diff options
author | Christian Helmrich <christian.helmrich@hhi.fraunhofer.de> | 2024-08-28 11:28:49 +0200 |
---|---|---|
committer | Michael Niedermayer <michael@niedermayer.cc> | 2024-09-08 17:51:37 +0200 |
commit | 865cd3c0560a965fe096524ed2d8d2962057e6ac (patch) | |
tree | bbef2133b3e4693b6814423c52b950230d7ed5ab /libavfilter/vf_xpsnr.c | |
parent | e6983ed525b56b4a4a4acfd4e3b77a5efc8c0047 (diff) | |
download | ffmpeg-865cd3c0560a965fe096524ed2d8d2962057e6ac.tar.gz |
avfilter: add XPSNR filter
Add XPSNR video filter
Register new filter xpsnr.
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Diffstat (limited to 'libavfilter/vf_xpsnr.c')
-rw-r--r-- | libavfilter/vf_xpsnr.c | 759 |
1 files changed, 759 insertions, 0 deletions
diff --git a/libavfilter/vf_xpsnr.c b/libavfilter/vf_xpsnr.c new file mode 100644 index 0000000000..097258bf47 --- /dev/null +++ b/libavfilter/vf_xpsnr.c @@ -0,0 +1,759 @@ +/* + * Copyright (c) 2024 Christian R. Helmrich + * Copyright (c) 2024 Christian Lehmann + * Copyright (c) 2024 Christian Stoffers + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * Calculate the extended perceptually weighted PSNR (XPSNR) between two input videos. + * + * Authors: Christian Helmrich, Lehmann, and Stoffers, Fraunhofer HHI, Berlin, Germany + */ + +#include "libavutil/avstring.h" +#include "libavutil/file_open.h" +#include "libavutil/mem.h" +#include "libavutil/opt.h" +#include "libavutil/pixdesc.h" +#include "avfilter.h" +#include "drawutils.h" +#include "filters.h" +#include "framesync.h" +#include "xpsnr.h" + +/* XPSNR structure definition */ + +typedef struct XPSNRContext { + /* required basic variables */ + const AVClass *class; + int bpp; /* unpacked */ + int depth; /* packed */ + char comps[4]; + int num_comps; + uint64_t num_frames_64; + unsigned frame_rate; + FFFrameSync fs; + int line_sizes[4]; + int plane_height[4]; + int plane_width[4]; + uint8_t rgba_map[4]; + FILE *stats_file; + char *stats_file_str; + /* XPSNR specific variables */ + double *sse_luma; + double *weights; + AVBufferRef *buf_org [3]; + AVBufferRef *buf_org_m1[3]; + AVBufferRef *buf_org_m2[3]; + AVBufferRef *buf_rec [3]; + uint64_t max_error_64; + double sum_wdist [3]; + double sum_xpsnr [3]; + int and_is_inf[3]; + int is_rgb; + PSNRDSPContext dsp; +} XPSNRContext; + +/* required macro definitions */ + +#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM +#define OFFSET(x) offsetof(XPSNRContext, x) +#define XPSNR_GAMMA 2 + +static const AVOption xpsnr_options[] = { + {"stats_file", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS}, + {"f", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS}, + { NULL } +}; + +FRAMESYNC_DEFINE_CLASS(xpsnr, XPSNRContext, fs); + +/* XPSNR function definitions */ + +static uint64_t highds(const int x_act, const int y_act, const int w_act, const int h_act, const int16_t *o_m0, const int o) +{ + uint64_t sa_act = 0; + + for (int y = y_act; y < h_act; y += 2) { + for (int x = x_act; x < w_act; x += 2) { + const int f = 12 * ((int)o_m0[ y *o + x ] + (int)o_m0[ y *o + x+1] + (int)o_m0[(y+1)*o + x ] + (int)o_m0[(y+1)*o + x+1]) + - 3 * ((int)o_m0[(y-1)*o + x ] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+2)*o + x ] + (int)o_m0[(y+2)*o + x+1]) + - 3 * ((int)o_m0[ y *o + x-1] + (int)o_m0[ y *o + x+2] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+2]) + - 2 * ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+2] + (int)o_m0[(y+2)*o + x-1] + (int)o_m0[(y+2)*o + x+2]) + - ((int)o_m0[(y-2)*o + x-1] + (int)o_m0[(y-2)*o + x ] + (int)o_m0[(y-2)*o + x+1] + (int)o_m0[(y-2)*o + x+2] + + (int)o_m0[(y+3)*o + x-1] + (int)o_m0[(y+3)*o + x ] + (int)o_m0[(y+3)*o + x+1] + (int)o_m0[(y+3)*o + x+2] + + (int)o_m0[(y-1)*o + x-2] + (int)o_m0[ y *o + x-2] + (int)o_m0[(y+1)*o + x-2] + (int)o_m0[(y+2)*o + x-2] + + (int)o_m0[(y-1)*o + x+3] + (int)o_m0[ y *o + x+3] + (int)o_m0[(y+1)*o + x+3] + (int)o_m0[(y+2)*o + x+3]); + sa_act += (uint64_t) abs(f); + } + } + return sa_act; +} + +static uint64_t diff1st(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, const int o) +{ + uint64_t ta_act = 0; + + for (uint32_t y = 0; y < h_act; y += 2) { + for (uint32_t x = 0; x < w_act; x += 2) { + const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1] + - ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]); + ta_act += (uint64_t) abs(t); + o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ]; + o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1]; + } + } + return (ta_act * XPSNR_GAMMA); +} + +static uint64_t diff2nd(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, int16_t *o_m2, const int o) +{ + uint64_t ta_act = 0; + + for (uint32_t y = 0; y < h_act; y += 2) { + for (uint32_t x = 0; x < w_act; x += 2) { + const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1] + - 2 * ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]) + + (int)o_m2[y*o + x] + (int)o_m2[y*o + x+1] + (int)o_m2[(y+1)*o + x] + (int)o_m2[(y+1)*o + x+1]; + ta_act += (uint64_t) abs(t); + o_m2[y*o + x ] = o_m1[y*o + x ]; o_m2[(y+1)*o + x ] = o_m1[(y+1)*o + x ]; + o_m2[y*o + x+1] = o_m1[y*o + x+1]; o_m2[(y+1)*o + x+1] = o_m1[(y+1)*o + x+1]; + o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ]; + o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1]; + } + } + return (ta_act * XPSNR_GAMMA); +} + +static uint64_t sse_line_16bit(const uint8_t *blk_org8, const uint8_t *blk_rec8, int block_width) +{ + const uint16_t *blk_org = (const uint16_t *) blk_org8; + const uint16_t *blk_rec = (const uint16_t *) blk_rec8; + uint64_t sse = 0; /* sum for one pixel line */ + + for (int x = 0; x < block_width; x++) { + const int64_t error = (int64_t) blk_org[x] - (int64_t) blk_rec[x]; + + sse += error * error; + } + + /* sum of squared errors for the pixel line */ + return sse; +} + +static inline uint64_t calc_squared_error(XPSNRContext const *s, + const int16_t *blk_org, const uint32_t stride_org, + const int16_t *blk_rec, const uint32_t stride_rec, + const uint32_t block_width, const uint32_t block_height) +{ + uint64_t sse = 0; /* sum of squared errors */ + + for (uint32_t y = 0; y < block_height; y++) { + sse += s->dsp.sse_line((const uint8_t *) blk_org, (const uint8_t *) blk_rec, (int) block_width); + blk_org += stride_org; + blk_rec += stride_rec; + } + + /* return nonweighted sum of squared errors */ + return sse; +} + +static inline double calc_squared_error_and_weight (XPSNRContext const *s, + const int16_t *pic_org, const uint32_t stride_org, + int16_t *pic_org_m1, int16_t *pic_org_m2, + const int16_t *pic_rec, const uint32_t stride_rec, + const uint32_t offset_x, const uint32_t offset_y, + const uint32_t block_width, const uint32_t block_height, + const uint32_t bit_depth, const uint32_t int_frame_rate, double *ms_act) +{ + const int o = (int) stride_org; + const int r = (int) stride_rec; + const int16_t *o_m0 = pic_org + offset_y * o + offset_x; + int16_t *o_m1 = pic_org_m1 + offset_y * o + offset_x; + int16_t *o_m2 = pic_org_m2 + offset_y * o + offset_x; + const int16_t *r_m0 = pic_rec + offset_y * r + offset_x; + const int b_val = (s->plane_width[0] * s->plane_height[0] > 2048 * 1152 ? 