aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_xpsnr.c
diff options
context:
space:
mode:
authorChristian Helmrich <christian.helmrich@hhi.fraunhofer.de>2024-08-28 11:28:49 +0200
committerMichael Niedermayer <michael@niedermayer.cc>2024-09-08 17:51:37 +0200
commit865cd3c0560a965fe096524ed2d8d2962057e6ac (patch)
treebbef2133b3e4693b6814423c52b950230d7ed5ab /libavfilter/vf_xpsnr.c
parente6983ed525b56b4a4a4acfd4e3b77a5efc8c0047 (diff)
downloadffmpeg-865cd3c0560a965fe096524ed2d8d2962057e6ac.tar.gz
avfilter: add XPSNR filter
Add XPSNR video filter Register new filter xpsnr. Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Diffstat (limited to 'libavfilter/vf_xpsnr.c')
-rw-r--r--libavfilter/vf_xpsnr.c759
1 files changed, 759 insertions, 0 deletions
diff --git a/libavfilter/vf_xpsnr.c b/libavfilter/vf_xpsnr.c
new file mode 100644
index 0000000000..097258bf47
--- /dev/null
+++ b/libavfilter/vf_xpsnr.c
@@ -0,0 +1,759 @@
+/*
+ * Copyright (c) 2024 Christian R. Helmrich
+ * Copyright (c) 2024 Christian Lehmann
+ * Copyright (c) 2024 Christian Stoffers
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Calculate the extended perceptually weighted PSNR (XPSNR) between two input videos.
+ *
+ * Authors: Christian Helmrich, Lehmann, and Stoffers, Fraunhofer HHI, Berlin, Germany
+ */
+
+#include "libavutil/avstring.h"
+#include "libavutil/file_open.h"
+#include "libavutil/mem.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+#include "avfilter.h"
+#include "drawutils.h"
+#include "filters.h"
+#include "framesync.h"
+#include "xpsnr.h"
+
+/* XPSNR structure definition */
+
+typedef struct XPSNRContext {
+ /* required basic variables */
+ const AVClass *class;
+ int bpp; /* unpacked */
+ int depth; /* packed */
+ char comps[4];
+ int num_comps;
+ uint64_t num_frames_64;
+ unsigned frame_rate;
+ FFFrameSync fs;
+ int line_sizes[4];
+ int plane_height[4];
+ int plane_width[4];
+ uint8_t rgba_map[4];
+ FILE *stats_file;
+ char *stats_file_str;
+ /* XPSNR specific variables */
+ double *sse_luma;
+ double *weights;
+ AVBufferRef *buf_org [3];
+ AVBufferRef *buf_org_m1[3];
+ AVBufferRef *buf_org_m2[3];
+ AVBufferRef *buf_rec [3];
+ uint64_t max_error_64;
+ double sum_wdist [3];
+ double sum_xpsnr [3];
+ int and_is_inf[3];
+ int is_rgb;
+ PSNRDSPContext dsp;
+} XPSNRContext;
+
+/* required macro definitions */
+
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
+#define OFFSET(x) offsetof(XPSNRContext, x)
+#define XPSNR_GAMMA 2
+
+static const AVOption xpsnr_options[] = {
+ {"stats_file", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS},
+ {"f", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS},
+ { NULL }
+};
+
+FRAMESYNC_DEFINE_CLASS(xpsnr, XPSNRContext, fs);
+
+/* XPSNR function definitions */
+
+static uint64_t highds(const int x_act, const int y_act, const int w_act, const int h_act, const int16_t *o_m0, const int o)
+{
+ uint64_t sa_act = 0;
+
+ for (int y = y_act; y < h_act; y += 2) {
+ for (int x = x_act; x < w_act; x += 2) {
+ const int f = 12 * ((int)o_m0[ y *o + x ] + (int)o_m0[ y *o + x+1] + (int)o_m0[(y+1)*o + x ] + (int)o_m0[(y+1)*o + x+1])
+ - 3 * ((int)o_m0[(y-1)*o + x ] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+2)*o + x ] + (int)o_m0[(y+2)*o + x+1])
+ - 3 * ((int)o_m0[ y *o + x-1] + (int)o_m0[ y *o + x+2] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+2])
