aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_deshake_opencl.c
diff options
context:
space:
mode:
authorJarek Samic <cldfire3@gmail.com>2019-08-08 09:24:32 -0400
committerMark Thompson <sw@jkqxz.net>2019-08-23 00:56:13 +0100
commitb29c7bcbf6bc257f4302b8bed0509bb5489ca068 (patch)
treebd753107da801f528a9bcebce89cf1466f4282a8 /libavfilter/vf_deshake_opencl.c
parent5b5746b1e0d2cfef307e3f7c8edec5876eca53dc (diff)
downloadffmpeg-b29c7bcbf6bc257f4302b8bed0509bb5489ca068.tar.gz
lavfi: add deshake_opencl filter
Diffstat (limited to 'libavfilter/vf_deshake_opencl.c')
-rw-r--r--libavfilter/vf_deshake_opencl.c2202
1 files changed, 2202 insertions, 0 deletions
diff --git a/libavfilter/vf_deshake_opencl.c b/libavfilter/vf_deshake_opencl.c
new file mode 100644
index 0000000000..c959f19475
--- /dev/null
+++ b/libavfilter/vf_deshake_opencl.c
@@ -0,0 +1,2202 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+ * Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+ * Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+ * Third party copyrights are property of their respective owners.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * * Redistribution's of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistribution's in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * * The name of the copyright holders may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * This software is provided by the copyright holders and contributors "as is" and
+ * any express or implied warranties, including, but not limited to, the implied
+ * warranties of merchantability and fitness for a particular purpose are disclaimed.
+ * In no event shall the Intel Corporation or contributors be liable for any direct,
+ * indirect, incidental, special, exemplary, or consequential damages
+ * (including, but not limited to, procurement of substitute goods or services;
+ * loss of use, data, or profits; or business interruption) however caused
+ * and on any theory of liability, whether in contract, strict liability,
+ * or tort (including negligence or otherwise) arising in any way out of
+ * the use of this software, even if advised of the possibility of such damage.
+ */
+
+#include <stdbool.h>
+#include <float.h>
+#include <libavutil/lfg.h>
+#include "libavutil/opt.h"
+#include "libavutil/imgutils.h"
+#include "libavutil/mem.h"
+#include "libavutil/fifo.h"
+#include "libavutil/common.h"
+#include "libavutil/avassert.h"
+#include "libavutil/pixfmt.h"
+#include "avfilter.h"
+#include "framequeue.h"
+#include "filters.h"
+#include "transform.h"
+#include "formats.h"
+#include "internal.h"
+#include "opencl.h"
+#include "opencl_source.h"
+#include "video.h"
+
+/*
+This filter matches feature points between frames (dealing with outliers) and then
+uses the matches to estimate an affine transform between frames. This transform is
+decomposed into various values (translation, scale, rotation) and the values are
+summed relative to the start of the video to obtain on absolute camera position
+for each frame. This "camera path" is then smoothed via a gaussian filter, resulting
+in a new path that is turned back into an affine transform and applied to each
+frame to render it.
+
+High-level overview:
+
+All of the work to extract motion data from frames occurs in queue_frame. Motion data
+is buffered in a smoothing window, so queue_frame simply computes the absolute camera
+positions and places them in ringbuffers.
+
+filter_frame is responsible for looking at the absolute camera positions currently
+in the ringbuffers, applying the gaussian filter, and then transforming the frames.
+*/
+
+// Number of bits for BRIEF descriptors
+#define BREIFN 512
+// Size of the patch from which a BRIEF descriptor is extracted
+// This is the size used in OpenCV
+#define BRIEF_PATCH_SIZE 31
+#define BRIEF_PATCH_SIZE_HALF (BRIEF_PATCH_SIZE / 2)
+
+#define MATCHES_CONTIG_SIZE 2000
+
+#define ROUNDED_UP_DIV(a, b) ((a + (b - 1)) / b)
+
+typedef struct PointPair {
+ // Previous frame
+ cl_float2 p1;
+ // Current frame
+ cl_float2 p2;
+} PointPair;
+
+typedef struct MotionVector {
+ PointPair p;
+ // Used to mark vectors as potential outliers
+ cl_int should_consider;
+} MotionVector;
+
+// Denotes the indices for the different types of motion in the ringbuffers array
+enum RingbufferIndices {
+ RingbufX,
+ RingbufY,
+ RingbufRot,
+ RingbufScaleX,
+ RingbufScaleY,
+
+ // Should always be last
+ RingbufCount
+};
+
+// Struct that holds data for drawing point match debug data
+typedef struct DebugMatches {
+ MotionVector *matches;
+ // The points used to calculate the affine transform for a frame
+ MotionVector model_matches[3];
+
+ int num_matches;
+ // For cases where we couldn't calculate a model
+ int num_model_matches;
+} DebugMatches;
+
+// Groups together the ringbuffers that store absolute distortion / position values
+// for each frame
+typedef struct AbsoluteFrameMotion {
+ // Array with the various ringbuffers, indexed via the RingbufferIndices enum
+ AVFifoBuffer *ringbuffers[RingbufCount];
+
+ // Offset to get to the current frame being processed
+ // (not in bytes)
+ int curr_frame_offset;
+ // Keeps track of where the start and end of contiguous motion data is (to
+ // deal with cases where no motion data is found between two frames)
+ int data_start_offset;
+ int data_end_offset;
+
+ AVFifoBuffer *debug_matches;
+} AbsoluteFrameMotion;
+
+// Takes care of freeing the arrays within the DebugMatches inside of the
+// debug_matches ringbuffer and then freeing the buffer itself.
