diff options
author | Paul B Mahol <onemda@gmail.com> | 2021-01-17 17:39:28 +0100 |
---|---|---|
committer | Paul B Mahol <onemda@gmail.com> | 2021-01-18 14:05:51 +0100 |
commit | 117bf7394f7d5c47104bd30d141466decd01dda1 (patch) | |
tree | 426b80162b3ad0f9d28c7d1760b99bc9b7284c19 /libavfilter | |
parent | 71b82e4ffdd8b6dc69f8c6361df816a8c43725da (diff) | |
download | ffmpeg-117bf7394f7d5c47104bd30d141466decd01dda1.tar.gz |
avfilter/vf_nnedi: rewrite and cleanup code
Also add slice threading support.
Also add support for >8 depth formats.
Also add support for commands.
Diffstat (limited to 'libavfilter')
-rw-r--r-- | libavfilter/vf_nnedi.c | 1535 |
1 files changed, 768 insertions, 767 deletions
diff --git a/libavfilter/vf_nnedi.c b/libavfilter/vf_nnedi.c index 33ff503d92..7f209cb68c 100644 --- a/libavfilter/vf_nnedi.c +++ b/libavfilter/vf_nnedi.c @@ -24,6 +24,7 @@ #include "libavutil/common.h" #include "libavutil/float_dsp.h" #include "libavutil/imgutils.h" +#include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" @@ -31,21 +32,45 @@ #include "internal.h" #include "video.h" -typedef struct FrameData { - uint8_t *paddedp[3]; - int padded_stride[3]; - int padded_width[3]; - int padded_height[3]; - - uint8_t *dstp[3]; - int dst_stride[3]; - - int field[3]; - - int32_t *lcount[3]; - float *input; - float *temp; -} FrameData; +static const size_t NNEDI_WEIGHTS_SIZE = 13574928; +static const uint8_t NNEDI_XDIM[] = { 8, 16, 32, 48, 8, 16, 32 }; +static const uint8_t NNEDI_YDIM[] = { 6, 6, 6, 6, 4, 4, 4 }; +static const uint16_t NNEDI_NNS[] = { 16, 32, 64, 128, 256 }; + +static const unsigned NNEDI_DIMS0 = 49 * 4 + 5 * 4 + 9 * 4; +static const unsigned NNEDI_DIMS0_NEW = 4 * 65 + 4 * 5; + +typedef struct PrescreenerOldCoefficients { + DECLARE_ALIGNED(32, float, kernel_l0)[4][14 * 4]; + float bias_l0[4]; + + DECLARE_ALIGNED(32, float, kernel_l1)[4][4]; + float bias_l1[4]; + + DECLARE_ALIGNED(32, float, kernel_l2)[4][8]; + float bias_l2[4]; +} PrescreenerOldCoefficients; + +typedef struct PrescreenerNewCoefficients { + DECLARE_ALIGNED(32, float, kernel_l0)[4][16 * 4]; + float bias_l0[4]; + + DECLARE_ALIGNED(32, float, kernel_l1)[4][4]; + float bias_l1[4]; +} PrescreenerNewCoefficients; + +typedef struct PredictorCoefficients { + int xdim, ydim, nns; + float *data; + float *softmax_q1; + float *elliott_q1; + float *softmax_bias_q1; + float *elliott_bias_q1; + float *softmax_q2; + float *elliott_q2; + float *softmax_bias_q2; + float *elliott_bias_q2; +} PredictorCoefficients; typedef struct NNEDIContext { const AVClass *class; @@ -59,16 +84,21 @@ typedef struct NNEDIContext { int64_t cur_pts; AVFloatDSPContext *fdsp; + int depth; int nb_planes; + int nb_threads; int linesize[4]; + int planewidth[4]; int planeheight[4]; + int field_n; + + PrescreenerOldCoefficients prescreener_old; + PrescreenerNewCoefficients prescreener_new[3]; + PredictorCoefficients coeffs[2][5][7]; - float *weights0; - float *weights1[2]; - int asize; - int nns; - int xdia; - int ydia; + float half; + float in_scale; + float out_scale; // Parameters int deint; @@ -79,104 +109,84 @@ typedef struct NNEDIContext { int qual; int etype; int pscrn; - int fapprox; - - int max_value; - - void (*copy_pad)(const AVFrame *, FrameData *, struct NNEDIContext *, int); - void (*evalfunc_0)(struct NNEDIContext *, FrameData *); - void (*evalfunc_1)(struct NNEDIContext *, FrameData *); - - // Functions used in evalfunc_0 - void (*readpixels)(const uint8_t *, const int, float *); - void (*compute_network0)(struct NNEDIContext *s, const float *, const float *, uint8_t *); - int32_t (*process_line0)(const uint8_t *, int, uint8_t *, const uint8_t *, const int, const int, const int); - - // Functions used in evalfunc_1 - void (*extract)(const uint8_t *, const int, const int, const int, float *, float *); - void (*dot_prod)(struct NNEDIContext *, const float *, const float *, float *, const int, const int, const float *); - void (*expfunc)(float *, const int); - void (*wae5)(const float *, const int, float *); - FrameData frame_data; + int input_size; + uint8_t *prescreen_buf; + float *input_buf; + float *output_buf; + + void (*read)(const uint8_t *src, float *dst, + int src_stride, int dst_stride, + int width, int height, float scale); + void (*write)(const float *src, uint8_t *dst, + int src_stride, int dst_stride, + int width, int height, int depth, float scale); + void (*prescreen[2])(AVFilterContext *ctx, + const void *src, ptrdiff_t src_stride, + uint8_t *prescreen, int N, void *data); } NNEDIContext; #define OFFSET(x) offsetof(NNEDIContext, x) +#define RFLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption nnedi_options[] = { {"weights", "set weights file", OFFSET(weights_file), AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS }, - {"deint", "set which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" }, - {"all", "deinterlace all frames", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "deint" }, - {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "deint" }, - {"field", "set mode of operation", OFFSET(field), AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, FLAGS, "field" }, - {"af", "use frame flags, both fields", 0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, FLAGS, "field" }, - {"a", "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "field" }, - {"t", "use top field only", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "field" }, - {"b", "use bottom field only", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "field" }, - {"tf", "use both fields, top first", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "field" }, - {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "field" }, - {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 7, FLAGS }, - {"nsize", "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, FLAGS, "nsize" }, - {"s8x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nsize" }, - {"s16x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nsize" }, - {"s32x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nsize" }, - {"s48x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nsize" }, - {"s8x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nsize" }, - {"s16x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, FLAGS, "nsize" }, - {"s32x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, FLAGS, "nsize" }, - {"nns", "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, FLAGS, "nns" }, - {"n16", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nns" }, - {"n32", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nns" }, - {"n64", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nns" }, - {"n128", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nns" }, - {"n256", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nns" }, - {"qual", "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, FLAGS, "qual" }, - {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "qual" }, - {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "qual" }, - {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "etype" }, - {"a", "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "etype" }, - {"s", "weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "etype" }, - {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "pscrn" }, - {"none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "pscrn" }, - {"original", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "pscrn" }, - {"new", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "pscrn" }, - {"fapprox", NULL, OFFSET(fapprox), AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS }, + {"deint", "set which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, RFLAGS, "deint" }, + {"all", "deinterlace all frames", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "deint" }, + {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "deint" }, + {"field", "set mode of operation", OFFSET(field), AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, RFLAGS, "field" }, + {"af", "use frame flags, both fields", 0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, RFLAGS, "field" }, + {"a", "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, RFLAGS, "field" }, + {"t", "use top field only", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "field" }, + {"b", "use bottom field only", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "field" }, + {"tf", "use both fields, top first", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "field" }, + {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "field" }, + {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, RFLAGS }, + {"nsize", "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, RFLAGS, "nsize" }, + {"s8x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "nsize" }, + {"s16x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "nsize" }, + {"s32x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "nsize" }, + {"s48x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "nsize" }, + {"s8x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, "nsize" }, + {"s16x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, RFLAGS, "nsize" }, + {"s32x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, RFLAGS, "nsize" }, + {"nns", "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, RFLAGS, "nns" }, + {"n16", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "nns" }, + {"n32", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "nns" }, + {"n64", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "nns" }, + {"n128", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "nns" }, + {"n256", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, "nns" }, + {"qual", "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, RFLAGS, "qual" }, + {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "qual" }, + {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "qual" }, + {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, RFLAGS, "etype" }, + {"a", "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "etype" }, + {"abs","weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "etype" }, + {"s", "weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "etype" }, + {"mse","weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "etype" }, + {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 4, RFLAGS, "pscrn" }, + {"none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "pscrn" }, + {"original", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "pscrn" }, + {"new", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "pscrn" }, + {"new2", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "pscrn" }, + {"new3", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, "pscrn" }, { NULL } }; AVFILTER_DEFINE_CLASS(nnedi); -static int config_input(AVFilterLink *inlink) -{ - AVFilterContext *ctx = inlink->dst; - NNEDIContext *s = ctx->priv; - const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); - int ret; - - s->nb_planes = av_pix_fmt_count_planes(inlink->format); - if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0) - return ret; - - s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); - s->planeheight[0] = s->planeheight[3] = inlink->h; - - return 0; -} - static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; - NNEDIContext *s = ctx->priv; outlink->time_base.num = ctx->inputs[0]->time_base.num; outlink->time_base.den = ctx->inputs[0]->time_base.den * 2; outlink->w = ctx->inputs[0]->w; outlink->h = ctx->inputs[0]->h; - if (s->field > 1 || s->field == -2) - outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate, - (AVRational){2, 1}); + outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate, + (AVRational){2, 1}); return 0; } @@ -184,14 +194,28 @@ static int config_output(AVFilterLink *outlink) static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { + AV_PIX_FMT_GRAY8, + AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, - AV_PIX_FMT_GBRP, - AV_PIX_FMT_GRAY8, + AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, + AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, + AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, + AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, + AV_PIX_FMT_YUV440P10, + AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, + AV_PIX_FMT_YUV440P12, + AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, + AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, + AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, + AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, + AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, + AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, + AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; @@ -201,592 +225,480 @@ static int query_formats(AVFilterContext *ctx) return ff_set_common_formats(ctx, fmts_list); } -static void copy_pad(const AVFrame *src, FrameData *frame_data, NNEDIContext *s, int fn) +static float dot_dsp(NNEDIContext *s, const float *kernel, const float *input, + unsigned n, float scale, float bias) { - const int off = 1 - fn; - int plane, y, x; + float sum; - for (plane = 0; plane < s->nb_planes; plane++) { - const uint8_t *srcp = (const uint8_t *)src->data[plane]; - uint8_t *dstp = (uint8_t *)frame_data->paddedp[plane]; + sum = s->fdsp->scalarproduct_float(kernel, input, n); - const int src_stride = src->linesize[plane]; - const int dst_stride = frame_data->padded_stride[plane]; + return sum * scale + bias; +} - const int src_height = s->planeheight[plane]; - const int dst_height = frame_data->padded_height[plane]; +static float dot_product(const float *kernel, const float *input, + unsigned n, float scale, float bias) +{ + float sum = 0.0f; - const int src_width = s->linesize[plane]; - const int dst_width = frame_data->padded_width[plane]; + for (int i = 0; i < n; i++) + sum += kernel[i] * input[i]; - int c = 4; + return sum * scale + bias; +} - if (!