2 : 1); /* threshold is a bit more than HD resolution */ + const int x_act = (offset_x > 0 ? 0 : b_val); + const int y_act = (offset_y > 0 ? 0 : b_val); + const int w_act = (offset_x + block_width < (uint32_t) s->plane_width [0] ? (int) block_width : (int) block_width - b_val); + const int h_act = (offset_y + block_height < (uint32_t) s->plane_height[0] ? (int) block_height : (int) block_height - b_val); + + const double sse = (double) calc_squared_error (s, o_m0, stride_org, + r_m0, stride_rec, + block_width, block_height); + uint64_t sa_act = 0; /* spatial abs. activity */ + uint64_t ta_act = 0; /* temporal abs. activity */ + + if (w_act <= x_act || h_act <= y_act) /* small */ + return sse; + + if (b_val > 1) { /* highpass with downsampling */ + if (w_act > 12) + sa_act = s->dsp.highds_func(x_act, y_act, w_act, h_act, o_m0, o); + else + highds(x_act, y_act, w_act, h_act, o_m0, o); + } else { /* <=HD highpass without downsampling */ + for (int y = y_act; y < h_act; y++) { + for (int x = x_act; x < w_act; x++) { + const int f = 12 * (int)o_m0[y*o + x] - 2 * ((int)o_m0[y*o + x-1] + (int)o_m0[y*o + x+1] + (int)o_m0[(y-1)*o + x] + (int)o_m0[(y+1)*o + x]) + - ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+1]); + sa_act += (uint64_t) abs(f); + } + } + } + + /* calculate weight (average squared activity) */ + *ms_act = (double) sa_act / ((double) (w_act - x_act) * (double) (h_act - y_act)); + + if (b_val > 1) { /* highpass with downsampling */ + if (int_frame_rate < 32) /* 1st-order diff */ + ta_act = s->dsp.diff1st_func(block_width, block_height, o_m0, o_m1, o); + else /* 2nd-order diff (diff of two diffs) */ + ta_act = s->dsp.diff2nd_func(block_width, block_height, o_m0, o_m1, o_m2, o); + } else { /* <=HD highpass without downsampling */ + if (int_frame_rate < 32) { /* 1st-order diff */ + for (uint32_t y = 0; y < block_height; y++) { + for (uint32_t x = 0; x < block_width; x++) { + const int t = (int)o_m0[y * o + x] - (int)o_m1[y * o + x]; + + ta_act += XPSNR_GAMMA * (uint64_t) abs(t); + o_m1[y * o + x] = o_m0[y * o + x]; + } + } + } else { /* 2nd-order diff (diff of 2 diffs) */ + for (uint32_t y = 0; y < block_height; y++) { + for (uint32_t x = 0; x < block_width; x++) { + const int t = (int)o_m0[y * o + x] - 2 * (int)o_m1[y * o + x] + (int)o_m2[y * o + x]; + + ta_act += XPSNR_GAMMA * (uint64_t) abs(t); + o_m2[y * o + x] = o_m1[y * o + x]; + o_m1[y * o + x] = o_m0[y * o + x]; + } + } + } + } + + /* weight += mean squared temporal activity */ + *ms_act += (double) ta_act / ((double) block_width * (double) block_height); + + /* lower limit, accounts for high-pass gain */ + if (*ms_act < (double) (1 << (bit_depth - 6))) + *ms_act = (double) (1 << (bit_depth - 6)); + + *ms_act *= *ms_act; /* since SSE is squared */ + + /* return nonweighted sum of squared errors */ + return sse; +} + +static inline double get_avg_xpsnr (const double sqrt_wsse_val, const double sum_xpsnr_val, + const uint32_t image_width, const