diff options
author | Ting Fu <ting.fu@intel.com> | 2020-08-10 00:33:13 +0800 |
---|---|---|
committer | Guo, Yejun <yejun.guo@intel.com> | 2020-08-10 16:37:39 +0800 |
commit | 91efc41a69f223bd1ed92b8916ad9e9de63e9d9e (patch) | |
tree | 96eb6639672acb5207b937ce5ba512ceadca320d /tools/python/convert_from_tensorflow.py | |
parent | 40597add98a7378402b4a653fd3057426074def9 (diff) | |
download | ffmpeg-91efc41a69f223bd1ed92b8916ad9e9de63e9d9e.tar.gz |
dnn/native: add native support for avg_pool
Not support pooling strides in channel dimension yet.
Signed-off-by: Ting Fu <ting.fu@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
Diffstat (limited to 'tools/python/convert_from_tensorflow.py')
-rw-r--r-- | tools/python/convert_from_tensorflow.py | 37 |
1 files changed, 36 insertions, 1 deletions
diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py index 2fb8c4c303..4107774f88 100644 --- a/tools/python/convert_from_tensorflow.py +++ b/tools/python/convert_from_tensorflow.py @@ -67,10 +67,12 @@ class TFConverter: self.edges = {} self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} self.conv_paddings = {'VALID':0, 'SAME':1} + self.pool_paddings = {'VALID':0, 'SAME':1} self.converted_nodes = set() self.conv2d_scope_names = set() self.conv2d_scopename_inputname_dict = {} - self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6} + self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, + 'MathBinary':5, 'MathUnary':6, 'AvgPool':7} self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4} self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, @@ -300,6 +302,37 @@ class TFConverter: np.array([output_operand_index],dtype=np.uint32).tofile(f) + def dump_avg_pool_to_file(self, node, f): + assert(node.op == 'AvgPool') + self.layer_number = self.layer_number + 1 + self.converted_nodes.add(node.name) + node0 = self.name_node_dict[node.input[0]] + strides = node.attr['strides'] + + # Tensorflow do not support pooling strides in batch dimension and + # current native NN do not support pooling strides in channel dimension, added assert() here. + assert(strides.list.i[1]==strides.list.i[2]) + assert(strides.list.i[0]==1) + assert(strides.list.i[3]==1) + strides = strides.list.i[1] + filter_node = node.attr['ksize'] + input_name = node.input[0] + + # Tensorflow do not support pooling ksize in batch dimension and channel dimension. + assert(filter_node.list.i[0]==1) + assert(filter_node.list.i[3]==1) + filter_height = filter_node.list.i[1] + filter_width = filter_node.list.i[2] + + padding = node.attr['padding'].s.decode("utf-8") + np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], + dtype=np.uint32).tofile(f) + + input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) + output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) + np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) + + def dump_layers_to_file(self, f): for node in self.nodes: if node.name in self.converted_nodes: @@ -313,6 +346,8 @@ class TFConverter: if node.op == 'Conv2D': self.dump_simple_conv2d_to_file(node, f) + if node.op == 'AvgPool': + self.dump_avg_pool_to_file(node, f) elif node.op == 'DepthToSpace': self.dump_depth2space_to_file(node, f) elif node.op == 'MirrorPad': |