diff options
author | Ting Fu <ting.fu@intel.com> | 2020-08-27 12:17:21 +0800 |
---|---|---|
committer | Guo, Yejun <yejun.guo@intel.com> | 2020-08-31 13:12:10 +0800 |
commit | 74358ff4a446157791daf9220e552c9604bc3eb3 (patch) | |
tree | b11d11bf2b4713fc5b04c9ed900b64b86cb23456 /libavfilter | |
parent | a97d8469a64b9416ad4f92ce503ad219470cbe7b (diff) | |
download | ffmpeg-74358ff4a446157791daf9220e552c9604bc3eb3.tar.gz |
dnn/openvino: add log error message
Signed-off-by: Ting Fu <ting.fu@intel.com>
Diffstat (limited to 'libavfilter')
-rw-r--r-- | libavfilter/dnn/dnn_backend_openvino.c | 51 |
1 files changed, 43 insertions, 8 deletions
diff --git a/libavfilter/dnn/dnn_backend_openvino.c b/libavfilter/dnn/dnn_backend_openvino.c index 034dee1839..5d6d3ed542 100644 --- a/libavfilter/dnn/dnn_backend_openvino.c +++ b/libavfilter/dnn/dnn_backend_openvino.c @@ -28,7 +28,12 @@ #include "libavutil/avassert.h" #include <c_api/ie_c_api.h> +typedef struct OVContext { + const AVClass *class; +} OVContext; + typedef struct OVModel{ + OVContext ctx; ie_core_t *core; ie_network_t *network; ie_executable_network_t *exe_network; @@ -36,6 +41,14 @@ typedef struct OVModel{ ie_blob_t *input_blob; } OVModel; +static const AVClass dnn_openvino_class = { + .class_name = "dnn_openvino", + .item_name = av_default_item_name, + .option = NULL, + .version = LIBAVUTIL_VERSION_INT, + .category = AV_CLASS_CATEGORY_FILTER, +}; + static DNNDataType precision_to_datatype(precision_e precision) { switch (precision) @@ -51,6 +64,7 @@ static DNNDataType precision_to_datatype(precision_e precision) static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input_name) { OVModel *ov_model = (OVModel *)model; + OVContext *ctx = &ov_model->ctx; char *model_input_name = NULL; IEStatusCode status; size_t model_input_count = 0; @@ -58,25 +72,33 @@ static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input precision_e precision; status = ie_network_get_inputs_number(ov_model->network, &model_input_count); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to get input count\n"); return DNN_ERROR; + } for (size_t i = 0; i < model_input_count; i++) { status = ie_network_get_input_name(ov_model->network, i, &model_input_name); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to get No.%d input's name\n", (int)i); return DNN_ERROR; + } if (strcmp(model_input_name, input_name) == 0) { ie_network_name_free(&model_input_name); status |= ie_network_get_input_dims(ov_model->network, input_name, &dims); status |= ie_network_get_input_precision(ov_model->network, input_name, &precision); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to get No.%d input's dims or precision\n", (int)i); return DNN_ERROR; + } // The order of dims in the openvino is fixed and it is always NCHW for 4-D data. // while we pass NHWC data from FFmpeg to openvino status = ie_network_set_input_layout(ov_model->network, input_name, NHWC); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Input \"%s\" does not match layout NHWC\n", input_name); return DNN_ERROR; + } input->channels = dims.dims[1]; input->height = dims.dims[2]; @@ -88,12 +110,14 @@ static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input ie_network_name_free(&model_input_name); } + av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", model_input_name); return DNN_ERROR; } static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input_name) { OVModel *ov_model = (OVModel *)model; + OVContext *ctx = &ov_model->ctx; IEStatusCode status; dimensions_t dims; precision_e precision; @@ -129,6 +153,7 @@ err: ie_blob_free(&ov_model->input_blob); if (ov_model->infer_request) ie_infer_request_free(&ov_model->infer_request); + av_log(ctx, AV_LOG_ERROR, "Failed to create inference instance or get input data/dims/precision/memory\n"); return DNN_ERROR; } @@ -147,6 +172,7 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options) ov_model = av_mallocz(sizeof(OVModel)); if (!ov_model) goto err; + ov_model->ctx.class = &dnn_openvino_class; status = ie_core_create("", &ov_model->core); if (status != OK) @@ -188,25 +214,34 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, c precision_e precision; ie_blob_buffer_t blob_buffer; OVModel *ov_model = (OVModel *)model->model; + OVContext *ctx = &ov_model->ctx; IEStatusCode status = ie_infer_request_infer(ov_model->infer_request); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n"); return DNN_ERROR; + } for (uint32_t i = 0; i < nb_output; ++i) { const char *output_name = output_names[i]; ie_blob_t *output_blob = NULL; status = ie_infer_request_get_blob(ov_model->infer_request, output_name, &output_blob); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n"); return DNN_ERROR; + } status = ie_blob_get_buffer(output_blob, &blob_buffer); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n"); return DNN_ERROR; + } status |= ie_blob_get_dims(output_blob, &dims); status |= ie_blob_get_precision(output_blob, &precision); - if (status != OK) + if (status != OK) { + av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n"); return DNN_ERROR; + } outputs[i].channels = dims.dims[1]; outputs[i].height = dims.dims[2]; |