)
{
    AACContext *ac = avctx->priv_data;
    ChannelElement *che = NULL, *che_prev = NULL;
    enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
    int err, elem_id;
    int samples = 0, multiplier, audio_found = 0;

    if (show_bits(gb, 12) == 0xfff) {
        if (parse_adts_frame_header(ac, gb) < 0) {
            av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
            return -1;
        }
        if (ac->m4ac.sampling_index > 12) {
            av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
            return -1;
        }
    }

    ac->tags_mapped = 0;
    // parse
    while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
        elem_id = get_bits(gb, 4);

        if (elem_type < TYPE_DSE) {
            if (!ac->tags_mapped && elem_type == TYPE_CPE && ac->m4ac.chan_config==1) {
                enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]= {0};
                ac->m4ac.chan_config=2;

                if (set_default_channel_config(ac->avctx, new_che_pos, 2)<0)
                    return -1;
                if (output_configure(ac, ac->che_pos, new_che_pos, 2, OC_TRIAL_FRAME)<0)
                    return -1;
            }
            if (!(che=get_che(ac, elem_type, elem_id))) {
                av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
                       elem_type, elem_id);
                return -1;
            }
            samples = 1024;
        }

        switch (elem_type) {

        case TYPE_SCE:
            err = decode_ics(ac, &che->ch[0], gb, 0, 0);
            audio_found = 1;
            break;

        case TYPE_CPE:
            err = decode_cpe(ac, gb, che);
            audio_found = 1;
            break;

        case TYPE_CCE:
            err = decode_cce(ac, gb, che);
            break;

        case TYPE_LFE:
            err = decode_ics(ac, &che->ch[0], gb, 0, 0);
            audio_found = 1;
            break;

        case TYPE_DSE:
            err = skip_data_stream_element(ac, gb);
            break;

        case TYPE_PCE: {
            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
            if ((err = decode_pce(avctx, &ac->m4ac, new_che_pos, gb)))
                break;
            if (ac->output_configured > OC_TRIAL_PCE)
                av_log(avctx, AV_LOG_ERROR,
                       "Not evaluating a further program_config_element as this construct is dubious at best.\n");
            else
                err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
            break;
        }

        case TYPE_FIL:
            if (elem_id == 15)
                elem_id += get_bits(gb, 8) - 1;
            if (get_bits_left(gb) < 8 * elem_id) {
                    av_log(avctx, AV_LOG_ERROR, overread_err);
                    return -1;
            }
            while (elem_id > 0)
                elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
            err = 0; /* FIXME */
            break;

        default:
            err = -1; /* should not happen, but keeps compiler happy */
            break;
        }

        che_prev       = che;
        elem_type_prev = elem_type;

        if (err)
            return err;

        if (get_bits_left(gb) < 3) {
            av_log(avctx, AV_LOG_ERROR, overread_err);
            return -1;
        }
    }

    spectral_to_sample(ac);

    multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
    samples <<= multiplier;
    if (ac->output_configured < OC_LOCKED) {
        avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
        avctx->frame_size = samples;
    }

    if (samples) {
        /* get output buffer */
        ac->frame.nb_samples = samples;
        if ((err = avctx->get_buffer(avctx, &ac->frame)) < 0) {
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return err;
        }

        if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
            ac->fmt_conv.float_interleave((float *)ac->frame.data[0],
                                          (const float **)ac->output_data,
                                          samples, avctx->channels);
        else
            ac->fmt_conv.float_to_int16_interleave((int16_t *)ac->frame.data[0],
                                                   (const float **)ac->output_data,
                                                   samples, avctx->channels);

        *(AVFrame *)data = ac->frame;
    }
    *got_frame_ptr = !!samples;

    if (ac->output_configured && audio_found)
        ac->output_configured = OC_LOCKED;

    return 0;
}

static int aac_decode_frame(AVCodecContext *avctx, void *data,
                            int *got_frame_ptr, AVPacket *avpkt)
{
    AACContext *ac = avctx->priv_data;
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    GetBitContext gb;
    int buf_consumed;
    int buf_offset;
    int err;
    int new_extradata_size;
    const uint8_t *new_extradata = av_packet_get_side_data(avpkt,
                                       AV_PKT_DATA_NEW_EXTRADATA,
                                       &new_extradata_size);

    if (new_extradata) {
        av_free(avctx->extradata);
        avctx->extradata = av_mallocz(new_extradata_size +
                                      FF_INPUT_BUFFER_PADDING_SIZE);
        if (!avctx->extradata)
            return AVERROR(ENOMEM);
        avctx->extradata_size = new_extradata_size;
        memcpy(avctx->extradata, new_extradata, new_extradata_size);
        if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
                                         avctx->extradata,
                                         avctx->extradata_size*8, 1) < 0)
            return AVERROR_INVALIDDATA;
    }