+ - 2 * ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+2] + (int)o_m0[(y+2)*o + x-1] + (int)o_m0[(y+2)*o + x+2])
+ - ((int)o_m0[(y-2)*o + x-1] + (int)o_m0[(y-2)*o + x ] + (int)o_m0[(y-2)*o + x+1] + (int)o_m0[(y-2)*o + x+2]
+ + (int)o_m0[(y+3)*o + x-1] + (int)o_m0[(y+3)*o + x ] + (int)o_m0[(y+3)*o + x+1] + (int)o_m0[(y+3)*o + x+2]
+ + (int)o_m0[(y-1)*o + x-2] + (int)o_m0[ y *o + x-2] + (int)o_m0[(y+1)*o + x-2] + (int)o_m0[(y+2)*o + x-2]
+ + (int)o_m0[(y-1)*o + x+3] + (int)o_m0[ y *o + x+3] + (int)o_m0[(y+1)*o + x+3] + (int)o_m0[(y+2)*o + x+3]);
+ sa_act += (uint64_t) abs(f);
+ }
+ }
+ return sa_act;
+}
+
+static uint64_t diff1st(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, const int o)
+{
+ uint64_t ta_act = 0;
+
+ for (uint32_t y = 0; y < h_act; y += 2) {
+ for (uint32_t x = 0; x < w_act; x += 2) {
+ const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1]
+ - ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]);
+ ta_act += (uint64_t) abs(t);
+ o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ];
+ o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1];
+ }
+ }
+ return (ta_act * XPSNR_GAMMA);
+}
+
+static uint64_t diff2nd(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, int16_t *o_m2, const int o)
+{
+ uint64_t ta_act = 0;
+
+ for (uint32_t y = 0; y < h_act; y += 2) {
+ for (uint32_t x = 0; x < w_act; x += 2) {
+ const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1]
+ - 2 * ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1])
+ + (int)o_m2[y*o + x] + (int)o_m2[y*o + x+1] + (int)o_m2[(y+1)*o + x] + (int)o_m2[(y+1)*o + x+1];
+ ta_act += (uint64_t) abs(t);
+ o_m2[y*o + x ] = o_m1[y*o + x ]; o_m2[(y+1)*o + x ] = o_m1[(y+1)*o + x ];
+ o_m2[y*o + x+1] = o_m1[y*o + x+1]; o_m2[(y+1)*o + x+1] = o_m1[(y+1)*o + x+1];
+ o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ];
+ o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1];
+ }
+ }
+ return (ta_act * XPSNR_GAMMA);
+}
+
+static uint64_t sse_line_16bit(const uint8_t *blk_org8, const uint8_t *blk_rec8, int block_width)
+{
+ const uint16_t *blk_org = (const uint16_t *) blk_org8;
+ const uint16_t *blk_rec = (const uint16_t *) blk_rec8;
+ uint64_t sse = 0; /* sum for one pixel line */
+
+ for (int x = 0; x < block_width; x++) {
+ const int64_t error = (int64_t) blk_org[x] - (int64_t) blk_rec[x];
+
+ sse += error * error;
+ }
+
+ /* sum of squared errors for the pixel line */
+ return sse;
+}
+
+static inline uint64_t calc_squared_error(XPSNRContext const *s,
+ const int16_t *blk_org, const uint32_t stride_org,
+ const int16_t *blk_rec, const uint32_t stride_rec,
+ const uint32_t block_width, const uint32_t block_height)
+{
+ uint64_t sse = 0; /* sum of squared errors */
+
+ for (uint32_t y = 0; y < block_height; y++) {
+ sse += s->dsp.sse_line((const uint8_t *) blk_org, (const uint8_t *) blk_rec, (int) block_width);
+ blk_org += stride_org;
+ blk_rec += stride_rec;
+ }
+
+ /* return nonweighted sum of squared errors */
+ return sse;
+}
+
+static inline double calc_squared_error_and_weight (XPSNRContext const *s,
+ const int16_t *pic_org, const uint32_t stride_org,
+ int16_t *pic_org_m1, int16_t *pic_org_m2,
+ const int16_t *pic_rec, const uint32_t stride_rec,
+ const uint32_t offset_x, const uint32_t offset_y,
+ const uint32_t block_width, const uint32_t block_height,
+ const uint32_t bit_depth, const uint32_t int_frame_rate, double *ms_act)
