aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aac/aacdec_dsp_template.c
blob: 70f0a3cce6c96e267cc4cf94426bbcd8a4ee7a31 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * AAC decoder
 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com>
 *
 * AAC LATM decoder
 * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
 * Copyright (c) 2010      Janne Grunau <janne-libav@jannau.net>
 *
 * AAC decoder fixed-point implementation
 * Copyright (c) 2013
 *      MIPS Technologies, Inc., California.
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "aacdec.h"
#include "libavcodec/lpc_functions.h"

#include "libavcodec/aactab.h"

/**
 * Convert integer scalefactors to the decoder's native expected
 * scalefactor values.
 */
static void AAC_RENAME(dequant_scalefactors)(SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    const enum BandType *band_type = sce->band_type;
    const int *band_type_run_end = sce->band_type_run_end;
    const int *sfo = sce->sfo;
    INTFLOAT *sf = sce->AAC_RENAME(sf);

    int g, i, idx = 0;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            int run_end = band_type_run_end[idx];
            switch (band_type[idx]) {
            case ZERO_BT:
                for (; i < run_end; i++, idx++)
                    sf[idx] = FIXR(0.);
                break;
            case INTENSITY_BT: /* fallthrough */
            case INTENSITY_BT2:
                for (; i < run_end; i++, idx++) {
#if USE_FIXED
                    sf[idx] = 100 - sfo[idx];
#else
                    sf[idx] = ff_aac_pow2sf_tab[-sfo[idx] + POW_SF2_ZERO];
#endif /* USE_FIXED */
                }
                break;
            case NOISE_BT:
                for (; i < run_end; i++, idx++) {
#if USE_FIXED
                    sf[idx] = -(100 + sfo[idx]);
#else
                    sf[idx] = -ff_aac_pow2sf_tab[sfo[idx] + POW_SF2_ZERO];
#endif /* USE_FIXED */
                }
                break;
            default:
                for (; i < run_end; i++, idx++) {
#if USE_FIXED
                    sf[idx] = -sfo[idx];
#else
                    sf[idx] = -ff_aac_pow2sf_tab[sfo[idx] - 100 + POW_SF2_ZERO];
#endif /* USE_FIXED */
                }
                break;
            }
        }
    }
}

/**
 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 */
static void AAC_RENAME(apply_mid_side_stereo)(AACDecContext *ac, ChannelElement *cpe)
{
    const IndividualChannelStream *ics = &cpe->ch[0].ics;
    INTFLOAT *ch0 = cpe->ch[0].AAC_RENAME(coeffs);
    INTFLOAT *ch1 = cpe->ch[1].AAC_RENAME(coeffs);
    int g, i, group, idx = 0;
    const uint16_t *offsets = ics->swb_offset;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cpe->ms_mask[idx] &&
                cpe->ch[0].band_type[idx] < NOISE_BT &&
                cpe->ch[1].band_type[idx] < NOISE_BT) {
#if USE_FIXED
                for (group = 0; group < ics->group_len[g]; group++) {
                    ac->fdsp->butterflies_fixed(ch0 + group * 128 + offsets[i],
                                                ch1 + group * 128 + offsets[i],
                                                offsets[i+1] - offsets[i]);
#else
                for (group = 0; group < ics->group_len[g]; group++) {
                    ac->fdsp->butterflies_float(ch0 + group * 128 + offsets[i],
                                               ch1 + group * 128 + offsets[i],
                                               offsets[i+1] - offsets[i]);
#endif /* USE_FIXED */
                }
            }
        }
        ch0 += ics->group_len[g] * 128;
        ch1 += ics->group_len[g] * 128;
    }
}

