aboutsummaryrefslogtreecommitdiffstats
path: root/tools
diff options
context:
space:
mode:
authorMingyu Yin <mingyu.yin@intel.com>2020-09-22 15:11:09 +0800
committerGuo, Yejun <yejun.guo@intel.com>2020-09-29 14:19:55 +0800
commitad2546e3b33eabeeeeed7d1b1f5e804181e819b7 (patch)
treeda1715f0fb27398f8290b50ef70ef4985da14ad0 /tools
parentadcdf0bc6057a99989a28bb3d1ba65e8b66eff3d (diff)
downloadffmpeg-ad2546e3b33eabeeeeed7d1b1f5e804181e819b7.tar.gz
dnn/native: add native support for dense
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Diffstat (limited to 'tools')
-rw-r--r--tools/python/convert_from_tensorflow.py126
1 files changed, 118 insertions, 8 deletions
diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py
index 1762091fdd..1a5d93fbb7 100644
--- a/tools/python/convert_from_tensorflow.py
+++ b/tools/python/convert_from_tensorflow.py
@@ -48,9 +48,9 @@ class Operand(object):
self.used_count = self.used_count + 1
def __str__(self):
- return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
+ return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index,
self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
- self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
+ self.dims, self.used_count)
def __lt__(self, other):
return self.index < other.index
@@ -71,8 +71,10 @@ class TFConverter:
self.converted_nodes = set()
self.conv2d_scope_names = set()
self.conv2d_scopename_inputname_dict = {}
+ self.dense_scope_names = set()
+ self.dense_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
- 'MathBinary':5, 'MathUnary':6, 'AvgPool':7}
+ 'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
@@ -126,6 +128,22 @@ class TFConverter:
return knode, bnode, dnode, anode
+ def get_dense_params(self, dense_scope_name):
+ knode = self.name_node_dict[dense_scope_name + '/kernel']
+ bnode = self.name_node_dict.get(dense_scope_name + '/bias')
+ # the BiasAdd name is possible be changed into the output name,
+ # if activation is None, and BiasAdd.next is the last op which is Identity
+ anode = None
+ if bnode:
+ if dense_scope_name + '/BiasAdd' in self.edges:
+ anode = self.edges[dense_scope_name + '/BiasAdd'][0]
+ if anode.op not in self.conv_activations:
+ anode = None
+ else:
+ anode = None
+ return knode, bnode, anode
+
+
def dump_complex_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D')
self.layer_number = self.layer_number + 1
@@ -181,6 +199,57 @@ class TFConverter:
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
+ def dump_dense_to_file(self, node, f):
+ assert(node.op == 'MatMul')
+ self.layer_number = self.layer_number + 1
+ self.converted_nodes.add(node.name)
+
+ scope_name = TFConverter.get_scope_name(node.name)
+ #knode for kernel, bnode for bias, anode for activation
+ knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0])
+
+ if bnode is not None:
+ has_bias = 1
+ btensor = bnode.attr['value'].tensor
+ if btensor.tensor_shape.dim[0].size == 1:
+ bias = struct.pack("f", btensor.float_val[0])
+ else:
+ bias = btensor.tensor_content
+ else:
+ has_bias = 0
+
+ if anode is not None:
+ activation = anode.op
+ else:
+ activation = 'None'
+
+ ktensor = knode.attr['value'].tensor
+ in_channels = ktensor.tensor_shape.dim[0].size
+ out_channels = ktensor.tensor_shape.dim[1].size
+ if in_channels * out_channels == 1:
+ kernel = np.float32(ktensor.float_val[0])
+ else:
+ kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
+ kernel = kernel.reshape(in_channels, out_channels)
+ kernel = np.transpose(kernel, [1, 0])
+
+ np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
+ kernel.tofile(f)
+ if has_bias:
+ f.write(bias)
+
+ input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]]
+ input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
+
+ if anode is not None:
+ output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
+ else:
+ if bnode is not None:
+ output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
+ else:
+ output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
+ np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
+
def dump_simple_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D')
@@ -343,9 +412,19 @@ class TFConverter:
if node.op == 'Conv2D':
self.dump_complex_conv2d_to_file(node, f)
continue
+ if self.in_dense_scope(node.name):
+ if node.op == 'MatMul':
+ self.dump_dense_to_file(node, f)
+ continue
+
if node.op == 'Conv2D':
self.dump_simple_conv2d_to_file(node, f)
+ continue
+ if node.name in self.output_names:
+ input_name = self.id_different_scope_dict[node.name]
+ if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
+ continue
if node.op == 'AvgPool':
self.dump_avg_pool_to_file(node, f)
elif node.op == 'DepthToSpace':
@@ -367,7 +446,7 @@ class TFConverter:
np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
f.write(operand.name.encode('utf-8'))
np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
- np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
+ np.array(operand.dims, dtype=np.uint32).tofile(f)
def dump_to_file(self):
@@ -396,6 +475,7 @@ class TFConverter:
def remove_identity(self):
+ self.id_different_scope_dict = {}
id_nodes = []
id_dict = {}
for node in self.nodes:
@@ -408,6 +488,7 @@ class TFConverter:
self.name_node_dict[input].name = name
self.name_node_dict[name] = self.name_node_dict[input]
del self.name_node_dict[input]
+ self.id_different_scope_dict[name] = input
else:
id_dict[name] = input
@@ -449,8 +530,18 @@ class TFConverter:
return False
- def generate_conv2d_scope_info(self):
- # mostly, conv2d is a sub block in graph, get the scope name
+ def in_dense_scope(self, name):
+ inner_scope = TFConverter.get_scope_name(name)
+ if inner_scope == "":
+ return False;
+ for scope in self.dense_scope_names:
+ index = inner_scope.find(scope)
+ if index == 0:
+ return True
+ return False
+
+ def generate_sub_block_op_scope_info(self):
+ # mostly, conv2d/dense is a sub block in graph, get the scope name
for node in self.nodes:
if node.op == 'Conv2D':
scope = TFConverter.get_scope_name(node.name)
@@ -461,8 +552,17 @@ class TFConverter:
if scope + '/kernel' not in self.name_node_dict:
continue
self.conv2d_scope_names.add(scope)
+ elif node.op == 'MatMul':
+ scope = TFConverter.get_scope_name(node.name)
+ # for the case tf.nn.dense is called directly
+ if scope == '':
+ continue
+ # for the case tf.nn.dense is called within a scope
+ if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict:
+ continue
+ self.dense_scope_names.add(scope.split('/Tensordot')[0])
- # get the input name to the conv2d sub block
+ # get the input name to the conv2d/dense sub block
for node in self.nodes:
scope = TFConverter.get_scope_name(node.name)
if scope in self.conv2d_scope_names:
@@ -470,6 +570,16 @@ class TFConverter:
for inp in node.input:
if TFConverter.get_scope_name(inp) != scope:
self.conv2d_scopename_inputname_dict[scope] = inp
+ elif scope in self.dense_scope_names:
+ if node.op == 'MatMul' or node.op == 'Shape':
+ for inp in node.input:
+ if TFConverter.get_scope_name(inp) != scope:
+ self.dense_scopename_inputname_dict[scope] = inp
+ elif scope.split('/Tensordot')[0] in self.dense_scope_names:
+ if node.op == 'Transpose':
+ for inp in node.input:
+ if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0:
+ self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp
def run(self):
@@ -477,7 +587,7 @@ class TFConverter:
self.generate_output_names()
self.remove_identity()
self.generate_edges()
- self.generate_conv2d_scope_info()
+ self.generate_sub_block_op_scope_info()
if self.dump4tb:
self.dump_for_tensorboard()