+{
+ const int o = (int) stride_org;
+ const int r = (int) stride_rec;
+ const int16_t *o_m0 = pic_org + offset_y * o + offset_x;
+ int16_t *o_m1 = pic_org_m1 + offset_y * o + offset_x;
+ int16_t *o_m2 = pic_org_m2 + offset_y * o + offset_x;
+ const int16_t *r_m0 = pic_rec + offset_y * r + offset_x;
+ const int b_val = (s->plane_width[0] * s->plane_height[0] > 2048 * 1152 ? 2 : 1); /* threshold is a bit more than HD resolution */
+ const int x_act = (offset_x > 0 ? 0 : b_val);
+ const int y_act = (offset_y > 0 ? 0 : b_val);
+ const int w_act = (offset_x + block_width < (uint32_t) s->plane_width [0] ? (int) block_width : (int) block_width - b_val);
+ const int h_act = (offset_y + block_height < (uint32_t) s->plane_height[0] ? (int) block_height : (int) block_height - b_val);
+
+ const double sse = (double) calc_squared_error (s, o_m0, stride_org,
+ r_m0, stride_rec,
+ block_width, block_height);
+ uint64_t sa_act = 0; /* spatial abs. activity */
+ uint64_t ta_act = 0; /* temporal abs. activity */
+
+ if (w_act <= x_act || h_act <= y_act) /* small */
+ return sse;
+
+ if (b_val > 1) { /* highpass with downsampling */
+ if (w_act > 12)
+ sa_act = s->dsp.highds_func(x_act, y_act, w_act, h_act, o_m0, o);
+ else
+ highds(x_act, y_act, w_act, h_act, o_m0, o);
+ } else { /* <=HD highpass without downsampling */
+ for (int y = y_act; y < h_act; y++) {
+ for (int x = x_act; x < w_act; x++) {
+ const int f = 12 * (int)o_m0[y*o + x] - 2 * ((int)o_m0[y*o + x-1] + (int)o_m0[y*o + x+1] + (int)o_m0[(y-1)*o + x] + (int)o_m0[(y+1)*o + x])
+ - ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+1]);
+ sa_act += (uint64_t) abs(f);
+ }
+ }
+ }
+
+ /* calculate weight (average squared activity) */
+ *ms_act = (double) sa_act / ((double) (w_act - x_act) * (double) (h_act - y_act));
+
+ if (b_val > 1) { /* highpass with downsampling */
+ if (int_frame_rate < 32) /* 1st-order diff */
+ ta_act = s->dsp.diff1st_func(block_width, block_height, o_m0, o_m1, o);
+ else /* 2nd-order diff (diff of two diffs) */
+ ta_act = s->dsp.diff2nd_func(block_width, block_height, o_m0, o_m1, o_m2, o);
+ } else { /* <=HD highpass without downsampling */
+ if (int_frame_rate < 32) { /* 1st-order diff */
+ for (uint32_t y = 0; y < block_height; y++) {
+ for (uint32_t x = 0; x < block_width; x++) {
+ const int t = (int)o_m0[y * o + x] - (int)o_m1[y * o + x];
+
+ ta_act += XPSNR_GAMMA * (uint64_t) abs(t);
+ o_m1[y * o + x] = o_m0[y * o + x];
+ }
+ }
+ } else { /* 2nd-order diff (diff of 2 diffs) */
+ for (uint32_t y = 0; y < block_height; y++) {
+ for (uint32_t x = 0; x < block_width; x++) {
+ const int t = (int)o_m0[y * o + x] - 2 * (int)o_m1[y * o + x] + (int)o_m2[y * o + x];
+
+ ta_act += XPSNR_GAMMA * (uint64_t) abs(t);
+ o_m2[y * o + x] = o_m1[y * o + x];
+ o_m1[y * o + x] = o_m0[y * o + x];
+ }
+ }
+ }
+ }
+
+ /* weight += mean squared temporal activity */
+ *ms_act += (double) ta_act / ((double) block_width * (double) block_height);
+
+ /* lower limit, accounts for high-pass gain */
+ if (*ms_act < (double) (1 << (bit_depth - 6)))
+ *ms_act = (double) (1 << (bit_depth - 6));
+
+ *ms_act *= *ms_act; /* since SSE is squared */
+
+ /* return nonweighted sum of squared errors */
+ return sse;
+}
+
+static inline double get_avg_xpsnr (const double sqrt_wsse_val, const double sum_xpsnr_val,