+static void free_debug_matches(AbsoluteFrameMotion *afm) {
+ DebugMatches dm;
+
+ if (!afm->debug_matches) {
+ return;
+ }
+
+ while (av_fifo_size(afm->debug_matches) > 0) {
+ av_fifo_generic_read(
+ afm->debug_matches,
+ &dm,
+ sizeof(DebugMatches),
+ NULL
+ );
+
+ av_freep(&dm.matches);
+ }
+
+ av_fifo_freep(&afm->debug_matches);
+}
+
+// Stores the translation, scale, rotation, and skew deltas between two frames
+typedef struct FrameDelta {
+ cl_float2 translation;
+ float rotation;
+ cl_float2 scale;
+ cl_float2 skew;
+} FrameDelta;
+
+typedef struct SimilarityMatrix {
+ // The 2x3 similarity matrix
+ double matrix[6];
+} SimilarityMatrix;
+
+typedef struct CropInfo {
+ // The top left corner of the bounding box for the crop
+ cl_float2 top_left;
+ // The bottom right corner of the bounding box for the crop
+ cl_float2 bottom_right;
+} CropInfo;
+
+// Returned from function that determines start and end values for iteration
+// around the current frame in a ringbuffer
+typedef struct IterIndices {
+ int start;
+ int end;
+} IterIndices;
+
+typedef struct DeshakeOpenCLContext {
+ OpenCLFilterContext ocf;
+ // Whether or not the above `OpenCLFilterContext` has been initialized
+ int initialized;
+
+ // These variables are used in the activate callback
+ int64_t duration;
+ bool eof;
+
+ // State for random number generation
+ AVLFG alfg;
+
+ // FIFO frame queue used to buffer future frames for processing
+ FFFrameQueue fq;
+ // Ringbuffers for frame positions
+ AbsoluteFrameMotion abs_motion;
+
+ // The number of frames' motion to consider before and after the frame we are
+ // smoothing
+ int smooth_window;
+ // The number of the frame we are currently processing
+ int curr_frame;
+
+ // Stores a 1d array of normalised gaussian kernel values for convolution
+ float *gauss_kernel;
+
+ // Buffer for error values used in RANSAC code
+ float *ransac_err;
+
+ // Information regarding how to crop the smoothed luminance (or RGB) planes
+ CropInfo crop_y;
+ // Information regarding how to crop the smoothed chroma planes
+ CropInfo crop_uv;
+
+ // Whether or not we are processing YUV input (as oppposed to RGB)
+ bool is_yuv;
+ // The underlying format of the hardware surfaces
+ int sw_format;
+
+ // Buffer to copy `matches` into for the CPU to work with
+ MotionVector *matches_host;
+ MotionVector *matches_contig_host;
+
+ MotionVector *inliers;
+
+ cl_command_queue command_queue;
+ cl_kernel kernel_grayscale;
+ cl_kernel kernel_harris_response;
+ cl_kernel kernel_refine_features;
+ cl_kernel kernel_brief_descriptors;
+ cl_kernel kernel_match_descriptors;
+ cl_kernel kernel_transform;
+ cl_kernel kernel_crop_upscale;
+
+ // Stores a frame converted to grayscale
+ cl_mem grayscale;
+ // Stores the harris response for a frame (measure of "cornerness" for each pixel)
+ cl_mem harris_buf;
+
+ // Detected features after non-maximum suppression and sub-pixel refinement
+ cl_mem refined_features;
+ // Saved from the previous frame
+ cl_mem prev_refined_features;
+
+ // BRIEF sampling pattern that is randomly initialized
+ cl_mem brief_pattern;
+ // Feature point descriptors for the current frame
+ cl_mem descriptors;
+ // Feature point descriptors for the previous frame
+ cl_mem prev_descriptors;
+ // Vectors between points in current and previous frame
+ cl_mem matches;
+ cl_mem matches_contig;
+ // Holds the matrix to transform luminance (or RGB) with
+ cl_mem transform_y;
+ // Holds the matrix to transform chroma with
+ cl_mem transform_uv;
+
+ // Configurable options
+
+ int tripod_mode;
+ int debug_on;