(s->process_plane & (1 << plane))) - continue; +static float elliott(float x) +{ + return x / (1.0f + fabsf(x)); +} - // Copy. - for (y = off; y < src_height; y += 2) - memcpy(dstp + 32 + (6 + y) * dst_stride, - srcp + y * src_stride, - src_width * sizeof(uint8_t)); +static void transform_elliott(float *input, int size) +{ + for (int i = 0; i < size; i++) + input[i] = elliott(input[i]); +} - // And pad. - dstp += (6 + off) * dst_stride; - for (y = 6 + off; y < dst_height - 6; y += 2) { - int c = 2; +static void process_old(AVFilterContext *ctx, + const void *src, ptrdiff_t src_stride, + uint8_t *prescreen, int N, + void *data) +{ + NNEDIContext *s = ctx->priv; + PrescreenerOldCoefficients *m_data = data; + const float *src_p = src; - for (x = 0; x < 32; x++) - dstp[x] = dstp[64 - x]; + // Adjust source pointer to point to top-left of filter window. + const float *window = src_p - 2 * src_stride - 5; - for (x = dst_width - 32; x < dst_width; x++, c += 2) - dstp[x] = dstp[x - c]; + for (int j = 0; j < N; j++) { + LOCAL_ALIGNED_32(float, input, [48]); + float state[12]; - dstp += dst_stride * 2; - } + for (int i = 0; i < 4; i++) + memcpy(input + i * 12, window + i * src_stride + j, 12 * sizeof(float)); - dstp = (uint8_t *)frame_data->paddedp[plane]; - for (y = off; y < 6; y += 2) - memcpy(dstp + y * dst_stride, - dstp + (12 + 2 * off - y) * dst_stride, - dst_width * sizeof(uint8_t)); + // Layer 0. + for (int n = 0; n < 4; n++) + state[n] = dot_dsp(s, m_data->kernel_l0[n], input, 48, 1.0f, m_data->bias_l0[n]); + transform_elliott(state + 1, 3); - for (y = dst_height - 6 + off; y < dst_height; y += 2, c += 4) - memcpy(dstp + y * dst_stride, - dstp + (y - c) * dst_stride, - dst_width * sizeof(uint8_t)); - } -} + // Layer 1. + for (int n = 0; n < 4; n++) + state[n + 4] = dot_product(m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]); + transform_elliott(state + 4, 3); -static void elliott(float *data, const int n) -{ - int i; + // Layer 2. + for (int n = 0; n < 4; n++) + state[n + 8] = dot_product(m_data->kernel_l2[n], state, 8, 1.0f, m_data->bias_l2[n]); - for (i = 0; i < n; i++) - data[i] = data[i] / (1.0f + FFABS(data[i])); + prescreen[j] = FFMAX(state[10], state[11]) <= FFMAX(state[8], state[9]) ? 255 : 0; + } } -static void dot_prod(NNEDIContext *s, const float *data, const float *weights, float *vals, const int n, const int len, const float *scale) +static void process_new(AVFilterContext *ctx, + const void *src, ptrdiff_t src_stride, + uint8_t *prescreen, int N, + void *data) { - int i; + NNEDIContext *s = ctx->priv; + PrescreenerNewCoefficients *m_data = data; + const float *src_p = src; - for (i = 0; i < n; i++) { - float sum; + // Adjust source pointer to point to top-left of filter window. + const float *window = src_p - 2 * src_stride - 6; - sum = s->fdsp->scalarproduct_float(data, &weights[i * len], len); + for (int j = 0; j < N; j += 4) { + LOCAL_ALIGNED_32(float, input, [64]); + float state[8]; - vals[i] = sum * scale[0] + weights[n * len + i]; - } -} + for (int i = 0; i < 4; i++) + memcpy(input + i * 16, window + i * src_stride + j, 16 * sizeof(float)); -static void dot_prods(NNEDIContext *s, const float *dataf, const float *weightsf, float *vals, const int n, const int len, const float *scale) -{ - const int16_t *data = (int16_t *)dataf; - const int16_t *weights = (int16_t *)weightsf; - const float *wf = (float *)&weights[n * len]; - int i, j; + for (int n = 0; n < 4; n++) + state[n] = dot_dsp(s, m_data->kernel_l0[n], input, 64, 1.0f, m_data->bias_l0[n]); + transform_elliott(state, 4); - for (i = 0; i < n; i++) { - int sum = 0, off = ((i >> 2) << 3) + (i & 3); - for (j = 0; j < len; j++) - sum += data[j] * weights[i * len + j]; + for (int n = 0; n < 4; n++) + state[n + 4] = dot_product(m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]); - vals[i] = sum * wf[off] * scale[0] + wf[off + 4]; + for (int n = 0; n < 4; n++) + prescreen[j + n] = state[n + 4] > 0.f; } } -static void compute_network0(NNEDIContext *s, const float *input, const float *weights, uint8_t *d) +static size_t filter_offset(unsigned nn, PredictorCoefficients *model) { - float t, temp[12], scale = 1.0f; - - dot_prod(s, input, weights, temp, 4, 48, &scale); - t = temp[0]; - elliott(temp, 4); - temp[0] = t; - dot_prod(s, temp, weights + 4 * 49, temp + 4, 4, 4, &scale); - elliott(temp + 4, 4); - dot_prod(s, temp, weights + 4 * 49 + 4 * 5, temp + 8, 4, 8, &scale); - if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9])) - d[0] = 1; - else - d[0] = 0; + return nn * model->xdim * model->ydim; } -static void compute_network0_i16(NNEDIContext *s, const float *inputf, const float *weightsf, uint8_t *d) +static const float *softmax_q1_filter(unsigned nn, PredictorCoefficients *model) { - const float *wf = weightsf + 2 * 48; - float t, temp[12], scale = 1.0f; - - dot_prods(s, inputf, weightsf, temp, 4, 48, &scale); - t = temp[0]; - elliott(temp, 4); - temp[0] = t; - dot_prod(s, temp, wf + 8, temp + 4, 4, 4, &scale); - elliott(temp + 4, 4); - dot_prod(s, temp, wf + 8 + 4 * 5, temp + 8, 4, 8, &scale); - if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9])) - d[0] = 1; - else - d[0] = 0; + return model->softmax_q1 + filter_offset(nn, model); } -static void pixel2float48(const uint8_t *t8, const int pitch, float *p) +static const float *elliott_q1_filter(unsigned nn, PredictorCoefficients *model) { - const uint8_t *t = (const uint8_t *)t8; - int y, x; - - for (y = 0; y < 4; y++) - for (x = 0; x < 12; x++) - p[y * 12 + x] = t[y * pitch * 2 + x]; + return model->elliott_q1 + filter_offset(nn, model); } -static void byte2word48(const uint8_t *t, const int pitch, float *pf) +static const float *softmax_q2_filter(unsigned nn, PredictorCoefficients *model) { - int16_t *p = (int16_t *)pf; - int y, x; - - for (y = 0; y < 4; y++) - for (x = 0; x < 12; x++) - p[y * 12 + x] = t[y * pitch * 2 + x]; + return model->softmax_q2 + filter_offset(nn, model); } -static int32_t process_line0(const uint8_t *tempu, int width, uint8_t *dstp8, const uint8_t *src3p8, const int src_pitch, const int max_value, const int chroma) +static const float *elliott_q2_filter(unsigned nn, PredictorCoefficients *model) { - uint8_t *dstp = (uint8_t *)dstp8; - const uint8_t *src3p = (const uint8_t *)src3p8; - int minimum = 0; - int maximum = max_value - 1; // Technically the -1 is only needed for 8 and 16 bit input. - int count = 0, x; - for (x = 0; x < width; x++) { - if (tempu[x]) { - int tmp = 19 * (src3p[x + src_pitch * 2] + src3p[x + src_pitch * 4]) - 3 * (src3p[x] + src3p[x + src_pitch * 6]); - tmp /= 32; - dstp[x] = FFMAX(FFMIN(tmp, maximum), minimum); - } else { - dstp[x] = 255; - count++; - } - } - return count; -} - -// new prescreener functions -static void byte2word64(const uint8_t *t, const int pitch, float *p) -{ - int16_t *ps = (int16_t *)p; - int y, x; - - for (y = 0; y < 4; y++) - for (x = 0; x < 16; x++) - ps[y * 16 + x] = t[y * pitch * 2 + x]; + return model->elliott_q2 + filter_offset(nn, model); } -static void compute_network0new(NNEDIContext *s, const float *datai, const float *weights, uint8_t *d) +static void gather_input(const float *src, ptrdiff_t src_stride, + float *buf, float mstd[4], + PredictorCoefficients *model) { - int16_t *data = (int16_t *)datai; - int16_t *ws = (int16_t *)weights; - float *wf = (float *)&ws[4 * 64]; - float vals[8]; - int mask, i, j; - - for (i = 0; i < 4; i++) { - int sum = 0; - float t; - - for (j = 0; j < 64; j++) - sum += data[j] * ws[(i << 3) + ((j >> 3) << 5) + (j & 7)]; - t = sum * wf[i] + wf[4 + i]; - vals[i] = t / (1.0f + FFABS(t)); - } - - for (i = 0; i < 4; i++) { - float sum = 0.0f; - - for (j = 0; j < 4; j++) - sum += vals[j] * wf[8 + i + (j << 2)]; - vals[4 + i] = sum + wf[8 + 16 + i]; - } - - mask = 0; - for (i = 0; i < 4; i++) { - if (vals[4 + i] > 0.0f) - mask |= (0x1 << (i << 3)); - } - - ((int *)d)[0] = mask; -} - -static void evalfunc_0(NNEDIContext *s, FrameData *frame_data) -{ - float *input = frame_data->input; - const float *weights0 = s->weights0; - float *temp = frame_data->temp; - uint8_t *tempu = (uint8_t *)temp; - int plane, x, y; - - // And now the actual work. - for (plane = 0; plane < s->nb_planes; plane++) { - const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane]; - const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t); - - const int width = frame_data->padded_width[plane]; - const int height = frame_data->padded_height[plane]; - - uint8_t *dstp = (uint8_t *)frame_data->dstp[plane]; - const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t); - const uint8_t *src3p; - int ystart, ystop; - int32_t *lcount; - - if (!