    init_get_bits(&gb, buf, buf_size * 8);

    if ((err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb)) < 0)
        return err;

    buf_consumed = (get_bits_count(&gb) + 7) >> 3;
    for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
        if (buf[buf_offset])
            break;

    return buf_size > buf_offset ? buf_consumed : buf_size;
}

static av_cold int aac_decode_close(AVCodecContext *avctx)
{
    AACContext *ac = avctx->priv_data;
    int i, type;

    for (i = 0; i < MAX_ELEM_ID; i++) {
        for (type = 0; type < 4; type++) {
            if (ac->che[type][i])
                ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
            av_freep(&ac->che[type][i]);
        }
    }

    ff_mdct_end(&ac->mdct);
    ff_mdct_end(&ac->mdct_small);
    ff_mdct_end(&ac->mdct_ltp);
    return 0;
}


#define LOAS_SYNC_WORD   0x2b7       ///< 11 bits LOAS sync word

struct LATMContext {
    AACContext      aac_ctx;             ///< containing AACContext
    int             initialized;         ///< initilized after a valid extradata was seen

    // parser data
    int             audio_mux_version_A; ///< LATM syntax version
    int             frame_length_type;   ///< 0/1 variable/fixed frame length
    int             frame_length;        ///< frame length for fixed frame length
};

static inline uint32_t latm_get_value(GetBitContext *b)
{
    int length = get_bits(b, 2);

    return get_bits_long(b, (length+1)*8);
}

static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
                                             GetBitContext *gb, int asclen)
{
    AACContext *ac        = &latmctx->aac_ctx;
    AVCodecContext *avctx = ac->avctx;
    MPEG4AudioConfig m4ac = {0};
    int config_start_bit  = get_bits_count(gb);
    int sync_extension    = 0;
    int bits_consumed, esize;

    if (asclen) {
        sync_extension = 1;
        asclen         = FFMIN(asclen, get_bits_left(gb));
    } else
        asclen         = get_bits_left(gb);

    if (config_start_bit % 8) {
        av_log_missing_feature(latmctx->aac_ctx.avctx, "audio specific "
                               "config not byte aligned.\n", 1);
        return AVERROR_INVALIDDATA;
    }
    bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac,
                                         gb->buffer + (config_start_bit / 8),
                                         asclen, sync_extension);

    if (bits_consumed < 0)
        return AVERROR_INVALIDDATA;

    if (ac->m4ac.sample_rate != m4ac.sample_rate ||
        ac->m4ac.chan_config != m4ac.chan_config) {

        av_log(avctx, AV_LOG_INFO, "audio config changed\n");
        latmctx->initialized = 0;

        esize = (bits_consumed+7) / 8;

        if (avctx->extradata_size < esize) {
            av_free(avctx->extradata);
            avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
            if (!avctx->extradata)
                return AVERROR(ENOMEM);
        }

        avctx->extradata_size = esize;
        memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
        memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
    }
    skip_bits_long(gb, bits_consumed);

    return bits_consumed;
}

static int read_stream_mux_config(struct LATMContext *latmctx,
                                  GetBitContext *gb)
{
    int ret, audio_mux_version = get_bits(gb, 1);

    latmctx->audio_mux_version_A = 0;
    if (audio_mux_version)
        latmctx->audio_mux_version_A = get_bits(gb, 1);

    if (!latmctx->audio_mux_version_A) {

        if (audio_mux_version)
            latm_get_value(gb);                 // taraFullness

        skip_bits(gb, 1);                       // allStreamSameTimeFraming
        skip_bits(gb, 6);                       // numSubFrames
        // numPrograms
        if (get_bits(gb, 4)) {                  // numPrograms
            av_log_missing_feature(latmctx->aac_ctx.avctx,
                                   "multiple programs are not supported\n", 1);
            return AVERROR_PATCHWELCOME;
        }

        // for each program (which there is only on in DVB)

        // for each layer (which there is only on in DVB)
        if (get_bits(gb, 3)) {                   // numLayer
            av_log_missing_feature(latmctx->aac_ctx.avctx,
                                   "multiple layers are not supported\n", 1);
            return AVERROR_PATCHWELCOME;
        }