+ int should_crop;
+
+ // Whether or not feature points should be refined at a sub-pixel level
+ cl_int refine_features;
+ // If the user sets a value other than the default, 0, this percentage is
+ // translated into a sigma value ranging from 0.5 to 40.0
+ float smooth_percent;
+ // This number is multiplied by the video frame rate to determine the size
+ // of the smooth window
+ float smooth_window_multiplier;
+
+ // Debug stuff
+
+ cl_kernel kernel_draw_debug_info;
+ cl_mem debug_matches;
+ cl_mem debug_model_matches;
+
+ // These store the total time spent executing the different kernels in nanoseconds
+ unsigned long long grayscale_time;
+ unsigned long long harris_response_time;
+ unsigned long long refine_features_time;
+ unsigned long long brief_descriptors_time;
+ unsigned long long match_descriptors_time;
+ unsigned long long transform_time;
+ unsigned long long crop_upscale_time;
+
+ // Time spent copying matched features from the device to the host
+ unsigned long long read_buf_time;
+} DeshakeOpenCLContext;
+
+// Returns a random uniformly-distributed number in [low, high]
+static int rand_in(int low, int high, AVLFG *alfg) {
+ return (av_lfg_get(alfg) % (high - low)) + low;
+}
+
+// Returns the average execution time for an event given the total time and the
+// number of frames processed.
+static double averaged_event_time_ms(unsigned long long total_time, int num_frames) {
+ return (double)total_time / (double)num_frames / 1000000.0;
+}
+
+// The following code is loosely ported from OpenCV
+
+// Estimates affine transform from 3 point pairs
+// model is a 2x3 matrix:
+// a b c
+// d e f
+static void run_estimate_kernel(const MotionVector *point_pairs, double *model)
+{
+ // src points
+ double x1 = point_pairs[0].p.p1.s[0];
+ double y1 = point_pairs[0].p.p1.s[1];
+ double x2 = point_pairs[1].p.p1.s[0];
+ double y2 = point_pairs[1].p.p1.s[1];
+ double x3 = point_pairs[2].p.p1.s[0];
+ double y3 = point_pairs[2].p.p1.s[1];
+
+ // dest points
+ double X1 = point_pairs[0].p.p2.s[0];
+ double Y1 = point_pairs[0].p.p2.s[1];
+ double X2 = point_pairs[1].p.p2.s[0];
+ double Y2 = point_pairs[1].p.p2.s[1];
+ double X3 = point_pairs[2].p.p2.s[0];
+ double Y3 = point_pairs[2].p.p2.s[1];
+
+ double d = 1.0 / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );
+
+ model[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
+ model[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
+ model[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );
+
+ model[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
+ model[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
+ model[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
+}
+
+// Checks that the 3 points in the given array are not collinear
+static bool points_not_collinear(const cl_float2 **points)
+{
+ int j, k, i = 2;
+
+ for (j = 0; j < i; j++) {
+ double dx1 = points[j]->s[0] - points[i]->s[0];
+ double dy1 = points[j]->s[1] - points[i]->s[1];
+
+ for (k = 0; k < j; k++) {
+ double dx2 = points[k]->s[0] - points[i]->s[0];
+ double dy2 = points[k]->s[1] - points[i]->s[1];
+
+ // Assuming a 3840 x 2160 video with a point at (0, 0) and one at
+ // (3839, 2159), this prevents a third point from being within roughly
+ // 0.5 of a pixel of the line connecting the two on both axes
+ if (fabs(dx2*dy1 - dy2*dx1) <= 1.0) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+// Checks a subset of 3 point pairs to make sure that the points are not collinear
+// and not too close to each other
+static bool check_subset(const MotionVector *pairs_subset)