(s->process_plane & (1 << plane))) - continue; - - for (y = 1 - frame_data->field[plane]; y < height - 12; y += 2) { - memcpy(dstp + y * dst_stride, - srcp + 32 + (6 + y) * src_stride, - (width - 64) * sizeof(uint8_t)); + float sum = 0; + float sum_sq = 0; + float tmp; - } + for (int i = 0; i < model->ydim; i++) { + for (int j = 0; j < model->xdim; j++) { + float val = src[i * src_stride + j]; - ystart = 6 + frame_data->field[plane]; - ystop = height - 6; - srcp += ystart * src_stride; - dstp += (ystart - 6) * dst_stride - 32; - src3p = srcp - src_stride * 3; - lcount = frame_data->lcount[plane] - 6; - - if (s->pscrn == 1) { // original - for (y = ystart; y < ystop; y += 2) { - for (x = 32; x < width - 32; x++) { - s->readpixels((const uint8_t *)(src3p + x - 5), src_stride, input); - s->compute_network0(s, input, weights0, tempu+x); - } - lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane); - src3p += src_stride * 2; - dstp += dst_stride * 2; - } - } else if (s->pscrn > 1) { // new - for (y = ystart; y < ystop; y += 2) { - for (x = 32; x < width - 32; x += 4) { - s->readpixels((const uint8_t *)(src3p + x - 6), src_stride, input); - s->compute_network0(s, input, weights0, tempu + x); - } - lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane); - src3p += src_stride * 2; - dstp += dst_stride * 2; - } - } else { // no prescreening - for (y = ystart; y < ystop; y += 2) { - memset(dstp + 32, 255, (width - 64) * sizeof(uint8_t)); - lcount[y] += width - 64; - dstp += dst_stride * 2; - } + buf[i * model->xdim + j] = val; + sum += val; + sum_sq += val * val; } } -} -static void extract_m8(const uint8_t *srcp8, const int stride, const int xdia, const int ydia, float *mstd, float *input) -{ - // uint8_t or uint16_t or float - const uint8_t *srcp = (const uint8_t *)srcp8; - float scale; - double tmp; - - // int32_t or int64_t or double - int64_t sum = 0, sumsq = 0; - int y, x; - - for (y = 0; y < ydia; y++) { - const uint8_t *srcpT = srcp + y * stride * 2; - - for (x = 0; x < xdia; x++) { - sum += srcpT[x]; - sumsq += (uint32_t)srcpT[x] * (uint32_t)srcpT[x]; - input[x] = srcpT[x]; - } - input += xdia; - } - scale = 1.0f / (xdia * ydia); - mstd[0] = sum * scale; - tmp = (double)sumsq * scale - (double)mstd[0] * mstd[0]; - mstd[3] = 0.0f; - if (tmp <= FLT_EPSILON) - mstd[1] = mstd[2] = 0.0f; - else { - mstd[1] = sqrt(tmp); + mstd[0] = sum / (model->xdim * model->ydim); + mstd[3] = 0.f; + + tmp = sum_sq / (model->xdim * model->ydim) - mstd[0] * mstd[0]; + if (tmp < FLT_EPSILON) { + mstd[1] = 0.0f; + mstd[2] = 0.0f; + } else { + mstd[1] = sqrtf(tmp); mstd[2] = 1.0f / mstd[1]; } } -static void extract_m8_i16(const uint8_t *srcp, const int stride, const int xdia, const int ydia, float *mstd, float *inputf) +static float softmax_exp(float x) { - int16_t *input = (int16_t *)inputf; - float scale; - int sum = 0, sumsq = 0; - int y, x; - - for (y = 0; y < ydia; y++) { - const uint8_t *srcpT = srcp + y * stride * 2; - for (x = 0; x < xdia; x++) { - sum += srcpT[x]; - sumsq += srcpT[x] * srcpT[x]; - input[x] = srcpT[x]; - } - input += xdia; - } - scale = 1.0f / (float)(xdia * ydia); - mstd[0] = sum * scale; - mstd[1] = sumsq * scale - mstd[0] * mstd[0]; - mstd[3] = 0.0f; - if (mstd[1] <= FLT_EPSILON) - mstd[1] = mstd[2] = 0.0f; - else { - mstd[1] = sqrt(mstd[1]); - mstd[2] = 1.0f / mstd[1]; - } + return expf(av_clipf(x, -80.f, 80.f)); } - -static const float exp_lo = -80.0f; -static const float exp_hi = +80.0f; - -static void e2_m16(float *s, const int n) +static void transform_softmax_exp(float *input, int size) { - int i; - - for (i = 0; i < n; i++) - s[i] = exp(av_clipf(s[i], exp_lo, exp_hi)); + for (int i = 0; i < size; i++) + input[i] = softmax_exp(input[i]); } -const float min_weight_sum = 1e-10f; - -static void weighted_avg_elliott_mul5_m16(const float *w, const int n, float *mstd) +static void wae5(const float *softmax, const float *el, + unsigned n, float mstd[4]) { float vsum = 0.0f, wsum = 0.0f; - int i; - for (i = 0; i < n; i++) { - vsum += w[i] * (w[n + i] / (1.0f + FFABS(w[n + i]))); - wsum += w[i]; + for (int i = 0; i < n; i++) { + vsum += softmax[i] * elliott(el[i]); + wsum += softmax[i]; } - if (wsum > min_weight_sum) - mstd[3] += ((5.0f * vsum) / wsum) * mstd[1] + mstd[0]; + + if (wsum > 1e-10f) + mstd[3] += (5.0f * vsum) / wsum * mstd[1] + mstd[0]; else mstd[3] += mstd[0]; } - -static void evalfunc_1(NNEDIContext *s, FrameData *frame_data) +static void predictor(AVFilterContext *ctx, + const void *src, ptrdiff_t src_stride, void *dst, + const uint8_t *prescreen, int N, + void *data, int use_q2) { - float *input = frame_data->input; - float *temp = frame_data->temp; - float **weights1 = s->weights1; - const int qual = s->qual; - const int asize = s->asize; - const int nns = s->nns; - const int xdia = s->xdia; - const int xdiad2m1 = (xdia / 2) - 1; - const int ydia = s->ydia; - const float scale = 1.0f / (float)qual; - int plane, y, x, i; - - for (plane = 0; plane < s->nb_planes; plane++) { - const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane]; - const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t); - - const int width = frame_data->padded_width[plane]; - const int height = frame_data->padded_height[plane]; - - uint8_t *dstp = (uint8_t *)frame_data->dstp[plane]; - const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t); - - const int ystart = frame_data->field[plane]; - const int ystop = height - 12; - const uint8_t *srcpp; - - if (!