+ const uint32_t image_width, const uint32_t image_height,
+ const uint64_t max_error_64, const uint64_t num_frames_64)
+{
+ if (num_frames_64 == 0)
+ return INFINITY;
+
+ if (sqrt_wsse_val >= (double) num_frames_64) { /* square-mean-root average */
+ const double avg_dist = sqrt_wsse_val / (double) num_frames_64;
+ const uint64_t num64 = (uint64_t) image_width * (uint64_t) image_height * max_error_64;
+
+ return 10.0 * log10((double) num64 / ((double) avg_dist * (double) avg_dist));
+ }
+
+ return sum_xpsnr_val / (double) num_frames_64; /* older log-domain average */
+}
+
+static int get_wsse(AVFilterContext *ctx, int16_t **org, int16_t **org_m1, int16_t **org_m2, int16_t **rec,
+ uint64_t *const wsse64)
+{
+ XPSNRContext *const s = ctx->priv;
+ const uint32_t w = s->plane_width [0]; /* luma image width in pixels */
+ const uint32_t h = s->plane_height[0];/* luma image height in pixels */
+ const double r = (double)(w * h) / (3840.0 * 2160.0); /* UHD ratio */
+ const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt(r) +
+ 0.5)); /* block size, integer multiple of 4 for SIMD */
+ const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */
+ const double avg_act = sqrt(16.0 * (double) (1 << (2 * s->depth - 9)) / sqrt(FFMAX(0.00001,
+ r))); /* the sqrt(a_pic) */
+ const int *stride_org = (s->bpp == 1 ? s->plane_width : s->line_sizes);
+ uint32_t x, y, idx_blk = 0; /* the "16.0" above is due to fixed-point code */
+ double *const sse_luma = s->sse_luma;
+ double *const weights = s->weights;
+ int c;
+
+ if (!wsse64 || (s->depth < 6) || (s->depth > 16) || (s->num_comps <= 0) ||
+ (s->num_comps > 3) || (w == 0) || (h == 0)) {
+ av_log(ctx, AV_LOG_ERROR, "Error in XPSNR routine: invalid argument(s).\n");
+ return AVERROR(EINVAL);
+ }
+ if (!weights || (b >= 4 && !sse_luma)) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to allocate temporary block memory.\n");
+ return AVERROR(ENOMEM);
+ }
+
+ if (b >= 4) {
+ const int16_t *p_org = org[0];
+ const uint32_t s_org = stride_org[0] / s->bpp;
+ const int16_t *p_rec = rec[0];
+ const uint32_t s_rec = s->plane_width[0];
+ int16_t *p_org_m1 = org_m1[0]; /* pixel */
+ int16_t *p_org_m2 = org_m2[0]; /* memory */
+ double wsse_luma = 0.0;
+
+ for (y = 0; y < h; y += b) { /* calculate block SSE and perceptual weights */
+ const uint32_t block_height = (y + b > h ? h - y : b);
+
+ for (x = 0; x < w; x += b, idx_blk++) {
+ const uint32_t block_width = (x + b > w ? w - x : b);
+ double ms_act = 1.0, ms_act_prev = 0.0;
+
+ sse_luma[idx_blk] = calc_squared_error_and_weight(s, p_org, s_org,
+ p_org_m1, p_org_m2,
+ p_rec, s_rec,
+ x, y,
+ block_width, block_height,
+ s->depth, s->frame_rate, &ms_act);
+ weights[idx_blk] = 1.0 / sqrt(ms_act);
+
+ if (w * h <= 640 * 480) { /* in-line "min-smoothing" as in paper */
+ if (x == 0) /* first column */
+ ms_act_prev = (idx_blk > 1 ? weights[idx_blk - 2] : 0);
+ else /* after first column */
+ ms_act_prev = (x > b ? FFMAX(weights[idx_blk - 2], weights[idx_blk]) : weights[idx_blk]);
+
+ if (idx_blk > w_blk) /* after the first row and first column */
+ ms_act_prev = FFMAX(ms_act_prev, weights[idx_blk - 1 - w_blk]); /* min (L, T) */
+ if ((idx_blk > 0) && (weights[idx_blk - 1] > ms_act_prev))
+ weights[idx_blk - 1] = ms_act_prev;
+
+ if ((x + b >= w) && (y + b >= h) && (idx_blk > w_blk)) { /* last block in picture */