+{
+ const cl_float2 *prev_points[] = {
+ &pairs_subset[0].p.p1,
+ &pairs_subset[1].p.p1,
+ &pairs_subset[2].p.p1
+ };
+
+ const cl_float2 *curr_points[] = {
+ &pairs_subset[0].p.p2,
+ &pairs_subset[1].p.p2,
+ &pairs_subset[2].p.p2
+ };
+
+ return points_not_collinear(prev_points) && points_not_collinear(curr_points);
+}
+
+// Selects a random subset of 3 points from point_pairs and places them in pairs_subset
+static bool get_subset(
+ AVLFG *alfg,
+ const MotionVector *point_pairs,
+ const int num_point_pairs,
+ MotionVector *pairs_subset,
+ int max_attempts
+) {
+ int idx[3];
+ int i = 0, j, iters = 0;
+
+ for (; iters < max_attempts; iters++) {
+ for (i = 0; i < 3 && iters < max_attempts;) {
+ int idx_i = 0;
+
+ for (;;) {
+ idx_i = idx[i] = rand_in(0, num_point_pairs, alfg);
+
+ for (j = 0; j < i; j++) {
+ if (idx_i == idx[j]) {
+ break;
+ }
+ }
+
+ if (j == i) {
+ break;
+ }
+ }
+
+ pairs_subset[i] = point_pairs[idx[i]];
+ i++;
+ }
+
+ if (i == 3 && !check_subset(pairs_subset)) {
+ continue;
+ }
+ break;
+ }
+
+ return i == 3 && iters < max_attempts;
+}
+
+// Computes the error for each of the given points based on the given model.
+static void compute_error(
+ const MotionVector *point_pairs,
+ const int num_point_pairs,
+ const double *model,
+ float *err
+) {
+ double F0 = model[0], F1 = model[1], F2 = model[2];
+ double F3 = model[3], F4 = model[4], F5 = model[5];
+
+ for (int i = 0; i < num_point_pairs; i++) {
+ const cl_float2 *f = &point_pairs[i].p.p1;
+ const cl_float2 *t = &point_pairs[i].p.p2;
+
+ double a = F0*f->s[0] + F1*f->s[1] + F2 - t->s[0];
+ double b = F3*f->s[0] + F4*f->s[1] + F5 - t->s[1];
+
+ err[i] = a*a + b*b;
+ }
+}
+
+// Determines which of the given point matches are inliers for the given model
+// based on the specified threshold.
+//
+// err must be an array of num_point_pairs length
+static int find_inliers(
+ MotionVector *point_pairs,
+ const int num_point_pairs,
+ const double *model,
+ float *err,
+ double thresh
+) {
+ float t = (float)(thresh * thresh);
+ int i, n = num_point_pairs, num_inliers = 0;
+
+ compute_error(point_pairs, num_point_pairs, model, err);
+
+ for (i = 0; i < n; i++) {
+ if (err[i] <= t) {
+ // This is an inlier
+ point_pairs[i].should_consider = true;
+ num_inliers += 1;
+ } else {
+ point_pairs[i].should_consider = false;
+ }
+ }
+
+ return num_inliers;
+}
+
+// Determines the number of iterations required to achieve the desired confidence level.
+//
+// The equation used to determine the number of iterations to do is:
+// 1 - confidence = (1 - inlier_probability^num_points)^num_iters
+//
+// Solving for num_iters:
+//
+// num_iters = log(1 - confidence) / log(1 - inlier_probability^num_points)
+//
+// A more in-depth explanation can be found at https://en.wikipedia.org/wiki/Random_sample_consensus
+// under the 'Parameters' heading
+static int ransac_update_num_iters(double confidence, double num_outliers, int max_iters)
+{
+ double num, denom;
+
+ confidence = av_clipd(confidence, 0.0, 1.0);
+ num_outliers = av_clipd(num_outliers, 0.0, 1.0);
+
+ // avoid inf's & nan's
+ num = FFMAX(1.0 - confidence, DBL_MIN);
+ denom = 1.0 - pow(1.0 - num_outliers, 3);
+ if (denom < DBL_MIN) {
+ return 0;
+ }
+
+ num = log(num);
+ denom = log(denom);
+
+ return denom >= 0 || -num >= max_iters * (-denom) ? max_iters : (int)round(num / denom);
+}
+
+// Estimates an affine transform between the given pairs of points using RANdom
+// SAmple Consensus
+static bool estimate_affine_2d(
+ DeshakeOpenCLContext *deshake_ctx,