(s->process_plane & (1 << plane))) + NNEDIContext *s = ctx->priv; + PredictorCoefficients *model = data; + const float *src_p = src; + float *dst_p = dst; + + // Adjust source pointer to point to top-left of filter window. + const float *window = src_p - (model->ydim / 2) * src_stride - (model->xdim / 2 - 1); + unsigned filter_size = model->xdim * model->ydim; + unsigned nns = model->nns; + + for (int i = 0; i < N; i++) { + LOCAL_ALIGNED_32(float, input, [48 * 6]); + float activation[256 * 2]; + float mstd[4]; + float scale; + + if (prescreen[i]) continue; - srcp += (ystart + 6) * src_stride; - dstp += ystart * dst_stride - 32; - srcpp = srcp - (ydia - 1) * src_stride - xdiad2m1; + gather_input(window + i, src_stride, input, mstd, model); + scale = mstd[2]; - for (y = ystart; y < ystop; y += 2) { - for (x = 32; x < width - 32; x++) { - float mstd[4]; + for (int nn = 0; nn < nns; nn++) + activation[nn] = dot_dsp(s, softmax_q1_filter(nn, model), input, filter_size, scale, model->softmax_bias_q1[nn]); - if (dstp[x] != 255) - continue; + for (int nn = 0; nn < nns; nn++) + activation[model->nns + nn] = dot_dsp(s, elliott_q1_filter(nn, model), input, filter_size, scale, model->elliott_bias_q1[nn]); - s->extract((const uint8_t *)(srcpp + x), src_stride, xdia, ydia, mstd, input); - for (i = 0; i < qual; i++) { - s->dot_prod(s, input, weights1[i], temp, nns * 2, asize, mstd + 2); - s->expfunc(temp, nns); - s->wae5(temp, nns, mstd); - } + transform_softmax_exp(activation, nns); + wae5(activation, activation + nns, nns, mstd); - dstp[x] = FFMIN(FFMAX((int)(mstd[3] * scale + 0.5f), 0), s->max_value); - } - srcpp += src_stride * 2; - dstp += dst_stride * 2; + if (use_q2) { + for (int nn = 0; nn < nns; nn++) + activation[nn] = dot_dsp(s, softmax_q2_filter(nn, model), input, filter_size, scale, model->softmax_bias_q2[nn]); + + for (int nn = 0; nn < nns; nn++) + activation[nns + nn] = dot_dsp(s, elliott_q2_filter(nn, model), input, filter_size, scale, model->elliott_bias_q2[nn]); + + transform_softmax_exp(activation, nns); + wae5(activation, activation + nns, nns, mstd); } + + dst_p[i] = mstd[3] / (use_q2 ? 2 : 1); } } -#define NUM_NSIZE 7 -#define NUM_NNS 5 - -static int roundds(const double f) +static void read_bytes(const uint8_t *src, float *dst, + int src_stride, int dst_stride, + int width, int height, float scale) { - if (f - floor(f) >= 0.5) - return FFMIN((int)ceil(f), 32767); - return FFMAX((int)floor(f), -32768); + for (int y = 0; y < height; y++) { + for (int x = 0; x < 32; x++) + dst[-x - 1] = src[x]; + + for (int x = 0; x < width; x++) + dst[x] = src[x]; + + for (int x = 0; x < 32; x++) + dst[width + x] = src[width - x - 1]; + + dst += dst_stride; + src += src_stride; + } } -static void select_functions(NNEDIContext *s) +static void read_words(const uint8_t *srcp, float *dst, + int src_stride, int dst_stride, + int width, int height, float scale) { - s->copy_pad = copy_pad; - s->evalfunc_0 = evalfunc_0; - s->evalfunc_1 = evalfunc_1; + const uint16_t *src = (const uint16_t *)srcp; - // evalfunc_0 - s->process_line0 = process_line0; + src_stride /= 2; - if (s->pscrn < 2) { // original prescreener - if (s->fapprox & 1) { // int16 dot products - s->readpixels = byte2word48; - s->compute_network0 = compute_network0_i16; - } else { - s->readpixels = pixel2float48; - s->compute_network0 = compute_network0; - } - } else { // new prescreener - // only int16 dot products - s->readpixels = byte2word64; - s->compute_network0 = compute_network0new; - } + for (int y = 0; y < height; y++) { + for (int x = 0; x < 32; x++) + dst[-x - 1] = src[x] * scale; - // evalfunc_1 - s->wae5 = weighted_avg_elliott_mul5_m16; + for (int x = 0; x < width; x++) + dst[x] = src[x] * scale; - if (s->fapprox & 2) { // use int16 dot products - s->extract = extract_m8_i16; - s->dot_prod = dot_prods; - } else { // use float dot products - s->extract = extract_m8; - s->dot_prod = dot_prod; - } + for (int x = 0; x < 32; x++) + dst[width + x] = src[width - x - 1] * scale; - s->expfunc = e2_m16; + dst += dst_stride; + src += src_stride; + } } -static int modnpf(const int m, const int n) +static void write_bytes(const float *src, uint8_t *dst, + int src_stride, int dst_stride, + int width, int height, int depth, + float scale) { - if ((m % n) == 0) - return m; - return m + n - (m % n); + for (int y = 0; y < height; y++) { + for (int x = 0; x < width; x++) + dst[x] = av_clip_uint8(src[x]); + + dst += dst_stride; + src += src_stride; + } } -static int get_frame(AVFilterContext *ctx, int is_second) +static void write_words(const float *src, uint8_t *dstp, + int src_stride, int dst_stride, + int width, int height, int depth, + float scale) { - NNEDIContext *s = ctx->priv; - AVFilterLink *outlink = ctx->outputs[0]; - AVFrame *src = s->src; - FrameData *frame_data; - int effective_field = s->field; - size_t temp_size; - int field_n; - int plane; + uint16_t *dst = (uint16_t *)dstp; - if (effective_field > 1) - effective_field -= 2; - else if (effective_field < 0) - effective_field += 2; + dst_stride /= 2; - if (s->field < 0 && src->interlaced_frame && src->top_field_first == 0) - effective_field = 0; - else if (s->field < 0 && src->interlaced_frame && src->top_field_first == 1) - effective_field = 1; - else - effective_field = !effective_field; + for (int y = 0; y < height; y++) { + for (int x = 0; x < width; x++) + dst[x] = av_clip_uintp2_c(src[x] * scale, depth); - if (s->field > 1 || s->field == -2) { - if (is_second) { - field_n = (effective_field == 0); - } else { - field_n = (effective_field == 1); - } - } else { - field_n = effective_field; + dst += dst_stride; + src += src_stride; } +} - s->dst = ff_get_video_buffer(outlink, outlink->w, outlink->h); - if (!s->dst) - return AVERROR(ENOMEM); - av_frame_copy_props(s->dst, src); - s->dst->interlaced_frame = 0; +static void interpolation(const void *src, ptrdiff_t src_stride, + void *dst, const uint8_t *prescreen, unsigned n) +{ + const float *src_p = src; + float *dst_p = dst; + const float *window = src_p - 2 * src_stride; - frame_data = &s->frame_data; + for (int i = 0; i < n; i++) { + float accum = 0.0f; - for (plane = 0; plane < s->nb_planes; plane++) { - int dst_height = s->planeheight[plane]; - int dst_width = s->linesize[plane]; + if (!prescreen[i]) + continue; - const int min_alignment = 16; - const int min_pad = 10; + accum += (-3.0f / 32.0f) * window[0 * src_stride + i]; + accum += (19.0f / 32.0f) * window[1 * src_stride + i]; + accum += (19.0f / 32.0f) * window[2 * src_stride + i]; + accum += (-3.0f / 32.0f) * window[3 * src_stride + i]; - if (!(s->process_plane & (1 << plane))) { - av_image_copy_plane(s->dst->data[plane], s->dst->linesize[plane], - src->data[plane], src->linesize[plane], - s->linesize[plane], - s->planeheight[plane]); + dst_p[i] = accum; + } +} + +static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) +{ + NNEDIContext *s = ctx->priv; + AVFrame *out = s->dst; + AVFrame *in = s->src; + const float in_scale = s->in_scale; + const float out_scale = s->out_scale; + const int depth = s->depth; + const int interlaced = in->interlaced_frame; + const int tff = s->field_n == (s->field < 0 ? interlaced ? in->top_field_first : 1 : + (s->field & 1) ^ 1); + + + for (int p = 0; p < s->nb_planes; p++) { + const int height = s->planeheight[p]; + const int width = s->planewidth[p]; + const int slice_start = 2 * ((height / 2 * jobnr) / nb_jobs); + const int slice_end = 2 * ((height / 2 * (jobnr+1)) / nb_jobs); + const uint8_t *src_data = in->data[p]; + uint8_t *dst_data = out->data[p]; + uint8_t *dst = out->data[p] + slice_start * out->linesize[p]; + const int src_linesize = in->linesize[p]; + const int dst_linesize = out->linesize[p]; + uint8_t *prescreen_buf = s->prescreen_buf + s->planewidth[0] * jobnr; + float *srcbuf = s->input_buf + s->input_size * jobnr; + const int srcbuf_stride = width + 64; + float *dstbuf = s->output_buf + s->input_size * jobnr; + const int dstbuf_stride = width; + const int slice_height = (slice_end - slice_start) / 2; + const int last_slice = slice_end == height; + const uint8_t *in_line; + uint8_t *out_line; + int y_out; + + if (!