+ ms_act_prev = FFMAX(weights[idx_blk - 1], weights[idx_blk - w_blk]);
+ if (weights[idx_blk] > ms_act_prev)
+ weights[idx_blk] = ms_act_prev;
+ }
+ }
+ } /* for x */
+ } /* for y */
+
+ for (y = idx_blk = 0; y < h; y += b) { /* calculate sum for luma (Y) XPSNR */
+ for (x = 0; x < w; x += b, idx_blk++) {
+ wsse_luma += sse_luma[idx_blk] * weights[idx_blk];
+ }
+ }
+ wsse64[0] = (wsse_luma <= 0.0 ? 0 : (uint64_t) (wsse_luma * avg_act + 0.5));
+ } /* b >= 4 */
+
+ for (c = 0; c < s->num_comps; c++) { /* finalize WSSE value for each component */
+ const int16_t *p_org = org[c];
+ const uint32_t s_org = stride_org[c] / s->bpp;
+ const int16_t *p_rec = rec[c];
+ const uint32_t s_rec = s->plane_width[c];
+ const uint32_t w_pln = s->plane_width[c];
+ const uint32_t h_pln = s->plane_height[c];
+
+ if (b < 4) /* picture is too small for XPSNR, calculate nonweighted PSNR */
+ wsse64[c] = calc_squared_error (s, p_org, s_org,
+ p_rec, s_rec,
+ w_pln, h_pln);
+ else if (c > 0) { /* b >= 4 so Y XPSNR has already been calculated above */
+ const uint32_t bx = (b * w_pln) / w;
+ const uint32_t by = (b * h_pln) / h; /* up to chroma downsampling by 4 */
+ double wsse_chroma = 0.0;
+
+ for (y = idx_blk = 0; y < h_pln; y += by) { /* calc chroma (Cb/Cr) XPSNR */
+ const uint32_t block_height = (y + by > h_pln ? h_pln - y : by);
+
+ for (x = 0; x < w_pln; x += bx, idx_blk++) {
+ const uint32_t block_width = (x + bx > w_pln ? w_pln - x : bx);
+
+ wsse_chroma += (double) calc_squared_error (s, p_org + y * s_org + x, s_org,
+ p_rec + y * s_rec + x, s_rec,
+ block_width, block_height) * weights[idx_blk];
+ }
+ }
+ wsse64[c] = (wsse_chroma <= 0.0 ? 0 : (uint64_t) (wsse_chroma * avg_act + 0.5));
+ }
+ } /* for c */
+
+ return 0;
+}
+
+static void set_meta(AVDictionary **metadata, const char *key, char comp, float d)
+{
+ char value[128];
+ snprintf(value, sizeof(value), "%f", d);
+ if (comp) {
+ char key2[128];
+ snprintf(key2, sizeof(key2), "%s%c", key, comp);
+ av_dict_set(metadata, key2, value, 0);
+ } else {
+ av_dict_set(metadata, key, value, 0);
+ }
+}
+
+static int do_xpsnr(FFFrameSync *fs)
+{
+ AVFilterContext *ctx = fs->parent;
+ XPSNRContext *const s = ctx->priv;
+ const uint32_t w = s->plane_width [0]; /* luma image width in pixels */
+ const uint32_t h = s->plane_height[0]; /* luma image height in pixels */
+ const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt((double) (w * h) / (3840.0 * 2160.0)) + 0.5)); /* block size */
+ const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */
+ const uint32_t h_blk = (h + b - 1) / b; /* luma height in units of blocks */
+ AVFrame *master, *ref = NULL;
+ int16_t *porg [3];
+ int16_t *porg_m1[3];
+ int16_t *porg_m2[3];
+ int16_t *prec [3];
+ uint64_t wsse64 [3] = {0, 0, 0};
+ double cur_xpsnr[3] = {INFINITY, INFINITY, INFINITY};
+ int c, ret_value;
+ AVDictionary **metadata;
+
+ if ((ret_value = ff_framesync_dualinput_get(fs, &master, &ref)) < 0)
+ return ret_value;
+ if (ctx->is_disabled || !ref)
+ return ff_filter_frame(ctx->outputs[0], master);
+ metadata = &master->metadata;
+
+ /* prepare XPSNR calculations: allocate temporary picture and block memory */
+ if (!s->sse_luma)
+ s->sse_luma = av_malloc_array(w_blk * h_blk, sizeof(double));
+ if (!s->weights)
+ s->weights = av_malloc_array(w_blk * h_blk, sizeof(double));
+
+ for (c = 0; c < s->num_comps; c++) { /* create temporal org buffer memory */