uint32_t image_height, + const uint64_t max_error_64, const uint64_t num_frames_64) +{ + if (num_frames_64 == 0) + return INFINITY; + + if (sqrt_wsse_val >= (double) num_frames_64) { /* square-mean-root average */ + const double avg_dist = sqrt_wsse_val / (double) num_frames_64; + const uint64_t num64 = (uint64_t) image_width * (uint64_t) image_height * max_error_64; + + return 10.0 * log10((double) num64 / ((double) avg_dist * (double) avg_dist)); + } + + return sum_xpsnr_val / (double) num_frames_64; /* older log-domain average */ +} + +static int get_wsse(AVFilterContext *ctx, int16_t **org, int16_t **org_m1, int16_t **org_m2, int16_t **rec, + uint64_t *const wsse64) +{ + XPSNRContext *const s = ctx->priv; + const uint32_t w = s->plane_width [0]; /* luma image width in pixels */ + const uint32_t h = s->plane_height[0];/* luma image height in pixels */ + const double r = (double)(w * h) / (3840.0 * 2160.0); /* UHD ratio */ + const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt(r) + + 0.5)); /* block size, integer multiple of 4 for SIMD */ + const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */ + const double avg_act = sqrt(16.0 * (double) (1 << (2 * s->depth - 9)) / sqrt(FFMAX(0.00001, + r))); /* the sqrt(a_pic) */ + const int *stride_org = (s->bpp == 1 ? s->plane_width : s->line_sizes); + uint32_t x, y, idx_blk = 0; /* the "16.0" above is due to fixed-point code */ + double *const sse_luma = s->sse_luma; + double *const weights = s->weights; + int c; + + if (!wsse64 || (s->depth < 6) || (s->depth > 16) || (s->num_comps <= 0) || + (s->num_comps > 3) || (w == 0) || (h == 0)) { + av_log(ctx, AV_LOG_ERROR, "Error in XPSNR routine: invalid argument(s).\n"); + return AVERROR(EINVAL); + } + if (!weights || (b >= 4 && !sse_luma)) { + av_log(ctx, AV_LOG_ERROR, "Failed to allocate temporary block memory.\n"); + return AVERROR(ENOMEM); + } + + if (b >= 4) { + const int16_t *p_org = org[0]; + const uint32_t s_org = stride_org[0] / s->bpp; + const int16_t *p_rec = rec[0]; + const uint32_t s_rec = s->plane_width[0]; + int16_t *p_org_m1 = org_m1[0]; /* pixel */ + int16_t *p_org_m2 = org_m2[0]; /* memory */ + double wsse_luma = 0.0; + + for (y = 0; y < h; y += b) { /* calculate block SSE and perceptual weights */ + const uint32_t block_height = (y + b > h ? h - y : b); + + for (x = 0; x < w; x += b, idx_blk++) { + const uint32_t block_width = (x + b > w ? w - x : b); + double ms_act = 1.0, ms_act_prev = 0.0; + + sse_luma[idx_blk] = calc_squared_error_and_weight(s, p_org, s_org, + p_org_m1, p_org_m2, + p_rec, s_rec, + x, y, + block_width, block_height, + s->depth, s->frame_rate, &ms_act); + weights[idx_blk] = 1.0 / sqrt(ms_act); + + if (w * h <= 640 * 480) { /* in-line "min-smoothing" as in paper */ + if (x == 0) /* first column */ + ms_act_prev = (idx_blk > 1 ? weights[idx_blk - 2] : 0); + else /* after first column */ + ms_act_prev = (x > b ? FFMAX(weights[idx_blk - 2], weights[idx_blk]) : weights[idx_blk]); + + if (idx_blk > w_blk) /* after the first row and first column */ + ms_act_prev = FFMAX(ms_act_prev, weights[idx_blk - 1 - w_blk]); /* min (L, T) */ + if ((idx_blk > 0) && (weights[idx_blk - 1] > ms_act_prev)) + weights[idx_blk - 1] = ms_act_prev; + + if ((x + b >= w) && (y + b >= h) && (idx_blk > w_blk)) { /* last block in picture */ + ms_act_prev = FFMAX(weights[idx_blk - 1], weights[idx_blk - w_blk]); + if (weights[idx_blk] > ms_act_prev) + weights[idx_blk] = ms_act_prev; + } + } + } /* for x */ + } /* for y */ + + for (y = idx_blk = 0; y < h; y += b) { /* calculate sum for luma (Y) XPSNR */ + for (x = 0; x < w; x += b, idx_blk++) { + wsse_luma += sse_luma[idx_blk] * weights[idx_blk]; + } + } + wsse64[0] = (wsse_luma <= 0.0 ? 