(s->process_plane & (1 << p))) { + av_image_copy_plane(dst, out->linesize[p], + in->data[p] + slice_start * in->linesize[p], + in->linesize[p], + s->linesize[p], slice_end - slice_start); continue; } - frame_data->padded_width[plane] = dst_width + 64; - frame_data->padded_height[plane] = dst_height + 12; - frame_data->padded_stride[plane] = modnpf(frame_data->padded_width[plane] + min_pad, min_alignment); // TODO: maybe min_pad is in pixels too? - if (!frame_data->paddedp[plane]) { - frame_data->paddedp[plane] = av_malloc_array(frame_data->padded_stride[plane], frame_data->padded_height[plane]); - if (!frame_data->paddedp[plane]) - return AVERROR(ENOMEM); + y_out = slice_start + (tff ^ (slice_start & 1)); + in_line = src_data + (y_out * src_linesize); + out_line = dst_data + (y_out * dst_linesize); + + while (y_out < slice_end) { + memcpy(out_line, in_line, s->linesize[p]); + y_out += 2; + in_line += src_linesize * 2; + out_line += dst_linesize * 2; } - frame_data->dstp[plane] = s->dst->data[plane]; - frame_data->dst_stride[plane] = s->dst->linesize[plane]; + y_out = slice_start + ((!tff) ^ (slice_start & 1)); + + s->read(src_data + FFMAX(y_out - 5, tff) * src_linesize, + srcbuf + 32, + src_linesize * 2, srcbuf_stride, + width, 1, in_scale); + srcbuf += srcbuf_stride; + + s->read(src_data + FFMAX(y_out - 3, tff) * src_linesize, + srcbuf + 32, + src_linesize * 2, srcbuf_stride, + width, 1, in_scale); + srcbuf += srcbuf_stride; + + s->read(src_data + FFMAX(y_out - 1, tff) * src_linesize, + srcbuf + 32, + src_linesize * 2, srcbuf_stride, + width, 1, in_scale); + srcbuf += srcbuf_stride; + + in_line = src_data + FFMIN(y_out + 1, height - 1 - !tff) * src_linesize; + out_line = dst_data + (y_out * dst_linesize); + + s->read(in_line, srcbuf + 32, src_linesize * 2, srcbuf_stride, + width, slice_height - last_slice, in_scale); + + y_out += (slice_height - last_slice) * 2; + + s->read(src_data + FFMIN(y_out + 1, height - 1 - !tff) * src_linesize, + srcbuf + 32 + srcbuf_stride * (slice_height - last_slice), + src_linesize * 2, srcbuf_stride, + width, 1, in_scale); + + s->read(src_data + FFMIN(y_out + 3, height - 1 - !tff) * src_linesize, + srcbuf + 32 + srcbuf_stride * (slice_height + 1 - last_slice), + src_linesize * 2, srcbuf_stride, + width, 1, in_scale); + + s->read(src_data + FFMIN(y_out + 5, height - 1 - !tff) * src_linesize, + srcbuf + 32 + srcbuf_stride * (slice_height + 2 - last_slice), + src_linesize * 2, srcbuf_stride, + width, 1, in_scale); + + for (int y = 0; y < slice_end - slice_start; y += 2) { + if (s->pscrn > 1) { + s->prescreen[1](ctx, srcbuf + (y / 2) * srcbuf_stride + 32, + srcbuf_stride, prescreen_buf, width, + &s->prescreener_new[s->pscrn - 2]); + } else if (s->pscrn == 1) { + s->prescreen[0](ctx, srcbuf + (y / 2) * srcbuf_stride + 32, + srcbuf_stride, prescreen_buf, width, + &s->prescreener_old); + } - if (!frame_data->lcount[plane]) { - frame_data->lcount[plane] = av_calloc(dst_height, sizeof(int32_t) * 16); - if (!frame_data->lcount[plane]) - return AVERROR(ENOMEM); - } else { - memset(frame_data->lcount[plane], 0, dst_height * sizeof(int32_t) * 16); + predictor(ctx, + srcbuf + (y / 2) * srcbuf_stride + 32, + srcbuf_stride, + dstbuf + (y / 2) * dstbuf_stride, + prescreen_buf, width, + &s->coeffs[s->etype][s->nnsparam][s->nsize], s->qual == 2); + + if (s->prescreen > 0) + interpolation(srcbuf + (y / 2) * srcbuf_stride + 32, + srcbuf_stride, + dstbuf + (y / 2) * dstbuf_stride, + prescreen_buf, width); } - frame_data->field[plane] = field_n; + s->write(dstbuf, out_line, dstbuf_stride, dst_linesize * 2, + width, slice_height, depth, out_scale); } - if (!frame_data->input) { - frame_data->input = av_malloc(512 * sizeof(float)); - if (!frame_data->input) - return AVERROR(ENOMEM); - } - // evalfunc_0 requires at least padded_width[0] bytes. - // evalfunc_1 requires at least 512 floats. - if (!frame_data->temp) { - temp_size = FFMAX(frame_data->padded_width[0], 512 * sizeof(float)); - frame_data->temp = av_malloc(temp_size); - if (!frame_data->temp) - return AVERROR(ENOMEM); - } + return 0; +} + +static int get_frame(AVFilterContext *ctx, int is_second) +{ + NNEDIContext *s = ctx->priv; + AVFilterLink *outlink = ctx->outputs[0]; + AVFrame *src = s->src; - // Copy src to a padded "frame" in frame_data and mirror the edges. - s->copy_pad(src, frame_data, s, field_n); + s->dst = ff_get_video_buffer(outlink, outlink->w, outlink->h); + if (!s->dst) + return AVERROR(ENOMEM); + av_frame_copy_props(s->dst, src); + s->dst->interlaced_frame = 0; - // Handles prescreening and the cubic interpolation. - s->evalfunc_0(s, frame_data); + ctx->internal->execute(ctx, filter_slice, NULL, NULL, FFMIN(s->planeheight[1] / 2, s->nb_threads)); - // The rest. - s->evalfunc_1(s, frame_data); + if (s->field == -2 || s->field > 1) + s->field_n = !s->field_n; return 0; } @@ -904,23 +816,221 @@ static int request_frame(AVFilterLink *link) return 0; } +static void read(float *dst, size_t n, const float **data) +{ + memcpy(dst, *data, n * sizeof(float)); + *data += n; +} + +static float *allocate(float **ptr, size_t size) +{ + float *ret = *ptr; + + *ptr += size; + + return ret; +} + +static int allocate_model(PredictorCoefficients *coeffs, int xdim, int ydim, int nns) +{ + size_t filter_size = nns * xdim * ydim; + size_t bias_size = nns; + float *data; + + data = av_malloc_array(filter_size + bias_size, 4 * sizeof(float)); + if (!data) + return AVERROR(ENOMEM); + + coeffs->data = data; + coeffs->xdim = xdim; + coeffs->ydim = ydim; + coeffs->nns = nns; + + coeffs->softmax_q1 = allocate(&data, filter_size); + coeffs->elliott_q1 = allocate(&data, filter_size); + coeffs->softmax_bias_q1 = allocate(&data, bias_size); + coeffs->elliott_bias_q1 = allocate(&data, bias_size); + + coeffs->softmax_q2 = allocate(&data, filter_size); + coeffs->elliott_q2 = allocate(&data, filter_size); + coeffs->softmax_bias_q2 = allocate(&data, bias_size); + coeffs->elliott_bias_q2 = allocate(&data, bias_size); + + return 0; +} + +static int read_weights(AVFilterContext *ctx, const float *bdata) +{ + NNEDIContext *s = ctx->priv; + int ret; + + read(&s->prescreener_old.kernel_l0[0][0], 4 * 48, &bdata); + read(s->prescreener_old.bias_l0, 4, &bdata); + + read(&s->prescreener_old.kernel_l1[0][0], 4 * 4, &bdata); + read(s->prescreener_old.bias_l1, 4, &bdata); + + read(&s->prescreener_old.kernel_l2[0][0], 4 * 8, &bdata); + read(s->prescreener_old.bias_l2, 4, &bdata); + + for (int i = 0; i < 3; i++) { + PrescreenerNewCoefficients *data = &s->prescreener_new[i]; + float kernel_l0_shuffled[4 * 64]; + float kernel_l1_shuffled[4 * 4]; + + read(kernel_l0_shuffled, 4 * 64, &bdata); + read(data->bias_l0, 4, &bdata); + + read(kernel_l1_shuffled, 4 * 4, &bdata); + read(data->bias_l1, 4, &bdata); + + for (int n = 0; n < 4; n++) { + for (int k = 0; k < 64; k++) + data->kernel_l0[n][k] = kernel_l0_shuffled[(k / 8) * 32 + n * 8 + k % 8]; + for (int k = 0; k < 