+ MotionVector *point_pairs,
+ DebugMatches *debug_matches,
+ const int num_point_pairs,
+ double *model_out,
+ const double threshold,
+ const int max_iters,
+ const double confidence
+) {
+ bool result = false;
+ double best_model[6], model[6];
+ MotionVector pairs_subset[3], best_pairs[3];
+
+ int iter, niters = FFMAX(max_iters, 1);
+ int good_count, max_good_count = 0;
+
+ // We need at least 3 points to build a model from
+ if (num_point_pairs < 3) {
+ return false;
+ } else if (num_point_pairs == 3) {
+ // There are only 3 points, so RANSAC doesn't apply here
+ run_estimate_kernel(point_pairs, model_out);
+
+ for (int i = 0; i < 3; ++i) {
+ point_pairs[i].should_consider = true;
+ }
+
+ return true;
+ }
+
+ for (iter = 0; iter < niters; ++iter) {
+ bool found = get_subset(&deshake_ctx->alfg, point_pairs, num_point_pairs, pairs_subset, 10000);
+
+ if (!found) {
+ if (iter == 0) {
+ return false;
+ }
+
+ break;
+ }
+
+ run_estimate_kernel(pairs_subset, model);
+ good_count = find_inliers(point_pairs, num_point_pairs, model, deshake_ctx->ransac_err, threshold);
+
+ if (good_count > FFMAX(max_good_count, 2)) {
+ for (int mi = 0; mi < 6; ++mi) {
+ best_model[mi] = model[mi];
+ }
+
+ for (int pi = 0; pi < 3; pi++) {
+ best_pairs[pi] = pairs_subset[pi];
+ }
+
+ max_good_count = good_count;
+ niters = ransac_update_num_iters(
+ confidence,
+ (double)(num_point_pairs - good_count) / num_point_pairs,
+ niters
+ );
+ }
+ }
+
+ if (max_good_count > 0) {
+ for (int mi = 0; mi < 6; ++mi) {
+ model_out[mi] = best_model[mi];
+ }
+
+ for (int pi = 0; pi < 3; ++pi) {
+ debug_matches->model_matches[pi] = best_pairs[pi];
+ }
+ debug_matches->num_model_matches = 3;
+
+ // Find the inliers again for the best model for debugging
+ find_inliers(point_pairs, num_point_pairs, best_model, deshake_ctx->ransac_err, threshold);
+ result = true;
+ }
+
+ return result;
+}
+
+// "Wiggles" the first point in best_pairs around a tiny bit in order to decrease the
+// total error
+static void optimize_model(
+ DeshakeOpenCLContext *deshake_ctx,
+ MotionVector *best_pairs,
+ MotionVector *inliers,
+ const int num_inliers,
+ float best_err,
+ double *model_out
+) {
+ float move_x_val = 0.01;
+ float move_y_val = 0.01;
+ bool move_x = true;
+ float old_move_x_val = 0;
+ double model[6];
+ int last_changed = 0;
+
+ for (int iters = 0; iters < 200; iters++) {
+ float total_err = 0;
+
+ if (move_x) {
+ best_pairs[0].p.p2.s[0] += move_x_val;
+ } else {
+ best_pairs[0].p.p2.s[0] += move_y_val;
+ }
+
+ run_estimate_kernel(best_pairs, model);
+ compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
+
+ for (int j = 0; j < num_inliers; j++) {
+ total_err += deshake_ctx->ransac_err[j];
+ }
+
+ if (total_err < best_err) {
+ for (int mi = 0; mi < 6; ++mi) {
+ model_out[mi] = model[mi];
+ }
+
+ best_err = total_err;
+ last_changed = iters;
+ } else {
+ // Undo the change
+ if (move_x) {
+ best_pairs[0].p.p2.s[0] -= move_x_val;
+ } else {
+ best_pairs[0].p.p2.s[0] -= move_y_val;
+ }
+
+ if (iters - last_changed > 4) {
+ // We've already improved the model as much as we can
+ break;
+ }
+
+ old_move_x_val = move_x_val;
+
+ if (move_x) {
+ move_x_val *= -1;
+ } else {
+ move_y_val *= -1;
+ }
+
+ if (old_move_x_val < 0) {
+ move_x = false;
+ } else {
+ move_x = true;
+ }
+ }
+ }
+}
+
+// Uses a process similar to that of RANSAC to find a transform that minimizes
+// the total error for a set of point matches determined to be inliers
+//
+// (Pick random subsets, compute model, find total error, iterate until error
+// is minimized.)