/**
 * intensity stereo decoding; reference: 4.6.8.2.3
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void AAC_RENAME(apply_intensity_stereo)(AACDecContext *ac,
                                               ChannelElement *cpe, int ms_present)
{
    const IndividualChannelStream *ics = &cpe->ch[1].ics;
    SingleChannelElement         *sce1 = &cpe->ch[1];
    INTFLOAT *coef0 = cpe->ch[0].AAC_RENAME(coeffs), *coef1 = cpe->ch[1].AAC_RENAME(coeffs);
    const uint16_t *offsets = ics->swb_offset;
    int g, group, i, idx = 0;
    int c;
    INTFLOAT scale;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            if (sce1->band_type[idx] == INTENSITY_BT ||
                sce1->band_type[idx] == INTENSITY_BT2) {
                const int bt_run_end = sce1->band_type_run_end[idx];
                for (; i < bt_run_end; i++, idx++) {
                    c = -1 + 2 * (sce1->band_type[idx] - 14);
                    if (ms_present)
                        c *= 1 - 2 * cpe->ms_mask[idx];
                    scale = c * sce1->AAC_RENAME(sf)[idx];
                    for (group = 0; group < ics->group_len[g]; group++)
#if USE_FIXED
                        subband_scale(coef1 + group * 128 + offsets[i],
                                      coef0 + group * 128 + offsets[i],
                                      scale,
                                      23,
                                      offsets[i + 1] - offsets[i] ,ac->avctx);
#else
                        ac->fdsp->vector_fmul_scalar(coef1 + group * 128 + offsets[i],
                                                    coef0 + group * 128 + offsets[i],
                                                    scale,
                                                    offsets[i + 1] - offsets[i]);
#endif /* USE_FIXED */
                }
            } else {
                int bt_run_end = sce1->band_type_run_end[idx];
                idx += bt_run_end - i;
                i    = bt_run_end;
            }
        }
        coef0 += ics->group_len[g] * 128;
        coef1 += ics->group_len[g] * 128;
    }
}

/**
 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 *
 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 * @param   coef    spectral coefficients
 */
static void AAC_RENAME(apply_tns)(void *_coef_param, TemporalNoiseShaping *tns,
                                  IndividualChannelStream *ics, int decode)
{
    const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
    int w, filt, m, i;
    int bottom, top, order, start, end, size, inc;
    INTFLOAT *coef_param = _coef_param;
    INTFLOAT lpc[TNS_MAX_ORDER];
    INTFLOAT tmp[TNS_MAX_ORDER+1];
    UINTFLOAT *coef = coef_param;

    if(!mmm)
        return;

    for (w = 0; w < ics->num_windows; w++) {
        bottom = ics->num_swb;
        for (filt = 0; filt < tns->n_filt[w]; filt++) {
            top    = bottom;
            bottom = FFMAX(0, top - tns->length[w][filt]);
            order  = tns->order[w][filt];
            if (order == 0)
                continue;

            // tns_decode_coef
            compute_lpc_coefs(tns->AAC_RENAME(coef)[w][filt], order, lpc, 0, 0, 0);

            start = ics->swb_offset[FFMIN(bottom, mmm)];
            end   = ics->swb_offset[FFMIN(   top, mmm)];
            if ((size = end - start) <= 0)
                continue;
            if (tns->direction[w][filt]) {
                inc = -1;
                start = end - 1;
            } else {
                inc = 1;
            }
            start += w * 128;

            if (decode) {
                // ar filter
                for (m = 0; m < size; m++, start += inc)
                    for (i = 1; i <= FFMIN(m, order); i++)
                        coef[start] -= AAC_MUL26((INTFLOAT)coef[start - i * inc], lpc[i - 1]);
            } else {
                // ma filter
                for (m = 0; m < size; m++, start += inc) {
                    tmp[0] = coef[start];
                    for (i = 1; i <= FFMIN(m, order); i++)
                        coef[start] += AAC_MUL26(tmp[i], lpc[i - 1]);
                    for (i = order; i > 0; i--)
                        tmp[i] = tmp[i - 1];
                }
            }
        }
    }
}

/**
 *  Apply windowing and MDCT to obtain the spectral
 *  coefficient from the predicted sample by LTP.
 */
static inline void AAC_RENAME(windowing_and_mdct_ltp)(AACDecContext *ac,
                                                      INTFLOAT *out, INTFLOAT *in,
                                                      IndividualChannelStream *ics)
{
    const INTFLOAT *lwindow      = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024);
    const INTFLOAT *swindow      = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128);
    const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024);
    const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128);

    if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
        ac->fdsp->vector_fmul(in, in, lwindow_prev, 1024);
    } else {
        memset(in, 0, 448 * sizeof(*in));
        ac->fdsp->vector_fmul(in + 448, in + 448, swindow_prev, 128);
    }
    if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
        ac->fdsp->vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
    } else {
        ac->fdsp->vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
        memset(in + 1024 + 576, 0, 448 * sizeof(*in));
    }
    ac->mdct_ltp_fn(ac->mdct_ltp, out, in, sizeof(INTFLOAT));
}