+ s->line_sizes[c] = master->linesize[c];
+
+ if (c == 0) { /* luma ch. */
+ const int stride_org_bpp = (s->bpp == 1 ? s->plane_width[c] : s->line_sizes[c] / s->bpp);
+
+ if (!s->buf_org_m1[c])
+ s->buf_org_m1[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t));
+ if (!s->buf_org_m2[c])
+ s->buf_org_m2[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t));
+
+ porg_m1[c] = (int16_t *) s->buf_org_m1[c]->data;
+ porg_m2[c] = (int16_t *) s->buf_org_m2[c]->data;
+ }
+ }
+
+ if (s->bpp == 1) { /* 8 bit */
+ for (c = 0; c < s->num_comps; c++) { /* allocate org/rec buffer memory */
+ const int m = s->line_sizes[c]; /* master stride */
+ const int r = ref->linesize[c]; /* ref/c stride */
+ const int o = s->plane_width[c]; /* XPSNR stride */
+
+ if (!s->buf_org[c])
+ s->buf_org[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t));
+ if (!s->buf_rec[c])
+ s->buf_rec[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t));
+
+ porg[c] = (int16_t *) s->buf_org[c]->data;
+ prec[c] = (int16_t *) s->buf_rec[c]->data;
+
+ for (int y = 0; y < s->plane_height[c]; y++) {
+ for (int x = 0; x < s->plane_width[c]; x++) {
+ porg[c][y * o + x] = (int16_t) master->data[c][y * m + x];
+ prec[c][y * o + x] = (int16_t) ref->data[c][y * r + x];
+ }
+ }
+ }
+ } else { /* 10, 12, 14 bit */
+ for (c = 0; c < s->num_comps; c++) {
+ porg[c] = (int16_t *) master->data[c];
+ prec[c] = (int16_t *) ref->data[c];
+ }
+ }
+
+ /* extended perceptually weighted peak signal-to-noise ratio (XPSNR) value */
+ ret_value = get_wsse(ctx, (int16_t **) &porg, (int16_t **) &porg_m1, (int16_t **) &porg_m2,
+ (int16_t **) &prec, wsse64);
+ if ( ret_value < 0 )
+ return ret_value; /* an error here means something went wrong earlier! */
+
+ for (c = 0; c < s->num_comps; c++) {
+ const double sqrt_wsse = sqrt((double) wsse64[c]);
+
+ cur_xpsnr[c] = get_avg_xpsnr (sqrt_wsse, INFINITY,
+ s->plane_width[c], s->plane_height[c],
+ s->max_error_64, 1 /* single frame */);
+ s->sum_wdist[c] += sqrt_wsse;
+ s->sum_xpsnr[c] += cur_xpsnr[c];
+ s->and_is_inf[c] &= isinf(cur_xpsnr[c]);
+ }
+ s->num_frames_64++;
+
+ for (int j = 0; j < s->num_comps; j++) {
+ int c = s->is_rgb ? s->rgba_map[j] : j;
+ set_meta(metadata, "lavfi.xpsnr.xpsnr.", s->comps[j], cur_xpsnr[c]);
+ }
+
+ if (s->stats_file) { /* print out frame- and component-wise XPSNR averages */
+ fprintf(s->stats_file, "n: %4"PRId64"", s->num_frames_64);
+
+ for (c = 0; c < s->num_comps; c++)
+ fprintf(s->stats_file, " XPSNR %c: %3.4f", s->comps[c], cur_xpsnr[c]);
+ fprintf(s->stats_file, "\n");
+ }
+
+ return ff_filter_frame(ctx->outputs[0], master);
+}
+
+static av_cold int init(AVFilterContext *ctx)
+{
+ XPSNRContext *const s = ctx->priv;
+ int c;
+
+ if (s->stats_file_str) {
+ if (!strcmp(s->stats_file_str, "-")) /* no stats file, so use stdout */
+ s->stats_file = stdout;
+ else {
+ s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w");
+
+ if (!s->stats_file) {
+ const int err = AVERROR(errno);
+ char buf[128];
+
+ av_strerror(err, buf, sizeof(buf));
+ av_log(ctx, AV_LOG_ERROR, "Could not open statistics file %s: %s\n", s->stats_file_str, buf);
+ return err;
+ }
+ }
+ }
+
+ s->sse_luma = NULL;
+ s->weights = NULL;
+
+ for (c = 0; c < 3; c++) { /* initialize XPSNR data of each color component */
+ s->buf_org [c] = NULL;
+ s->buf_org_m1[c] = NULL;
+ s->buf_org_m2[c] = NULL;