0 : (uint64_t) (wsse_luma * avg_act + 0.5)); + } /* b >= 4 */ + + for (c = 0; c < s->num_comps; c++) { /* finalize WSSE value for each component */ + const int16_t *p_org = org[c]; + const uint32_t s_org = stride_org[c] / s->bpp; + const int16_t *p_rec = rec[c]; + const uint32_t s_rec = s->plane_width[c]; + const uint32_t w_pln = s->plane_width[c]; + const uint32_t h_pln = s->plane_height[c]; + + if (b < 4) /* picture is too small for XPSNR, calculate nonweighted PSNR */ + wsse64[c] = calc_squared_error (s, p_org, s_org, + p_rec, s_rec, + w_pln, h_pln); + else if (c > 0) { /* b >= 4 so Y XPSNR has already been calculated above */ + const uint32_t bx = (b * w_pln) / w; + const uint32_t by = (b * h_pln) / h; /* up to chroma downsampling by 4 */ + double wsse_chroma = 0.0; + + for (y = idx_blk = 0; y < h_pln; y += by) { /* calc chroma (Cb/Cr) XPSNR */ + const uint32_t block_height = (y + by > h_pln ? h_pln - y : by); + + for (x = 0; x < w_pln; x += bx, idx_blk++) { + const uint32_t block_width = (x + bx > w_pln ? w_pln - x : bx); + + wsse_chroma += (double) calc_squared_error (s, p_org + y * s_org + x, s_org, + p_rec + y * s_rec + x, s_rec, + block_width, block_height) * weights[idx_blk]; + } + } + wsse64[c] = (wsse_chroma <= 0.0 ? 0 : (uint64_t) (wsse_chroma * avg_act + 0.5)); + } + } /* for c */ + + return 0; +} + +static void set_meta(AVDictionary **metadata, const char *key, char comp, float d) +{ + char value[128]; + snprintf(value, sizeof(value), "%f", d); + if (comp) { + char key2[128]; + snprintf(key2, sizeof(key2), "%s%c", key, comp); + av_dict_set(metadata, key2, value, 0); + } else { + av_dict_set(metadata, key, value, 0); + } +} + +static int do_xpsnr(FFFrameSync *fs) +{ + AVFilterContext *ctx = fs->parent; + XPSNRContext *const s = ctx->priv; + const uint32_t w = s->plane_width [0]; /* luma image width in pixels */ + const uint32_t h = s->plane_height[0]; /* luma image height in pixels */ + const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt((double) (w * h) / (3840.0 * 2160.0)) + 0.5)); /* block size */ + const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */ + const uint32_t h_blk = (h + b - 1) / b; /* luma height in units of blocks */ + AVFrame *master, *ref = NULL; + int16_t *porg [3]; + int16_t *porg_m1[3]; + int16_t *porg_m2[3]; + int16_t *prec [3]; + uint64_t wsse64 [3] = {0, 0, 0}; + double cur_xpsnr[3] = {INFINITY, INFINITY, INFINITY}; + int c, ret_value; + AVDictionary **metadata; + + if ((ret_value = ff_framesync_dualinput_get(fs, &master, &ref)) < 0) + return ret_value; + if (ctx->is_disabled || !ref) + return ff_filter_frame(ctx->outputs[0], master); + metadata = &master->metadata; + + /* prepare XPSNR calculations: allocate temporary picture and block memory */ + if (!s->sse_luma) + s->sse_luma = av_malloc_array(w_blk * h_blk, sizeof(double)); + if (!s->weights) + s->weights = av_malloc_array(w_blk * h_blk, sizeof(double)); + + for (c = 0; c < s->num_comps; c++) { /* create temporal org buffer memory */ + s->line_sizes[c] = master->linesize[c]; + + if (c == 0) { /* luma ch. */ + const int stride_org_bpp = (s->bpp == 1 ? s->plane_width[c] : s->line_sizes[c] / s->bpp); + + if (!s->buf_org_m1[c]) + s->buf_org_m1[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t)); + if (!s->buf_org_m2[c]) + s->buf_org_m2[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t)); + + porg_m1[c] = (int16_t *) s->buf_org_m1[c]->data; + porg_m2[c] = (int16_t *) s->buf_org_m2[c]->data; + } + } + + if (s->bpp == 1) { /* 8 bit */ + for (c = 0; c < s->num_comps; c++) { /* allocate org/rec buffer memory */ + const int m = s->line_sizes[c]; /* master stride */ + const int r = ref->linesize[c]; /* ref/c stride */ + const int o = s->plane_width[c]; /* XPSNR stride */ + + if (!s->buf_org[c]) + s->buf_org[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t)); + if (!s->buf_rec[c]) + s->buf_rec[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t)); + + porg[c] = (int16_t *) s->buf_org[c]->data; + prec[c] = (int16_t *) s->buf_rec[c]->data; + + for (int y = 0; y < s->plane_height[c]; y++) { + for (int x = 0; x < s->plane_width[c]; x++) { + porg[c][y * o + x] = (int16_t) master->data[c][y * m + x]; + prec[c][y * o + x] = (int16_t) ref->data[c][y * r + x]; + } + } + } + } else { /* 10, 12, 14 bit */ + for (c = 0; c < s->num_comps; c++) { + porg[c] = (int16_t *) master->data[c]; + prec[c] = (int16_t *) ref->data[c]; + } + } + + /* extended perceptually weighted peak signal-to-noise ratio (XPSNR) value */ + ret_value = get_wsse(ctx, (int16_t **) &porg, (int16_t **) &porg_m1, (int16_t **) &porg_m2, + (int16_t **) &prec, wsse64); + if ( ret_value < 0 ) + return ret_value; /* an error here means something went wrong earlier! */ + + for (c = 0; c < s->num_comps; c++) { + const double sqrt_wsse = sqrt((double) wsse64[c]); + + cur_xpsnr[c] = get_avg_xpsnr (sqrt_wsse, INFINITY, + s->plane_width[c], s->plane_height[c], + s->max_error_64, 1 /* single frame */); + s->sum_wdist[c] += sqrt_wsse; + s->sum_xpsnr[c] += cur_xpsnr[c]; + s->and_is_inf[c] &= isinf(cur_xpsnr[c]); + } + s->num_frames_64++; + + for (int j = 0; j < s->num_comps; j++) { + int c = s->is_rgb ? s->rgba_map[j] : j; + set_meta(metadata, "lavfi.xpsnr.xpsnr.", s->comps[j], cur_xpsnr[c]); + } + + if (s->stats_file) { /* print out frame- and component-wise XPSNR averages */ + fprintf(s->stats_file, "n: %4"PRId64"", s->num_frames_64); + + for (c = 0; c < s->num_comps; c++) + fprintf(s->stats_file, " XPSNR %c: %3.4f", s->comps[c], cur_xpsnr[c]); + fprintf(s->stats_file, "\n"); + } + + return ff_filter_frame(ctx->outputs[0], master); +} + +static av_cold int init(AVFilterContext *ctx) +{ + XPSNRContext *const s = ctx->priv; + int c; + + if (s->stats_file_str) { + if (!strcmp(s->stats_file_str, "-")) /* no stats file, so use stdout */ + s->stats_file = stdout; + else { + s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w"); + + if (!s->stats_file) { + const int err = AVERROR(errno); + char buf[128]; + + av_strerror(err, buf, sizeof(buf)); + av_log(ctx, AV_LOG_ERROR, "Could not open statistics file %s: %s\n", s->stats_file_str, buf); + return err; + } + } + } + + s->sse_luma = NULL; + s->weights = NULL; + + for (c = 0; c < 3; c++) { /* initialize XPSNR data of each color component */ + s->buf_org [c] = NULL; + s->buf_org_m1[c] = NULL; + s->buf_org_m2[c] = NULL; + s->buf_rec [c] = NULL; + s->sum_wdist [c] = 0.0; + s->sum_xpsnr [c] = 0.0; + s->and_is_inf[c] = 1; + } + + s->fs.on_event = do_xpsnr; + + return 0; +} + +static const enum AVPixelFormat xpsnr_formats[] = { + AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, +#define PF_NOALPHA(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf +#define PF_ALPHA(suf) AV_PIX_FMT_YUVA420##suf, AV_PIX_FMT_YUVA422##suf, AV_PIX_FMT_YUVA444##suf +#define PF(suf) PF_NOALPHA(suf), PF_ALPHA(suf) + PF(P), PF(P9), PF(P10), PF_NOALPHA(P12), PF_NOALPHA(P14), PF(P16), + AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, + AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, + AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, + AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, + AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, + AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, + AV_PIX_FMT_NONE +}; + +static int config_input_ref(AVFilterLink *inlink) +{ + const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); + AVFilterContext *ctx = inlink->dst; + XPSNRContext *const s = ctx->priv; + FilterLink *il = ff_filter_link(inlink); + + if ((ctx->inputs[0]->w != ctx->inputs[1]->w) || + (ctx->inputs[0]->h != ctx->inputs[1]->h)) { + av_log(ctx, AV_LOG_ERROR, "Width and height of the input videos must match.\n"); + return AVERROR(EINVAL); + } + if (ctx->inputs[0]->format != ctx->inputs[1]->format) { + av_log(ctx, AV_LOG_ERROR, "The input videos must be of the same pixel format.\n"); + return AVERROR(EINVAL); + } + + s->bpp = (desc->comp[0].depth <= 8 ? 1 : 2); + s->depth = desc->comp[0].depth; + s->max_error_64 = (1 << s->depth) - 1; /* conventional limit */ + s->max_error_64 *= s->max_error_64; + + s->frame_rate = il->frame_rate.num / il->frame_rate.den; + + s->num_comps = (desc->nb_components > 3 ? 3 : desc->nb_components); + + s->is_rgb = (ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0); + s->comps[0] = (s->is_rgb ? 'r' : 'y'); + s->comps[1] = (s->is_rgb ? 'g' : 'u'); + s->comps[2] = (s->is_rgb ? 'b' : 'v'); + s->comps[3] = 'a'; + + s->plane_width [1] = s->plane_width [2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); + s->plane_width [0] = s->plane_width [3] = inlink->w; + s->plane_height[1] = s->plane_height[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); + s->plane_height[0] = s->plane_height[3] = inlink->h; + + s->dsp.sse_line = sse_line_16bit; + s->dsp.highds_func = highds; /* initialize filtering methods */ + s->dsp.diff1st_func = diff1st; + s->dsp.diff2nd_func = diff2nd; +#if ARCH_X86 + ff_xpsnr_init_x86(&s->dsp, 15); /* initialize x86 SSE method */ +#endif + + return 0; +} + +static int config_output(AVFilterLink *outlink) +{ + AVFilterContext *ctx = outlink->src; + XPSNRContext *s = ctx->priv; + AVFilterLink *mainlink = ctx->inputs[0]; + FilterLink *il = ff_filter_link(mainlink); + FilterLink *ol = ff_filter_link(outlink); + int ret; + + if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0) + return ret; + + outlink->w = mainlink->w; + outlink->h = mainlink->h; + outlink->time_base = mainlink->time_base; + outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio; + ol->frame_rate = il->frame_rate; + + if ((ret = ff_framesync_configure(&s->fs)) < 0) + return ret; + + outlink->time_base = s->fs.time_base; + + if (av_cmp_q(mainlink->time_base, outlink->time_base) || + av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base)) + av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n", + mainlink->time_base.num, mainlink->time_base.den, + ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den); + + return 0; +} + +static int activate(AVFilterContext *ctx) +{ + XPSNRContext *s = ctx->priv; + + return ff_framesync_activate(&s->fs); +} + +static av_cold void uninit(AVFilterContext *ctx) +{ + XPSNRContext *const s = ctx->priv; + int c; + + if (s->num_frames_64 > 0) { /* print out overall component-wise mean XPSNR */ + const double xpsnr_luma = get_avg_xpsnr(s->sum_wdist[0], s->sum_xpsnr[0], + s->plane_width[0], s->plane_height[0], + s->max_error_64, s->num_frames_64); + double xpsnr_min = xpsnr_luma; + + /* luma */ + av_log(ctx, AV_LOG_INFO, "XPSNR %c: %3.4f", s->comps[0], xpsnr_luma); + if (s->stats_file) { + fprintf(s->stats_file, "\nXPSNR average, %"PRId64" frames", s->num_frames_64); + fprintf(s->stats_file, " %c: %3.4f", s->comps[0], xpsnr_luma); + } + /* chroma */ + for (c = 1; c < s->num_comps; c++) { + const double xpsnr_chroma = get_avg_xpsnr(s->sum_wdist[c], s->sum_xpsnr[c], + s->plane_width[c], s->plane_height[c], + s->max_error_64, s->num_frames_64); + if (xpsnr_min > xpsnr_chroma) + xpsnr_min = xpsnr_chroma; + + av_log(ctx, AV_LOG_INFO, " %c: %3.4f", s->comps[c], xpsnr_chroma); + if (s->stats_file && s->stats_file != stdout) + fprintf(s->stats_file, " %c: %3.4f", s->comps[c], xpsnr_chroma); + } + /* print out line break, and minimum XPSNR across the color components */ + if (s->num_comps > 1) { + av_log(ctx, AV_LOG_INFO, " (minimum: %3.4f)\n", xpsnr_min); + if (s->stats_file && s->stats_file != stdout) + fprintf(s->stats_file, " (minimum: %3.4f)\n", xpsnr_min); + } else { + av_log(ctx, AV_LOG_INFO, "\n"); + if (s->stats_file && s->stats_file != stdout) + fprintf(s->stats_file, "\n"); + } + } + + ff_framesync_uninit(&s->fs); /* free temporary picture or block buf memory */ + + if (s->stats_file && s->stats_file != stdout) + fclose(s->stats_file); + + av_freep(&s->sse_luma); + av_freep(&s->weights ); + + for (c = 0; c < s->num_comps; c++) { /* free extra temporal org buf memory */ + if(s->buf_org_m1[c]) + av_freep(s->buf_org_m1[c]); + if(s->buf_org_m2[c]) + av_freep(s->buf_org_m2[c]); + } + if (s->bpp == 1) { /* 8 bit */ + for (c = 0; c < s->num_comps; c++) { /* and org/rec picture buf memory */ + if(s->buf_org_m2[c]) + av_freep(s->buf_org[c]); + if(s->buf_rec[c]) + av_freep(s->buf_rec[c]); + } + } +} + +static const AVFilterPad xpsnr_inputs[] = { + { + .name = "main", + .type = AVMEDIA_TYPE_VIDEO, + }, { + .name = "reference", + .type = AVMEDIA_TYPE_VIDEO, + .config_props = config_input_ref, + } +}; + +static const AVFilterPad xpsnr_outputs[] = { + { + .name = "default", + .type = AVMEDIA_TYPE_VIDEO, + .config_props = config_output, + } +}; + +const AVFilter ff_vf_xpsnr = { + .name = "xpsnr", + .description = NULL_IF_CONFIG_SMALL("Calculate the extended perceptually weighted peak signal-to-noise ratio (XPSNR) between two video streams."), + .preinit = xpsnr_framesync_preinit, + .init = init, + .uninit = uninit, + .activate = activate, + .priv_size = sizeof(XPSNRContext), + .priv_class = &xpsnr_class, + FILTER_INPUTS (xpsnr_inputs), + FILTER_OUTPUTS(xpsnr_outputs), + FILTER_PIXFMTS_ARRAY(xpsnr_formats), + .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_METADATA_ONLY +}; |