        // for all but first stream: use_same_config = get_bits(gb, 1);
        if (!audio_mux_version) {
            if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0)
                return ret;
        } else {
            int ascLen = latm_get_value(gb);
            if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0)
                return ret;
            ascLen -= ret;
            skip_bits_long(gb, ascLen);
        }

        latmctx->frame_length_type = get_bits(gb, 3);
        switch (latmctx->frame_length_type) {
        case 0:
            skip_bits(gb, 8);       // latmBufferFullness
            break;
        case 1:
            latmctx->frame_length = get_bits(gb, 9);
            break;
        case 3:
        case 4:
        case 5:
            skip_bits(gb, 6);       // CELP frame length table index
            break;
        case 6:
        case 7:
            skip_bits(gb, 1);       // HVXC frame length table index
            break;
        }

        if (get_bits(gb, 1)) {                  // other data
            if (audio_mux_version) {
                latm_get_value(gb);             // other_data_bits
            } else {
                int esc;
                do {
                    esc = get_bits(gb, 1);
                    skip_bits(gb, 8);
                } while (esc);
            }
        }

        if (get_bits(gb, 1))                     // crc present
            skip_bits(gb, 8);                    // config_crc
    }

    return 0;
}

static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
{
    uint8_t tmp;

    if (ctx->frame_length_type == 0) {
        int mux_slot_length = 0;
        do {
            tmp = get_bits(gb, 8);
            mux_slot_length += tmp;
        } while (tmp == 255);
        return mux_slot_length;
    } else if (ctx->frame_length_type == 1) {
        return ctx->frame_length;
    } else if (ctx->frame_length_type == 3 ||
               ctx->frame_length_type == 5 ||
               ctx->frame_length_type == 7) {
        skip_bits(gb, 2);          // mux_slot_length_coded
    }
    return 0;
}

static int read_audio_mux_element(struct LATMContext *latmctx,
                                  GetBitContext *gb)
{
    int err;
    uint8_t use_same_mux = get_bits(gb, 1);
    if (!use_same_mux) {
        if ((err = read_stream_mux_config(latmctx, gb)) < 0)
            return err;
    } else if (!latmctx->aac_ctx.avctx->extradata) {
        av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
               "no decoder config found\n");
        return AVERROR(EAGAIN);
    }
    if (latmctx->audio_mux_version_A == 0) {
        int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
        if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
            av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
            return AVERROR_INVALIDDATA;
        } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
            av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
                   "frame length mismatch %d << %d\n",
                   mux_slot_length_bytes * 8, get_bits_left(gb));
            return AVERROR_INVALIDDATA;
        }
    }
    return 0;
}


static int latm_decode_frame(AVCodecContext *avctx, void *out,
                             int *got_frame_ptr, AVPacket *avpkt)
{
    struct LATMContext *latmctx = avctx->priv_data;
    int                 muxlength, err;
    GetBitContext       gb;

    init_get_bits(&gb, avpkt->data, avpkt->size * 8);

    // check for LOAS sync word
    if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
        return AVERROR_INVALIDDATA;

    muxlength = get_bits(&gb, 13) + 3;
    // not enough data, the parser should have sorted this
    if (muxlength > avpkt->size)
        return AVERROR_INVALIDDATA;

    if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
        return err;

    if (!latmctx->initialized) {
        if (!avctx->extradata) {
            *got_frame_ptr = 0;
            return avpkt->size;
        } else {
            if ((err = decode_audio_specific_config(
                    &latmctx->aac_ctx, avctx, &latmctx->aac_ctx.m4ac,
                    avctx->extradata, avctx->extradata_size*8, 1)) < 0)
                return err;
            latmctx->initialized = 1;
        }
    }

    if (show_bits(&gb, 12) == 0xfff) {
        av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
               "ADTS header detected, probably as result of configuration "
               "misparsing\n");
        return AVERROR_INVALIDDATA;
    }

    if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb)) < 0)
        return err;

    return muxlength;
}

av_cold static int latm_decode_init(AVCodecContext *avctx)
{
    struct LATMContext *latmctx = avctx->priv_data;
    int ret = aac_decode_init(avctx);

    if (avctx->extradata_size > 0)
        latmctx->initialized = !ret;

    return ret;
}


AVCodec ff_aac_decoder = {
    .name           = "aac",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = CODEC_ID_AAC,
    .priv_data_size = sizeof(AACContext),
    .init           = aac_decode_init,
    .close          = aac_decode_close,
    .decode         = aac_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
    .sample_fmts = (const enum AVSampleFormat[]) {
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
    },
    .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
    .channel_layouts = aac_channel_layout,
};

/*
    Note: This decoder filter is intended to decode LATM streams transferred
    in MPEG transport streams which only contain one program.
    To do a more complex LATM demuxing a separate LATM demuxer should be used.
*/
AVCodec ff_aac_latm_decoder = {
    .name = "aac_latm",
    .type = AVMEDIA_TYPE_AUDIO,
    .id   = CODEC_ID_AAC_LATM,
    .priv_data_size = sizeof(struct LATMContext),
    .init   = latm_decode_init,
    .close  = aac_decode_close,
    .decode = latm_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Codec LATM syntax)"),
    .sample_fmts = (const enum AVSampleFormat[]) {
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
    },
    .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
    .channel_layouts = aac_channel_layout,
    .flush = flush,
};