+ s->buf_rec [c] = NULL;
+ s->sum_wdist [c] = 0.0;
+ s->sum_xpsnr [c] = 0.0;
+ s->and_is_inf[c] = 1;
+ }
+
+ s->fs.on_event = do_xpsnr;
+
+ return 0;
+}
+
+static const enum AVPixelFormat xpsnr_formats[] = {
+ AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
+#define PF_NOALPHA(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf
+#define PF_ALPHA(suf) AV_PIX_FMT_YUVA420##suf, AV_PIX_FMT_YUVA422##suf, AV_PIX_FMT_YUVA444##suf
+#define PF(suf) PF_NOALPHA(suf), PF_ALPHA(suf)
+ PF(P), PF(P9), PF(P10), PF_NOALPHA(P12), PF_NOALPHA(P14), PF(P16),
+ AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
+ AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
+ AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
+ AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
+ AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
+ AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
+ AV_PIX_FMT_NONE
+};
+
+static int config_input_ref(AVFilterLink *inlink)
+{
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
+ AVFilterContext *ctx = inlink->dst;
+ XPSNRContext *const s = ctx->priv;
+ FilterLink *il = ff_filter_link(inlink);
+
+ if ((ctx->inputs[0]->w != ctx->inputs[1]->w) ||
+ (ctx->inputs[0]->h != ctx->inputs[1]->h)) {
+ av_log(ctx, AV_LOG_ERROR, "Width and height of the input videos must match.\n");
+ return AVERROR(EINVAL);
+ }
+ if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
+ av_log(ctx, AV_LOG_ERROR, "The input videos must be of the same pixel format.\n");
+ return AVERROR(EINVAL);
+ }
+
+ s->bpp = (desc->comp[0].depth <= 8 ? 1 : 2);
+ s->depth = desc->comp[0].depth;
+ s->max_error_64 = (1 << s->depth) - 1; /* conventional limit */
+ s->max_error_64 *= s->max_error_64;
+
+ s->frame_rate = il->frame_rate.num / il->frame_rate.den;
+
+ s->num_comps = (desc->nb_components > 3 ? 3 : desc->nb_components);
+
+ s->is_rgb = (ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0);
+ s->comps[0] = (s->is_rgb ? 'r' : 'y');
+ s->comps[1] = (s->is_rgb ? 'g' : 'u');
+ s->comps[2] = (s->is_rgb ? 'b' : 'v');
+ s->comps[3] = 'a';
+
+ s->plane_width [1] = s->plane_width [2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
+ s->plane_width [0] = s->plane_width [3] = inlink->w;
+ s->plane_height[1] = s->plane_height[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+ s->plane_height[0] = s->plane_height[3] = inlink->h;
+
+ s->dsp.sse_line = sse_line_16bit;
+ s->dsp.highds_func = highds; /* initialize filtering methods */
+ s->dsp.diff1st_func = diff1st;
+ s->dsp.diff2nd_func = diff2nd;
+#if ARCH_X86
+ ff_xpsnr_init_x86(&s->dsp, 15); /* initialize x86 SSE method */
+#endif
+
+ return 0;
+}
+
+static int config_output(AVFilterLink *outlink)
+{
+ AVFilterContext *ctx = outlink->src;
+ XPSNRContext *s = ctx->priv;
+ AVFilterLink *mainlink = ctx->inputs[0];
+ FilterLink *il = ff_filter_link(mainlink);
+ FilterLink *ol = ff_filter_link(outlink);
+ int ret;
+
+ if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0)
+ return ret;
+
+ outlink->w = mainlink->w;
+ outlink->h = mainlink->h;
+ outlink->time_base = mainlink->time_base;
+ outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
+ ol->frame_rate = il->frame_rate;
+
+ if ((ret = ff_framesync_configure(&s->fs)) < 0)
+ return ret;
+
+ outlink->time_base = s->fs.time_base;
+
+ if (av_cmp_q(mainlink->time_base, outlink->time_base) ||
