aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter
diff options
context:
space:
mode:
authorShubhanshu Saxena <shubhanshu.e01@gmail.com>2021-07-05 16:00:57 +0530
committerGuo Yejun <yejun.guo@intel.com>2021-07-11 20:12:27 +0800
commit84e4e60fdcbb2fd9193f6a0704caefbfb64092cb (patch)
treeec59ab37d5b5bf4718d9966843ebac7a5733c68d /libavfilter
parentb849228ae06fbcbf85b77e76dd46f63ea8c1406f (diff)
downloadffmpeg-84e4e60fdcbb2fd9193f6a0704caefbfb64092cb.tar.gz
lavfi/dnn_backend_tf: Separate function for Completion Callback
This commit rearranges the existing code to create a separate function for the completion callback in execute_model_tf. Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
Diffstat (limited to 'libavfilter')
-rw-r--r--libavfilter/dnn/dnn_backend_tf.c109
1 files changed, 61 insertions, 48 deletions
diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c
index 7f014d55fa..6664d7194b 100644
--- a/libavfilter/dnn/dnn_backend_tf.c
+++ b/libavfilter/dnn/dnn_backend_tf.c
@@ -915,6 +915,65 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
return DNN_SUCCESS;
}
+static void infer_completion_callback(void *args) {
+ TFRequestItem *request = args;
+ InferenceItem *inference = request->inference;
+ TaskItem *task = inference->task;
+ DNNData *outputs;
+ TFInferRequest *infer_request = request->infer_request;
+ TFModel *tf_model = task->model;
+ TFContext *ctx = &tf_model->ctx;
+
+ outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
+ if (!outputs) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n");
+ goto err;
+ }
+
+ for (uint32_t i = 0; i < task->nb_output; ++i) {
+ outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
+ outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
+ outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
+ outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
+ outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]);
+ }
+ switch (tf_model->model->func_type) {
+ case DFT_PROCESS_FRAME:
+ //it only support 1 output if it's frame in & frame out
+ if (task->do_ioproc) {
+ if (tf_model->model->frame_post_proc != NULL) {
+ tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx);
+ } else {
+ ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
+ }
+ } else {
+ task->out_frame->width = outputs[0].width;
+ task->out_frame->height = outputs[0].height;
+ }
+ break;
+ case DFT_ANALYTICS_DETECT:
+ if (!tf_model->model->detect_post_proc) {
+ av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
+ return;
+ }
+ tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
+ break;
+ default:
+ av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
+ goto err;
+ }
+ task->inference_done++;
+err:
+ tf_free_request(infer_request);
+ av_freep(&outputs);
+
+ if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) {
+ av_freep(&request->infer_request);
+ av_freep(&request);
+ av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
+ }
+}
+
static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue)
{
TFModel *tf_model;
@@ -922,7 +981,6 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q
TFInferRequest *infer_request;
InferenceItem *inference;
TaskItem *task;
- DNNData *outputs;
inference = ff_queue_peek_front(inference_queue);
task = inference->task;
@@ -944,56 +1002,11 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q
task->nb_output, NULL, 0, NULL,
tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK) {
- tf_free_request(infer_request);
- av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
- return DNN_ERROR;
- }
-
- outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
- if (!outputs) {
- tf_free_request(infer_request);
- av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n");
- return DNN_ERROR;
- }
-
- for (uint32_t i = 0; i < task->nb_output; ++i) {
- outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
- outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
- outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
- outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
- outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]);
- }
- switch (tf_model->model->func_type) {
- case DFT_PROCESS_FRAME:
- //it only support 1 output if it's frame in & frame out
- if (task->do_ioproc) {
- if (tf_model->model->frame_post_proc != NULL) {
- tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx);
- } else {
- ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
- }
- } else {
- task->out_frame->width = outputs[0].width;
- task->out_frame->height = outputs[0].height;
- }
- break;
- case DFT_ANALYTICS_DETECT:
- if (!tf_model->model->detect_post_proc) {
- av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
- return DNN_ERROR;
- }
- tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
- break;
- default:
tf_free_request(infer_request);
-
- av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
+ av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
}
- task->inference_done++;
- tf_free_request(infer_request);
- av_freep(&outputs);
- ff_safe_queue_push_back(tf_model->request_queue, request);
+ infer_completion_callback(request);
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR;
}
}