+static bool minimize_error(
+ DeshakeOpenCLContext *deshake_ctx,
+ MotionVector *inliers,
+ DebugMatches *debug_matches,
+ const int num_inliers,
+ double *model_out,
+ const int max_iters
+) {
+ bool result = false;
+ float best_err = FLT_MAX;
+ double best_model[6], model[6];
+ MotionVector pairs_subset[3], best_pairs[3];
+
+ for (int i = 0; i < max_iters; i++) {
+ float total_err = 0;
+ bool found = get_subset(&deshake_ctx->alfg, inliers, num_inliers, pairs_subset, 10000);
+
+ if (!found) {
+ if (i == 0) {
+ return false;
+ }
+
+ break;
+ }
+
+ run_estimate_kernel(pairs_subset, model);
+ compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
+
+ for (int j = 0; j < num_inliers; j++) {
+ total_err += deshake_ctx->ransac_err[j];
+ }
+
+ if (total_err < best_err) {
+ for (int mi = 0; mi < 6; ++mi) {
+ best_model[mi] = model[mi];
+ }
+
+ for (int pi = 0; pi < 3; pi++) {
+ best_pairs[pi] = pairs_subset[pi];
+ }
+
+ best_err = total_err;
+ }
+ }
+
+ for (int mi = 0; mi < 6; ++mi) {
+ model_out[mi] = best_model[mi];
+ }
+
+ for (int pi = 0; pi < 3; ++pi) {
+ debug_matches->model_matches[pi] = best_pairs[pi];
+ }
+ debug_matches->num_model_matches = 3;
+ result = true;
+
+ optimize_model(deshake_ctx, best_pairs, inliers, num_inliers, best_err, model_out);
+ return result;
+}
+
+// End code from OpenCV
+
+// Decomposes a similarity matrix into translation, rotation, scale, and skew
+//
+// See http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
+static FrameDelta decompose_transform(double *model)
+{
+ FrameDelta ret;
+
+ double a = model[0];
+ double c = model[1];
+ double e = model[2];
+ double b = model[3];
+ double d = model[4];
+ double f = model[5];
+ double delta = a * d - b * c;
+
+ ret.translation.s[0] = e;
+ ret.translation.s[1] = f;
+
+ // This is the QR method
+ if (a != 0 || b != 0) {
+ double r = hypot(a, b);
+
+ ret.rotation = FFSIGN(b) * acos(a / r);
+ ret.scale.s[0] = r;
+ ret.scale.s[1] = delta / r;
+ ret.skew.s[0] = atan((a * c + b * d) / (r * r));
+ ret.skew.s[1] = 0;
+ } else if (c != 0 || d != 0) {
+ double s = sqrt(c * c + d * d);
+
+ ret.rotation = M_PI / 2 - FFSIGN(d) * acos(-c / s);
+ ret.scale.s[0] = delta / s;
+ ret.scale.s[1] = s;
+ ret.skew.s[0] = 0;
+ ret.skew.s[1] = atan((a * c + b * d) / (s * s));
+ } // otherwise there is only translation
+
+ return ret;
+}
+
+// Move valid vectors from the 2d buffer into a 1d buffer where they are contiguous
+static int make_vectors_contig(
+ DeshakeOpenCLContext *deshake_ctx,
+ int size_y,
+ int size_x
+) {
+ int num_vectors = 0;
+
+ for (int i = 0; i < size_y; ++i) {
+ for (int j = 0; j < size_x; ++j) {
+ MotionVector v = deshake_ctx->matches_host[j + i * size_x];
+
+ if (v.should_consider) {
+ deshake_ctx->matches_contig_host[num_vectors] = v;
+ ++num_vectors;
+ }
+
+ // Make sure we do not exceed the amount of space we allocated for these vectors
+ if (num_vectors == MATCHES_CONTIG_SIZE - 1) {
+ return num_vectors;
+ }
+ }
+ }
+ return num_vectors;
+}
+
+// Returns the gaussian kernel value for the given x coordinate and sigma value
+static float gaussian_for(int x, float sigma) {
+ return 1.0f / expf(((float)x * (float)x) / (2.0f * sigma * sigma));
+}
+
+// Makes a normalized gaussian kernel of the given length for the given sigma
+// and places it in gauss_kernel
+static void make_gauss_kernel(float *gauss_kernel, float length, float sigma)
+{
+ float gauss_sum = 0;
+ int window_half = length / 2;
+
+ for (int i = 0; i < length; ++i) {
+ float val = gaussian_for(i - window_half, sigma);
+
+ gauss_sum += val;
+ gauss_kernel[i] = val;
+ }
+
+ // Normalize the gaussian values
+ for (int i = 0; i < length; ++i) {
+ gauss_kernel[i] /= gauss_sum;
+ }
+}
+
+// Returns indices to start and end iteration at in order to iterate over a window
+// of length size centered at the current frame in a ringbuffer
+//
+// Always returns numbers that result in a window of length size, even if that
+// means specifying negative indices or indices past the end of the values in the
+// ringbuffers. Make sure you clip indices appropriately within your loop.
