diff options
author | Guo, Yejun <yejun.guo@intel.com> | 2020-03-20 20:55:38 +0800 |
---|---|---|
committer | Guo, Yejun <yejun.guo@intel.com> | 2020-04-07 11:04:34 +0800 |
commit | ffa1561608f513b3a5d3d1568f75126f21bce663 (patch) | |
tree | cc07cade3e5e1aad40c7802cf8f53ea69f696924 /tools/python/convert_from_tensorflow.py | |
parent | 2114c4241891849323fd65e56f1ab6f70375a291 (diff) | |
download | ffmpeg-ffa1561608f513b3a5d3d1568f75126f21bce663.tar.gz |
dnn_backend_native_layer_mathbinary: add sub support
more math binary operations will be added here
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Diffstat (limited to 'tools/python/convert_from_tensorflow.py')
-rw-r--r-- | tools/python/convert_from_tensorflow.py | 55 |
1 files changed, 52 insertions, 3 deletions
diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py index 5e87e227ea..2485f16cd6 100644 --- a/tools/python/convert_from_tensorflow.py +++ b/tools/python/convert_from_tensorflow.py @@ -70,7 +70,8 @@ class TFConverter: self.converted_nodes = set() self.conv2d_scope_names = set() self.conv2d_scopename_inputname_dict = {} - self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4} + self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5} + self.mathbin2code = {'Sub':0} self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} self.name_operand_dict = {} @@ -113,6 +114,8 @@ class TFConverter: # if activation is None, and BiasAdd.next is the last op which is Identity if conv2d_scope_name + '/BiasAdd' in self.edges: anode = self.edges[conv2d_scope_name + '/BiasAdd'][0] + if anode.op not in self.conv_activations: + anode = None else: anode = None return knode, bnode, dnode, anode @@ -252,14 +255,47 @@ class TFConverter: np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) + def dump_sub_to_file(self, node, f): + assert(node.op == 'Sub') + self.layer_number = self.layer_number + 1 + self.converted_nodes.add(node.name) + i0_node = self.name_node_dict[node.input[0]] + i1_node = self.name_node_dict[node.input[1]] + np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) + if i0_node.op == 'Const': + scalar = i0_node.attr['value'].tensor.float_val[0] + assert(i0_node.name.find('sub/x')) + np.array([1], dtype=np.uint32).tofile(f) + np.array([scalar], dtype=np.float32).tofile(f) + np.array([0], dtype=np.uint32).tofile(f) + input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) + np.array([input_operand_index], dtype=np.uint32).tofile(f) + elif i1_node.op == 'Const': + scalar = i1_node.attr['value'].tensor.float_val[0] + assert(i1_node.name.find('sub/y')) + np.array([0], dtype=np.uint32).tofile(f) + input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) + np.array([input_operand_index], dtype=np.uint32).tofile(f) + np.array([1], dtype=np.uint32).tofile(f) + np.array([scalar], dtype=np.float32).tofile(f) + else: + np.array([0], dtype=np.uint32).tofile(f) + input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) + np.array([input_operand_index], dtype=np.uint32).tofile(f) + np.array([0], dtype=np.uint32).tofile(f) + input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) + np.array([input_operand_index], dtype=np.uint32).tofile(f) + output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) + np.array([output_operand_index], dtype=np.uint32).tofile(f) + + def dump_layers_to_file(self, f): for node in self.nodes: if node.name in self.converted_nodes: continue # conv2d with dilation generates very complex nodes, so handle it in special - scope_name = TFConverter.get_scope_name(node.name) - if scope_name in self.conv2d_scope_names: + if self.in_conv2d_scope(node.name): if node.op == 'Conv2D': self.dump_complex_conv2d_to_file(node, f) continue @@ -272,6 +308,8 @@ class TFConverter: self.dump_mirrorpad_to_file(node, f) elif node.op == 'Maximum': self.dump_maximum_to_file(node, f) + elif node.op == 'Sub': + self.dump_sub_to_file(node, f) def dump_operands_to_file(self, f): @@ -352,6 +390,17 @@ class TFConverter: return name[0:index] + def in_conv2d_scope(self, name): + inner_scope = TFConverter.get_scope_name(name) + if inner_scope == "": + return False; + for scope in self.conv2d_scope_names: + index = inner_scope.find(scope) + if index == 0: + return True + return False + + def generate_conv2d_scope_info(self): # mostly, conv2d is a sub block in graph, get the scope name for node in self.nodes: |