/**
 * Apply the long term prediction
 */
static void AAC_RENAME(apply_ltp)(AACDecContext *ac, SingleChannelElement *sce)
{
    const LongTermPrediction *ltp = &sce->ics.ltp;
    const uint16_t *offsets = sce->ics.swb_offset;
    int i, sfb;

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        INTFLOAT *predTime = sce->AAC_RENAME(output);
        INTFLOAT *predFreq = ac->AAC_RENAME(buf_mdct);
        int16_t num_samples = 2048;

        if (ltp->lag < 1024)
            num_samples = ltp->lag + 1024;
        for (i = 0; i < num_samples; i++)
            predTime[i] = AAC_MUL30(sce->AAC_RENAME(ltp_state)[i + 2048 - ltp->lag], ltp->AAC_RENAME(coef));
        memset(&predTime[i], 0, (2048 - i) * sizeof(*predTime));

        AAC_RENAME(windowing_and_mdct_ltp)(ac, predFreq, predTime, &sce->ics);

        if (sce->tns.present)
            AAC_RENAME(apply_tns)(predFreq, &sce->tns, &sce->ics, 0);

        for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
            if (ltp->used[sfb])
                for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
                    sce->AAC_RENAME(coeffs)[i] += (UINTFLOAT)predFreq[i];
    }
}

/**
 * Update the LTP buffer for next frame
 */
static void AAC_RENAME(update_ltp)(AACDecContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    INTFLOAT *saved     = sce->AAC_RENAME(saved);
    INTFLOAT *saved_ltp = sce->AAC_RENAME(coeffs);
    const INTFLOAT *lwindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024);
    const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128);
    int i;

    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        memcpy(saved_ltp,       saved, 512 * sizeof(*saved_ltp));
        memset(saved_ltp + 576, 0,     448 * sizeof(*saved_ltp));
        ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->AAC_RENAME(buf_mdct) + 960,     &swindow[64],      64);

        for (i = 0; i < 64; i++)
            saved_ltp[i + 512] = AAC_MUL31(ac->AAC_RENAME(buf_mdct)[1023 - i], swindow[63 - i]);
    } else if (1 && ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(saved_ltp,       ac->AAC_RENAME(buf_mdct) + 512, 448 * sizeof(*saved_ltp));
        memset(saved_ltp + 576, 0,                  448 * sizeof(*saved_ltp));
        ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->AAC_RENAME(buf_mdct) + 960,     &swindow[64],      64);

        for (i = 0; i < 64; i++)
            saved_ltp[i + 512] = AAC_MUL31(ac->AAC_RENAME(buf_mdct)[1023 - i], swindow[63 - i]);
    } else if (1) { // LONG_STOP or ONLY_LONG
        ac->fdsp->vector_fmul_reverse(saved_ltp, ac->AAC_RENAME(buf_mdct) + 512,     &lwindow[512],     512);

        for (i = 0; i < 512; i++)
            saved_ltp[i + 512] = AAC_MUL31(ac->AAC_RENAME(buf_mdct)[1023 - i], lwindow[511 - i]);
    }

    memcpy(sce->AAC_RENAME(ltp_state),      sce->AAC_RENAME(ltp_state)+1024,
           1024 * sizeof(*sce->AAC_RENAME(ltp_state)));
    memcpy(sce->AAC_RENAME(ltp_state) + 1024, sce->AAC_RENAME(output),
           1024 * sizeof(*sce->AAC_RENAME(ltp_state)));
    memcpy(sce->AAC_RENAME(ltp_state) + 2048, saved_ltp,
           1024 * sizeof(*sce->AAC_RENAME(ltp_state)));
}

/**
 * Conduct IMDCT and windowing.
 */
static void AAC_RENAME(imdct_and_windowing)(AACDecContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    INTFLOAT *in    = sce->AAC_RENAME(coeffs);
    INTFLOAT *out   = sce->AAC_RENAME(output);
    INTFLOAT *saved = sce->AAC_RENAME(saved);
    const INTFLOAT *swindow      = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128);
    const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024);
    const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128);
    INTFLOAT *buf  = ac->AAC_RENAME(buf_mdct);
    INTFLOAT *temp = ac->AAC_RENAME(temp);
    int i;