4; k++) + data->kernel_l1[n][k] = kernel_l1_shuffled[k * 4 + n]; + } + } + + for (int m = 0; m < 2; m++) { + // Grouping by neuron count. + for (int i = 0; i < 5; i++) { + int nns = NNEDI_NNS[i]; + + // Grouping by window size. + for (int j = 0; j < 7; j++) { + PredictorCoefficients *model = &s->coeffs[m][i][j]; + int xdim = NNEDI_XDIM[j]; + int ydim = NNEDI_YDIM[j]; + size_t filter_size = xdim * ydim; + + ret = allocate_model(model, xdim, ydim, nns); + if (ret < 0) + return ret; + + // Quality 1 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients. + read(model->softmax_q1, nns * filter_size, &bdata); + read(model->elliott_q1, nns * filter_size, &bdata); + + // Quality 1 model bias. NNS[i] * 2 coefficients. + read(model->softmax_bias_q1, nns, &bdata); + read(model->elliott_bias_q1, nns, &bdata); + + // Quality 2 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients. + read(model->softmax_q2, nns * filter_size, &bdata); + read(model->elliott_q2, nns * filter_size, &bdata); + + // Quality 2 model bias. NNS[i] * 2 coefficients. + read(model->softmax_bias_q2, nns, &bdata); + read(model->elliott_bias_q2, nns, &bdata); + } + } + } + + return 0; +} + +static float mean(const float *input, int size) +{ + float sum = 0.; + + for (int i = 0; i < size; i++) + sum += input[i]; + + return sum / size; +} + +static void transform(float *input, int size, float mean, float half) +{ + for (int i = 0; i < size; i++) + input[i] = (input[i] - mean) / half; +} + +static void subtract_mean_old(PrescreenerOldCoefficients *coeffs, float half) +{ + for (int n = 0; n < 4; n++) { + float m = mean(coeffs->kernel_l0[n], 48); + + transform(coeffs->kernel_l0[n], 48, m, half); + } +} + +static void subtract_mean_new(PrescreenerNewCoefficients *coeffs, float half) +{ + for (int n = 0; n < 4; n++) { + float m = mean(coeffs->kernel_l0[n], 64); + + transform(coeffs->kernel_l0[n], 64, m, half); + } +} + +static void subtract_mean_predictor(PredictorCoefficients *model) +{ + size_t filter_size = model->xdim * model->ydim; + int nns = model->nns; + + float softmax_means[256]; // Average of individual softmax filters. + float elliott_means[256]; // Average of individual elliott filters. + float mean_filter[48 * 6]; // Pointwise average of all softmax filters. + float mean_bias; + + // Quality 1. + for (int nn = 0; nn < nns; nn++) { + softmax_means[nn] = mean(model->softmax_q1 + nn * filter_size, filter_size); + elliott_means[nn] = mean(model->elliott_q1 + nn * filter_size, filter_size); + + for (int k = 0; k < filter_size; k++) + mean_filter[k] += model->softmax_q1[nn * filter_size + k] - softmax_means[nn]; + } + + for (int k = 0; k < filter_size; k++) + mean_filter[k] /= nns; + + mean_bias = mean(model->softmax_bias_q1, nns); + + for (int nn = 0; nn < nns; nn++) { + for (int k = 0; k < filter_size; k++) { + model->softmax_q1[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k]; + model->elliott_q1[nn * filter_size + k] -= elliott_means[nn]; + } + model->softmax_bias_q1[nn] -= mean_bias; + } + + // Quality 2. + memset(mean_filter, 0, 48 * 6 * sizeof(float)); + + for (int nn = 0; nn < nns; nn++) { + softmax_means[nn] = mean(model->softmax_q2 + nn * filter_size, filter_size); + elliott_means[nn] = mean(model->elliott_q2 + nn * filter_size, filter_size); + + for (int k = 0; k < filter_size; k++) { + mean_filter[k] += model->softmax_q2[nn * filter_size + k] - softmax_means[nn]; + } + } + + for (int k = 0; k < filter_size; k++) + mean_filter[k] /= nns; + + mean_bias = mean(model->softmax_bias_q2, nns); + + for (unsigned nn = 0; nn < nns; nn++) { + for (unsigned k = 0; k < filter_size; k++) { + model->softmax_q2[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k]; + model->elliott_q2[nn * filter_size + k] -= elliott_means[nn]; + } + + model->softmax_bias_q2[nn] -= mean_bias; + } +} + static av_cold int init(AVFilterContext *ctx) { NNEDIContext *s = ctx->priv; FILE *weights_file = NULL; - int64_t expected_size = 13574928; int64_t weights_size; float *bdata; size_t bytes_read; - const int xdia_table[NUM_NSIZE] = { 8, 16, 32, 48, 8, 16, 32 }; - const int ydia_table[NUM_NSIZE] = { 6, 6, 6, 6, 4, 4, 4 }; - const int nns_table[NUM_NNS] = { 16, 32, 64, 128, 256 }; - const int dims0 = 49 * 4 + 5 * 4 + 9 * 4; - const int dims0new = 4 * 65 + 4 * 5; - const int dims1 = nns_table[s->nnsparam] * 2 * (xdia_table[s->nsize] * ydia_table[s->nsize] + 1); - int dims1tsize = 0; - int dims1offset = 0; - int ret = 0, i, j, k; + int ret = 0; weights_file = av_fopen_utf8(s->weights_file, "rb"); if (!weights_file) { @@ -940,7 +1050,7 @@ static av_cold int init(AVFilterContext *ctx) fclose(weights_file); av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n"); return AVERROR(EINVAL); - } else if (weights_size != expected_size) { + } else if (weights_size != NNEDI_WEIGHTS_SIZE) { fclose(weights_file); av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n"); return AVERROR(EINVAL); @@ -952,15 +1062,14 @@ static av_cold int init(AVFilterContext *ctx) return AVERROR(EINVAL); } - bdata = (float *)av_malloc(expected_size); + bdata = av_malloc(NNEDI_WEIGHTS_SIZE); if (!bdata) { fclose(weights_file); return AVERROR(ENOMEM); } - bytes_read = fread(bdata, 1, expected_size, weights_file); - - if (bytes_read != (size_t)expected_size) { + bytes_read = fread(bdata, 1, NNEDI_WEIGHTS_SIZE, weights_file); + if (bytes_read != NNEDI_WEIGHTS_SIZE) { fclose(weights_file); ret = AVERROR_INVALIDDATA; av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n"); @@ -969,211 +1078,102 @@ static av_cold int init(AVFilterContext *ctx) fclose(weights_file); - for (j = 0; j < NUM_NNS; j++) { - for (i = 0; i < NUM_NSIZE; i++) { - if (i == s->nsize && j == s->nnsparam) - dims1offset = dims1tsize; - dims1tsize += nns_table[j] * 2 * (xdia_table[i] * ydia_table[i] + 1) * 2; - } - } - - s->weights0 = av_malloc_array(FFMAX(dims0, dims0new), sizeof(float)); - if (!s->weights0) { + s->fdsp = avpriv_float_dsp_alloc(0); + if (!s->fdsp) { ret = AVERROR(ENOMEM); goto fail; } - for (i = 0; i < 2; i++) { - s->weights1[i] = av_malloc_array(dims1, sizeof(float)); - if (!s->weights1[i]) { - ret = AVERROR(ENOMEM); - goto fail; - } - } + ret = read_weights(ctx, bdata); + if (ret < 0) + goto fail; - // Adjust prescreener weights - if (s->pscrn >= 2) {// using new prescreener - const float *bdw; - int16_t *ws; - float *wf; - double mean[4] = { 0.0, 0.0, 0.0, 0.0 }; - int *offt = av_calloc(4 * 64, sizeof(int)); - - if (!offt) { - ret = AVERROR(ENOMEM); - goto fail; - } +fail: + av_free(bdata); + return ret; +} - for (j = 0; j < 4; j++) - for (k = 0; k < 64; k++) - offt[j * 64 + k] = ((k >> 3) << 5) + ((j & 3) << 3) + (k & 7); - - bdw = bdata + dims0 + dims0new * (s->pscrn - 2); - ws = (int16_t *)s->weights0; - wf = (float *)&ws[4 * 64]; - // Calculate mean weight of each first layer neuron - for (j = 0; j < 4; j++) { - double cmean = 0.0; - for (k = 0; k < 64; k++) - cmean += bdw[offt[j * 64 + k]]; - mean[j] = cmean / 64.0; - } - // Factor mean removal and 1.0/127.5 scaling - // into first layer weights. scale to int16 range - for (j = 0; j < 4; j++) { - double scale, mval = 0.0; - - for (k = 0; k < 64; k++) - mval = FFMAX(mval, FFABS((bdw[offt[j * 64 + k]] - mean[j]) / 127.5)); - scale = 32767.0 / mval; - for (k = 0; k < 64; k++) - ws[offt[j * 64 + k]] = roundds(((bdw[offt[j * 64 + k]] - mean[j]) / 127.5) * scale); - wf[j] = (float)(mval / 32767.0); - } - memcpy(wf + 4, bdw + 4 * 64, (dims0new - 4 * 64) * sizeof(float)); - av_free(offt); - } else { // using old prescreener - double mean[4] = { 0.0, 0.0, 0.0, 0.0 }; - // Calculate mean weight of each first layer neuron - for (j = 0; j < 4; j++) { - double cmean = 0.0; - for (k = 0; k < 48; k++) - cmean += bdata[j * 48 + k]; - mean[j] = cmean / 48.0; - } - if (s->fapprox & 1) {// use int16 dot products in first layer - int16_t *ws = (int16_t *)s->weights0; - float *wf = (float *)&ws[4 * 48]; - // Factor mean removal and 1.0/127.5 scaling - // into first layer weights. scale to int16 range - for (j = 0; j < 4; j++) { - double scale, mval = 0.0; - for (k = 0; k < 48; k++) - mval = FFMAX(mval, FFABS((bdata[j * 48 + k] - mean[j]) / 127.5)); - scale = 32767.0 / mval; - for (k = 0; k < 48; k++) - ws[j * 48 + k] = roundds(((bdata[j * 48 + k] - mean[j]) / 127.5) * scale); - wf[j] = (float)(mval / 32767.0); - } - memcpy(wf + 4, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float)); - } else {// use float dot products in first layer - double half = (1 << 8) - 1; - - half /= 2; - - // Factor mean removal and 1.0/half scaling - // into first layer weights. - for (j = 0; j < 4; j++) - for (k = 0; k < 48; k++) - s->weights0[j * 48 + k] = (float)((bdata[j * 48 + k] - mean[j]) / half); - memcpy(s->weights0 + 4 * 48, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float)); - } +static int config_input(AVFilterLink *inlink) +{ + AVFilterContext *ctx = inlink->dst; + NNEDIContext *s = ctx->priv; + const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); + int ret; + + s->depth = desc->comp[0].depth; + s->nb_threads = ff_filter_get_nb_threads(ctx); + s->nb_planes = av_pix_fmt_count_planes(inlink->format); + if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0) + return ret; + + s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); + s->planewidth[0] = s->planewidth[3] = inlink->w; + s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); + s->planeheight[0] = s->planeheight[3] = inlink->h; + + s->half = ((1 << 8) - 1) / 2.f; + s->out_scale = 1 << (s->depth - 8); + s->in_scale = 1.f / s->out_scale; + + switch (s->depth) { + case 8: + s->read = read_bytes; + s->write = write_bytes; + break; + default: + s->read = read_words; + s->write = write_words; + break; } - // Adjust prediction weights - for (i = 0; i < 2; i++) { - const float *bdataT = bdata + dims0 + dims0new * 3 + dims1tsize * s->etype + dims1offset + i * dims1; - const int nnst = nns_table[s->nnsparam]; - const int asize = xdia_table[s->nsize] * ydia_table[s->nsize]; - const int boff = nnst * 2 * asize; - double *mean = (double *)av_calloc(asize + 1 + nnst * 2, sizeof(double)); - - if (!mean) { - ret = AVERROR(ENOMEM); - goto fail; - } + subtract_mean_old(&s->prescreener_old, s->half); + subtract_mean_new(&s->prescreener_new[0], s->half); + subtract_mean_new(&s->prescreener_new[1], s->half); + subtract_mean_new(&s->prescreener_new[2], s->half); - // Calculate mean weight of each neuron (ignore bias) - for (j = 0; j < nnst * 2; j++) { - double cmean = 0.0; - for (k = 0; k < asize; k++) - cmean += bdataT[j * asize + k]; - mean[asize + 1 + j] = cmean / (double)asize; - } - // Calculate mean softmax neuron - for (j = 0; j < nnst; j++) { - for (k = 0; k < asize; k++) - mean[k] += bdataT[j * asize + k] - mean[asize + 1 + j]; - mean[asize] += bdataT[boff + j]; - } - for (j = 0; j < asize + 1; j++) - mean[j] /= (double)(nnst); - - if (s->fapprox & 2) { // use int16 dot products - int16_t *ws = (int16_t *)s->weights1[i]; - float *wf = (float *)&ws[nnst * 2 * asize]; - // Factor mean removal into weights, remove global offset from - // softmax neurons, and scale weights to int16 range. - for (j = 0; j < nnst; j++) { // softmax neurons - double scale, mval = 0.0; - for (k = 0; k < asize; k++) - mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k])); - scale = 32767.0 / mval; - for (k = 0; k < asize; k++) - ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]) * scale); - wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0); - wf[(j >> 2) * 8 + (j & 3) + 4] = (float)(bdataT[boff + j] - mean[asize]); - } - for (j = nnst; j < nnst * 2; j++) { // elliott neurons - double scale, mval = 0.0; - for (k = 0; k < asize; k++) - mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j])); - scale = 32767.0 / mval; - for (k = 0; k < asize; k++) - ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j]) * scale); - wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0); - wf[(j >> 2) * 8 + (j & 3) + 4] = bdataT[boff + j]; - } - } else { // use float dot products - // Factor mean removal into weights, and remove global - // offset from softmax neurons. - for (j = 0; j < nnst * 2; j++) { - for (k = 0; k < asize; k++) { - const double q = j < nnst ? mean[k] : 0.0; - s->weights1[i][j * asize + k] = (float)(bdataT[j * asize + k] - mean[asize + 1 + j] - q); - } - s->weights1[i][boff + j] = (float)(bdataT[boff + j] - (j < nnst ? mean[asize] : 0.0)); - } + s->prescreen[0] = process_old; + s->prescreen[1] = process_new; + + for (int i = 0; i < 2; i++) { + for (int j = 0; j < 5; j++) { + for (int k = 0; k < 7; k++) + subtract_mean_predictor(&s->coeffs[i][j][k]); } - av_free(mean); } - s->nns = nns_table[s->nnsparam]; - s->xdia = xdia_table[s->nsize]; - s->ydia = ydia_table[s->nsize]; - s->asize = xdia_table[s->nsize] * ydia_table[s->nsize]; - - s->max_value = 65535 >> 8; + s->prescreen_buf = av_calloc(s->nb_threads * s->planewidth[0], sizeof(*s->prescreen_buf)); + if (!s->prescreen_buf) + return AVERROR(ENOMEM); - select_functions(s); + s->input_size = (s->planewidth[0] + 64) * (s->planeheight[0] + 6); + s->input_buf = av_calloc(s->nb_threads * s->input_size, sizeof(*s->input_buf)); + if (!s->input_buf) + return AVERROR(ENOMEM); - s->fdsp = avpriv_float_dsp_alloc(0); - if (!s->fdsp) - ret = AVERROR(ENOMEM); + s->output_buf = av_calloc(s->nb_threads * s->input_size, sizeof(*s->output_buf)); + if (!s->output_buf) + return AVERROR(ENOMEM); -fail: - av_free(bdata); - return ret; + return 0; } static av_cold void uninit(AVFilterContext *ctx) { NNEDIContext *s = ctx->priv; - int i; - - av_freep(&s->weights0); - for (i = 0; i < 2; i++) - av_freep(&s->weights1[i]); + av_freep(&s->prescreen_buf); + av_freep(&s->input_buf); + av_freep(&s->output_buf); + av_freep(&s->fdsp); - for (i = 0; i < s->nb_planes; i++) { - av_freep(&s->frame_data.paddedp[i]); - av_freep(&s->frame_data.lcount[i]); + for (int i = 0; i < 2; i++) { + for (int j = 0; j < 5; j++) { + for (int k = 0; k < 7; k++) { + av_freep(&s->coeffs[i][j][k].data); + } + } } - av_freep(&s->frame_data.input); - av_freep(&s->frame_data.temp); - av_freep(&s->fdsp); av_frame_free(&s->second); } @@ -1207,5 +1207,6 @@ AVFilter ff_vf_nnedi = { .query_formats = query_formats, .inputs = inputs, .outputs = outputs, - .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, + .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, + .process_command = ff_filter_process_command, }; |