+ av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base))
+ av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n",
+ mainlink->time_base.num, mainlink->time_base.den,
+ ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den);
+
+ return 0;
+}
+
+static int activate(AVFilterContext *ctx)
+{
+ XPSNRContext *s = ctx->priv;
+
+ return ff_framesync_activate(&s->fs);
+}
+
+static av_cold void uninit(AVFilterContext *ctx)
+{
+ XPSNRContext *const s = ctx->priv;
+ int c;
+
+ if (s->num_frames_64 > 0) { /* print out overall component-wise mean XPSNR */
+ const double xpsnr_luma = get_avg_xpsnr(s->sum_wdist[0], s->sum_xpsnr[0],
+ s->plane_width[0], s->plane_height[0],
+ s->max_error_64, s->num_frames_64);
+ double xpsnr_min = xpsnr_luma;
+
+ /* luma */
+ av_log(ctx, AV_LOG_INFO, "XPSNR %c: %3.4f", s->comps[0], xpsnr_luma);
+ if (s->stats_file) {
+ fprintf(s->stats_file, "\nXPSNR average, %"PRId64" frames", s->num_frames_64);
+ fprintf(s->stats_file, " %c: %3.4f", s->comps[0], xpsnr_luma);
+ }
+ /* chroma */
+ for (c = 1; c < s->num_comps; c++) {
+ const double xpsnr_chroma = get_avg_xpsnr(s->sum_wdist[c], s->sum_xpsnr[c],
+ s->plane_width[c], s->plane_height[c],
+ s->max_error_64, s->num_frames_64);
+ if (xpsnr_min > xpsnr_chroma)
+ xpsnr_min = xpsnr_chroma;
+
+ av_log(ctx, AV_LOG_INFO, " %c: %3.4f", s->comps[c], xpsnr_chroma);
+ if (s->stats_file && s->stats_file != stdout)
+ fprintf(s->stats_file, " %c: %3.4f", s->comps[c], xpsnr_chroma);
+ }
+ /* print out line break, and minimum XPSNR across the color components */
+ if (s->num_comps > 1) {
+ av_log(ctx, AV_LOG_INFO, " (minimum: %3.4f)\n", xpsnr_min);
+ if (s->stats_file && s->stats_file != stdout)
+ fprintf(s->stats_file, " (minimum: %3.4f)\n", xpsnr_min);
+ } else {
+ av_log(ctx, AV_LOG_INFO, "\n");
+ if (s->stats_file && s->stats_file != stdout)
+ fprintf(s->stats_file, "\n");
+ }
+ }
+
+ ff_framesync_uninit(&s->fs); /* free temporary picture or block buf memory */
+
+ if (s->stats_file && s->stats_file != stdout)
+ fclose(s->stats_file);
+
+ av_freep(&s->sse_luma);
+ av_freep(&s->weights );
+
+ for (c = 0; c < s->num_comps; c++) { /* free extra temporal org buf memory */
+ if(s->buf_org_m1[c])
+ av_freep(s->buf_org_m1[c]);
+ if(s->buf_org_m2[c])
+ av_freep(s->buf_org_m2[c]);
+ }
+ if (s->bpp == 1) { /* 8 bit */
+ for (c = 0; c < s->num_comps; c++) { /* and org/rec picture buf memory */
+ if(s->buf_org_m2[c])
+ av_freep(s->buf_org[c]);
+ if(s->buf_rec[c])
+ av_freep(s->buf_rec[c]);
+ }
+ }
+}
+
+static const AVFilterPad xpsnr_inputs[] = {
+ {
+ .name = "main",
+ .type = AVMEDIA_TYPE_VIDEO,
+ }, {
+ .name = "reference",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = config_input_ref,
+ }
+};
+
+static const AVFilterPad xpsnr_outputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = config_output,
+ }
+};
+
+const AVFilter ff_vf_xpsnr = {
+ .name = "xpsnr",
+ .description = NULL_IF_CONFIG_SMALL("Calculate the extended perceptually weighted peak signal-to-noise ratio (XPSNR) between two video streams."),
+ .preinit = xpsnr_framesync_preinit,
+ .init = init,
+ .uninit = uninit,
+ .activate = activate,
+ .priv_size = sizeof(XPSNRContext),
+ .priv_class = &xpsnr_class,
+ FILTER_INPUTS (xpsnr_inputs),
+ FILTER_OUTPUTS(xpsnr_outputs),
+ FILTER_PIXFMTS_ARRAY(xpsnr_formats),
+ .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_METADATA_ONLY
+};