+static IterIndices start_end_for(DeshakeOpenCLContext *deshake_ctx, int length) {
+ IterIndices indices;
+
+ indices.start = deshake_ctx->abs_motion.curr_frame_offset - (length / 2);
+ indices.end = deshake_ctx->abs_motion.curr_frame_offset + (length / 2) + (length % 2);
+
+ return indices;
+}
+
+// Sets val to the value in the given ringbuffer at the given offset, taking care of
+// clipping the offset into the appropriate range
+static void ringbuf_float_at(
+ DeshakeOpenCLContext *deshake_ctx,
+ AVFifoBuffer *values,
+ float *val,
+ int offset
+) {
+ int clip_start, clip_end, offset_clipped;
+ if (deshake_ctx->abs_motion.data_end_offset != -1) {
+ clip_end = deshake_ctx->abs_motion.data_end_offset;
+ } else {
+ // This expression represents the last valid index in the buffer,
+ // which we use repeatedly at the end of the video.
+ clip_end = deshake_ctx->smooth_window - (av_fifo_space(values) / sizeof(float)) - 1;
+ }
+
+ if (deshake_ctx->abs_motion.data_start_offset != -1) {
+ clip_start = deshake_ctx->abs_motion.data_start_offset;
+ } else {
+ // Negative indices will occur at the start of the video, and we want
+ // them to be clipped to 0 in order to repeatedly use the position of
+ // the first frame.
+ clip_start = 0;
+ }
+
+ offset_clipped = av_clip(
+ offset,
+ clip_start,
+ clip_end
+ );
+
+ av_fifo_generic_peek_at(
+ values,
+ val,
+ offset_clipped * sizeof(float),
+ sizeof(float),
+ NULL
+ );
+}
+
+// Returns smoothed current frame value of the given buffer of floats based on the
+// given Gaussian kernel and its length (also the window length, centered around the
+// current frame) and the "maximum value" of the motion.
+//
+// This "maximum value" should be the width / height of the image in the case of
+// translation and an empirically chosen constant for rotation / scale.
+//
+// The sigma chosen to generate the final gaussian kernel with used to smooth the
+// camera path is either hardcoded (set by user, deshake_ctx->smooth_percent) or
+// adaptively chosen.
+static float smooth(
+ DeshakeOpenCLContext *deshake_ctx,
+ float *gauss_kernel,
+ int length,
+ float max_val,
+ AVFifoBuffer *values
+) {
+ float new_large_s = 0, new_small_s = 0, new_best = 0, old, diff_between,
+ percent_of_max, inverted_percent;
+ IterIndices indices = start_end_for(deshake_ctx, length);
+ float large_sigma = 40.0f;
+ float small_sigma = 2.0f;
+ float best_sigma;
+
+ if (deshake_ctx->smooth_percent) {
+ best_sigma = (large_sigma - 0.5f) * deshake_ctx->smooth_percent + 0.5f;
+ } else {
+ // Strategy to adaptively smooth trajectory:
+ //
+ // 1. Smooth path with large and small sigma values
+ // 2. Take the absolute value of the difference between them
+ // 3. Get a percentage by putting the difference over the "max value"
+ // 4, Invert the percentage
+ // 5. Calculate a new sigma value weighted towards the larger sigma value
+ // 6. Determine final smoothed trajectory value using that sigma
+
+ make_gauss_kernel(gauss_kernel, length, large_sigma);
+ for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
+ ringbuf_float_at(deshake_ctx, values, &old, i);
+ new_large_s += old * gauss_kernel[j];
+ }
+
+ make_gauss_kernel(gauss_kernel, length, small_sigma);
+ for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
+ ringbuf_float_at(deshake_ctx, values, &old, i);
+ new_small_s += old * gauss_kernel[j];
+ }
+
+ diff_between = fabsf(new_large_s - new_small_s);
+ percent_of_max = diff_between / max_val;
+ inverted_percent = 1 - percent_of_max;
+ best_sigma = large_sigma * powf(inverted_percent, 40);
+ }
+
+ make_gauss_kernel(gauss_kernel, length, best_sigma);
