aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter
diff options
context:
space:
mode:
authorWenbin Chen <wenbin.chen@intel.com>2023-12-12 10:33:33 +0800
committerGuo Yejun <yejun.guo@intel.com>2023-12-16 21:50:50 +0800
commita882fc029493ef2691360dcba360b0e998c628b4 (patch)
treec8d4029c75f44ba776e5a45bce75e5f53fc29258 /libavfilter
parentda02836b9d204ca002d973ef7b1e6f60a2316cb1 (diff)
downloadffmpeg-a882fc029493ef2691360dcba360b0e998c628b4.tar.gz
libavfilter/vf_dnn_detect: Add yolov3 support
Add yolov3 support. The difference of yolov3 is that it has multiple outputs in different scale to perform better on both large and small object. The model detail refer to: https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v3-tf Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>
Diffstat (limited to 'libavfilter')
-rw-r--r--libavfilter/vf_dnn_detect.c28
1 files changed, 27 insertions, 1 deletions
diff --git a/libavfilter/vf_dnn_detect.c b/libavfilter/vf_dnn_detect.c
index 35c0508c50..4c537cf255 100644
--- a/libavfilter/vf_dnn_detect.c
+++ b/libavfilter/vf_dnn_detect.c
@@ -35,6 +35,7 @@
typedef enum {
DDMT_SSD,
DDMT_YOLOV1V2,
+ DDMT_YOLOV3
} DNNDetectionModelType;
typedef struct DnnDetectContext {
@@ -73,6 +74,7 @@ static const AVOption dnn_detect_options[] = {
{ "model_type", "DNN detection model type", OFFSET2(model_type), AV_OPT_TYPE_INT, { .i64 = DDMT_SSD }, INT_MIN, INT_MAX, FLAGS, "model_type" },
{ "ssd", "output shape [1, 1, N, 7]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_SSD }, 0, 0, FLAGS, "model_type" },
{ "yolo", "output shape [1, N*Cx*Cy*DetectionBox]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_YOLOV1V2 }, 0, 0, FLAGS, "model_type" },
+ { "yolov3", "outputs shape [1, N*D, Cx, Cy]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_YOLOV3 }, 0, 0, FLAGS, "model_type" },
{ "cell_w", "cell width", OFFSET2(cell_w), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INTMAX_MAX, FLAGS },
{ "cell_h", "cell height", OFFSET2(cell_h), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INTMAX_MAX, FLAGS },
{ "nb_classes", "The number of class", OFFSET2(nb_classes), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INTMAX_MAX, FLAGS },
@@ -151,6 +153,11 @@ static int dnn_detect_parse_yolo_output(AVFrame *frame, DNNData *output, int out
cell_h = ctx->cell_h;
scale_w = cell_w;
scale_h = cell_h;
+ } else {
+ cell_w = output[output_index].width;
+ cell_h = output[output_index].height;
+ scale_w = ctx->scale_width;
+ scale_h = ctx->scale_height;
}
box_size = nb_classes + 5;
@@ -178,6 +185,7 @@ static int dnn_detect_parse_yolo_output(AVFrame *frame, DNNData *output, int out
output[output_index].height *
output[output_index].width / box_size / cell_w / cell_h;
+ anchors = anchors + (detection_boxes * output_index * 2);
/**
* find all candidate bbox
* yolo output can be reshaped to [B, N*D, Cx, Cy]
@@ -290,6 +298,21 @@ static int dnn_detect_post_proc_yolo(AVFrame *frame, DNNData *output, AVFilterCo
return 0;
}
+static int dnn_detect_post_proc_yolov3(AVFrame *frame, DNNData *output,
+ AVFilterContext *filter_ctx, int nb_outputs)
+{
+ int ret = 0;
+ for (int i = 0; i < nb_outputs; i++) {
+ ret = dnn_detect_parse_yolo_output(frame, output, i, filter_ctx);
+ if (ret < 0)
+ return ret;
+ }
+ ret = dnn_detect_fill_side_data(frame, filter_ctx);
+ if (ret < 0)
+ return ret;
+ return 0;
+}
+
static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;
@@ -386,8 +409,11 @@ static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, int nb_outpu
ret = dnn_detect_post_proc_yolo(frame, output, filter_ctx);
if (ret < 0)
return ret;
+ case DDMT_YOLOV3:
+ ret = dnn_detect_post_proc_yolov3(frame, output, filter_ctx, nb_outputs);
+ if (ret < 0)
+ return ret;
}
-
return 0;
}