    // imdct
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        for (i = 0; i < 1024; i += 128)
            ac->mdct128_fn(ac->mdct128, buf + i, in + i, sizeof(INTFLOAT));
    } else {
        ac->mdct1024_fn(ac->mdct1024, buf, in, sizeof(INTFLOAT));
    }

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */
    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
            (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
        ac->fdsp->vector_fmul_window(    out,               saved,            buf,         lwindow_prev, 512);
    } else {
        memcpy(                         out,               saved,            448 * sizeof(*out));

        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            ac->fdsp->vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, 64);
            ac->fdsp->vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      64);
            ac->fdsp->vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      64);
            ac->fdsp->vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      64);
            ac->fdsp->vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      64);
            memcpy(                     out + 448 + 4*128, temp, 64 * sizeof(*out));
        } else {
            ac->fdsp->vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, 64);
            memcpy(                     out + 576,         buf + 64,         448 * sizeof(*out));
        }
    }

    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        memcpy(                     saved,       temp + 64,         64 * sizeof(*saved));
        ac->fdsp->vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 64);
        ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
        ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
        memcpy(                     saved + 448, buf + 7*128 + 64,  64 * sizeof(*saved));
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(                     saved,       buf + 512,        448 * sizeof(*saved));
        memcpy(                     saved + 448, buf + 7*128 + 64,  64 * sizeof(*saved));
    } else { // LONG_STOP or ONLY_LONG
        memcpy(                     saved,       buf + 512,        512 * sizeof(*saved));
    }
}

/**
 * Conduct IMDCT and windowing.
 */
static void AAC_RENAME(imdct_and_windowing_960)(AACDecContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    INTFLOAT *in    = sce->AAC_RENAME(coeffs);
    INTFLOAT *out   = sce->AAC_RENAME(output);
    INTFLOAT *saved = sce->AAC_RENAME(saved);
    const INTFLOAT *swindow      = ics->use_kb_window[0] ? AAC_RENAME(aac_kbd_short_120) : AAC_RENAME(sine_120);
    const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME(aac_kbd_long_960) : AAC_RENAME(sine_960);
    const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME(aac_kbd_short_120) : AAC_RENAME(sine_120);
    INTFLOAT *buf  = ac->AAC_RENAME(buf_mdct);
    INTFLOAT *temp = ac->AAC_RENAME(temp);
    int i;

    // imdct
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        for (i = 0; i < 8; i++)
            ac->mdct120_fn(ac->mdct120, buf + i * 120, in + i * 128, sizeof(INTFLOAT));
    } else {
        ac->mdct960_fn(ac->mdct960, buf, in, sizeof(INTFLOAT));
    }

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */

    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
        (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
        ac->fdsp->vector_fmul_window(    out,               saved,            buf,         lwindow_prev, 480);
    } else {
        memcpy(                          out,               saved,            420 * sizeof(*out));

        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            ac->fdsp->vector_fmul_window(out + 420 + 0*120, saved + 420,      buf + 0*120, swindow_prev, 60);
            ac->fdsp->vector_fmul_window(out + 420 + 1*120, buf + 0*120 + 60, buf + 1*120, swindow,      60);
            ac->fdsp->vector_fmul_window(out + 420 + 2*120, buf + 1*120 + 60, buf + 2*120, swindow,      60);
            ac->fdsp->vector_fmul_window(out + 420 + 3*120, buf + 2*120 + 60, buf + 3*120, swindow,      60);
            ac->fdsp->vector_fmul_window(temp,              buf + 3*120 + 60, buf + 4*120, swindow,      60);
            memcpy(                      out + 420 + 4*120, temp, 60 * sizeof(*out));
        } else {
            ac->fdsp->vector_fmul_window(out + 420,         saved + 420,      buf,         swindow_prev, 60);
            memcpy(                      out + 540,         buf + 60,         420 * sizeof(*out));
        }
    }

    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        memcpy(                      saved,       temp + 60,         60 * sizeof(*saved));
        ac->fdsp->vector_fmul_window(saved + 60,  buf + 4*120 + 60, buf + 5*120, swindow, 60);
        ac->fdsp->vector_fmul_window(saved + 180, buf + 5*120 + 60, buf + 6*120, swindow, 60);
        ac->fdsp->vector_fmul_window(saved + 300, buf + 6*120 + 60, buf + 7*120, swindow, 60);
        memcpy(                      saved + 420, buf + 7*120 + 60,  60 * sizeof(*saved));
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(                      saved,       buf + 480,        420 * sizeof(*saved));
        memcpy(                      saved + 420, buf + 7*120 + 60,  60 * sizeof(*saved));
    } else { // LONG_STOP or ONLY_LONG
        memcpy(                      saved,       buf + 480,        480 * sizeof(*saved));
    }
}
static void AAC_RENAME(imdct_and_windowing_ld)(AACDecContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    INTFLOAT *in    = sce->AAC_RENAME(coeffs);
    INTFLOAT *out   = sce->AAC_RENAME(output);
    INTFLOAT *saved = sce->AAC_RENAME(saved);
    INTFLOAT *buf   = ac->AAC_RENAME(buf_mdct);

    // imdct
    ac->mdct512_fn(ac->mdct512, buf, in, sizeof(INTFLOAT));

    // window overlapping
    if (ics->use_kb_window[1]) {
        // AAC LD uses a low overlap sine window instead of a KBD window
        memcpy(out, saved, 192 * sizeof(*out));
        ac->fdsp->vector_fmul_window(out + 192, saved + 192, buf, AAC_RENAME2(sine_128), 64);
        memcpy(                     out + 320, buf + 64, 192 * sizeof(*out));
    } else {
        ac->fdsp->vector_fmul_window(out, saved, buf, AAC_RENAME2(sine_512), 256);
    }

    // buffer update
    memcpy(saved, buf + 256, 256 * sizeof(*saved));
}

static void AAC_RENAME(imdct_and_windowing_eld)(AACDecContext *ac, SingleChannelElement *sce)
{
    UINTFLOAT *in   = sce->AAC_RENAME(coeffs);
    INTFLOAT *out   = sce->AAC_RENAME(output);
    INTFLOAT *saved = sce->AAC_RENAME(saved);
    INTFLOAT *buf   = ac->AAC_RENAME(buf_mdct);
    int i;
    const int n  = ac->oc[1].m4ac.frame_length_short ? 480 : 512;
    const int n2 = n >> 1;
    const int n4 = n >> 2;
    const INTFLOAT *const window = n == 480 ? AAC_RENAME(ff_aac_eld_window_480) :
                                           AAC_RENAME(ff_aac_eld_window_512);

    // Inverse transform, mapped to the conventional IMDCT by
    // Chivukula, R.K.; Reznik, Y.A.; Devarajan, V.,
    // "Efficient algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC filterbanks,"
    // International Conference on Audio, Language and Image Processing, ICALIP 2008.
    // URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4590245&isnumber=4589950
    for (i = 0; i < n2; i+=2) {
        INTFLOAT temp;
        temp =  in[i    ]; in[i    ] = -in[n - 1 - i]; in[n - 1 - i] = temp;
        temp = -in[i + 1]; in[i + 1] =  in[n - 2 - i]; in[n - 2 - i] = temp;
    }

    if (n == 480)
        ac->mdct480_fn(ac->mdct480, buf, in, sizeof(INTFLOAT));
    else
        ac->mdct512_fn(ac->mdct512, buf, in, sizeof(INTFLOAT));

    for (i = 0; i < n; i+=2) {
        buf[i + 0] = -(UINTFLOAT)(USE_FIXED + 1)*buf[i + 0];
        buf[i + 1] =  (UINTFLOAT)(USE_FIXED + 1)*buf[i + 1];
    }
    // Like with the regular IMDCT at this point we still have the middle half
    // of a transform but with even symmetry on the left and odd symmetry on
    // the right

    // window overlapping
    // The spec says to use samples [0..511] but the reference decoder uses
    // samples [128..639].
    for (i = n4; i < n2; i ++) {
        out[i - n4] = AAC_MUL31(   buf[    n2 - 1 - i] , window[i       - n4]) +
                      AAC_MUL31( saved[        i + n2] , window[i +   n - n4]) +
                      AAC_MUL31(-saved[n + n2 - 1 - i] , window[i + 2*n - n4]) +
                      AAC_MUL31(-saved[  2*n + n2 + i] , window[i + 3*n - n4]);
    }
    for (i = 0; i < n2; i ++) {
        out[n4 + i] = AAC_MUL31(   buf[              i] , window[i + n2       - n4]) +
                      AAC_MUL31(-saved[      n - 1 - i] , window[i + n2 +   n - n4]) +
                      AAC_MUL31(-saved[          n + i] , window[i + n2 + 2*n - n4]) +
                      AAC_MUL31( saved[2*n + n - 1 - i] , window[i + n2 + 3*n - n4]);
    }
    for (i = 0; i < n4; i ++) {
        out[n2 + n4 + i] = AAC_MUL31(   buf[    i + n2] , window[i +   n - n4]) +
                           AAC_MUL31(-saved[n2 - 1 - i] , window[i + 2*n - n4]) +
                           AAC_MUL31(-saved[n + n2 + i] , window[i + 3*n - n4]);
    }

    // buffer update
    memmove(saved + n, saved, 2 * n * sizeof(*saved));
    memcpy( saved,       buf,     n * sizeof(*saved));
}

static void AAC_RENAME(clip_output)(AACDecContext *ac, ChannelElement *che,
                                    int type, int samples)
{
#if USE_FIXED
    /* preparation for resampler */
    for (int j = 0; j < samples; j++){
        che->ch[0].output_fixed[j] = (int32_t)av_clip64((int64_t)che->ch[0].output_fixed[j]*128,
                                                    INT32_MIN, INT32_MAX-0x8000)+0x8000;
        if (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))
            che->ch[1].output_fixed[j] = (int32_t)av_clip64((int64_t)che->ch[1].output_fixed[j]*128,
                                                        INT32_MIN, INT32_MAX-0x8000)+0x8000;
    }
#endif
}

static inline void reset_all_predictors(PredictorState *ps)
{
    int i;
    for (i = 0; i < MAX_PREDICTORS; i++)
        reset_predict_state(&ps[i]);
}

static inline void reset_predictor_group(PredictorState *ps, int group_num)
{
    int i;
    for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
        reset_predict_state(&ps[i]);
}

/**
 * Apply AAC-Main style frequency domain prediction.
 */
static void AAC_RENAME(apply_prediction)(AACDecContext *ac, SingleChannelElement *sce)
{
    int sfb, k;

    if (!sce->ics.predictor_initialized) {
        reset_all_predictors(sce->AAC_RENAME(predictor_state));
        sce->ics.predictor_initialized = 1;
    }

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        for (sfb = 0;
             sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index];
             sfb++) {
            for (k = sce->ics.swb_offset[sfb];
                 k < sce->ics.swb_offset[sfb + 1];
                 k++) {
                predict(&sce->AAC_RENAME(predictor_state)[k],
                        &sce->AAC_RENAME(coeffs)[k],
                        sce->ics.predictor_present &&
                        sce->ics.prediction_used[sfb]);
            }
        }
        if (sce->ics.predictor_reset_group)
            reset_predictor_group(sce->AAC_RENAME(predictor_state),
                                  sce->ics.predictor_reset_group);
    } else
        reset_all_predictors(sce->AAC_RENAME(predictor_state));
}

static const AACDecDSP AAC_RENAME(aac_dsp) = {
    .dequant_scalefactors = &AAC_RENAME(dequant_scalefactors),
    .apply_mid_side_stereo = &AAC_RENAME(apply_mid_side_stereo),
    .apply_intensity_stereo = &AAC_RENAME(apply_intensity_stereo),
    .apply_tns = &AAC_RENAME(apply_tns),
    .apply_ltp = &AAC_RENAME(apply_ltp),
    .update_ltp = &AAC_RENAME(update_ltp),

    .apply_prediction = AAC_RENAME(apply_prediction),

    .imdct_and_windowing = AAC_RENAME(imdct_and_windowing),
    .imdct_and_windowing_960 = AAC_RENAME(imdct_and_windowing_960),
    .imdct_and_windowing_ld = AAC_RENAME(imdct_and_windowing_ld),
    .imdct_and_windowing_eld = AAC_RENAME(imdct_and_windowing_eld),

    .apply_dependent_coupling = AAC_RENAME(apply_dependent_coupling),
    .apply_independent_coupling = AAC_RENAME(apply_independent_coupling),

    .clip_output = AAC_RENAME(clip_output),
};