+ for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
+ ringbuf_float_at(deshake_ctx, values, &old, i);
+ new_best += old * gauss_kernel[j];
+ }
+
+ return new_best;
+}
+
+// Returns the position of the given point after the transform is applied
+static cl_float2 transformed_point(float x, float y, float *transform) {
+ cl_float2 ret;
+
+ ret.s[0] = x * transform[0] + y * transform[1] + transform[2];
+ ret.s[1] = x * transform[3] + y * transform[4] + transform[5];
+
+ return ret;
+}
+
+// Creates an affine transform that scales from the center of a frame
+static void transform_center_scale(
+ float x_shift,
+ float y_shift,
+ float angle,
+ float scale_x,
+ float scale_y,
+ float center_w,
+ float center_h,
+ float *matrix
+) {
+ cl_float2 center_s;
+ float center_s_w, center_s_h;
+
+ ff_get_matrix(
+ 0,
+ 0,
+ 0,
+ scale_x,
+ scale_y,
+ matrix
+ );
+
+ center_s = transformed_point(center_w, center_h, matrix);
+ center_s_w = center_w - center_s.s[0];
+ center_s_h = center_h - center_s.s[1];
+
+ ff_get_matrix(
+ x_shift + center_s_w,
+ y_shift + center_s_h,
+ angle,
+ scale_x,
+ scale_y,
+ matrix
+ );
+}
+
+// Determines the crop necessary to eliminate black borders from a smoothed frame
+// and updates target crop accordingly
+static void update_needed_crop(
+ CropInfo* crop,
+ float *transform,
+ float frame_width,
+ float frame_height
+) {
+ float new_width, new_height, adjusted_width, adjusted_height, adjusted_x, adjusted_y;
+
+ cl_float2 top_left = transformed_point(0, 0, transform);
+ cl_float2 top_right = transformed_point(frame_width, 0, transform);
+ cl_float2 bottom_left = transformed_point(0, frame_height, transform);
+ cl_float2 bottom_right = transformed_point(frame_width, frame_height, transform);
+ float ar_h = frame_height / frame_width;
+ float ar_w = frame_width / frame_height;
+
+ if (crop->bottom_right.s[0] == 0) {
+ // The crop hasn't been set to the original size of the plane
+ crop->bottom_right.s[0] = frame_width;
+ crop->bottom_right.s[1] = frame_height;
+ }
+
+ crop->top_left.s[0] = FFMAX3(
+ crop->top_left.s[0],
+ top_left.s[0],
+ bottom_left.s[0]
+ );
+
+ crop->top_left.s[1] = FFMAX3(
+ crop->top_left.s[1],
+ top_left.s[1],
+ top_right.s[1]
+ );
+
+ crop->bottom_right.s[0] = FFMIN3(
+ crop->bottom_right.s[0],
+ bottom_right.s[0],
+ top_right.s[0]
+ );
+
+ crop->bottom_right.s[1] = FFMIN3(
+ crop->bottom_right.s[1],
+ bottom_right.s[1],
+ bottom_left.s[1]
+ );
+
+ // Make sure our potentially new bounding box has the same aspect ratio
+ new_height = crop->bottom_right.s[1] - crop->top_left.s[1];
+ new_width = crop->bottom_right.s[0] - crop->top_left.s[0];
+
+ adjusted_width = new_height * ar_w;
+ adjusted_x = crop->bottom_right.s[0] - adjusted_width;
+
+ if (adjusted_x >= crop->top_left.s[0]) {
+ crop->top_left.s[0] = adjusted_x;
+ } else {
+ adjusted_height = new_width * ar_h;
+ adjusted_y = crop->bottom_right.s[1] - adjusted_height;
+ crop->top_left.s[1] = adjusted_y;
+ }
+}
+
+static av_cold void deshake_opencl_uninit(AVFilterContext *avctx)
+{
+ DeshakeOpenCLContext *ctx = avctx->priv;
+ cl_int cle;
+
+ for (int i = 0; i < RingbufCount; i++)
+ av_fifo_freep(&ctx->abs_motion.ringbuffers[i]);
+
+ if (ctx->debug_on)
+ free_debug_matches(&ctx->abs_motion);
+
+ if (ctx->gauss_kernel)
+ av_freep(&ctx->gauss_kernel);
+
+ if (ctx->ransac_err)
+ av_freep(&ctx->ransac_err);
+
+ if (ctx->matches_host)
+ av_freep(&ctx->matches_host);
+
+ if (ctx->matches_contig_host)
+ av_freep(&ctx->matches_contig_host);
+
+ if (ctx->inliers)
+ av_freep(&ctx->inliers);
+
+ ff_framequeue_free(&ctx->fq);
+
+ CL_RELEASE_KERNEL(ctx->kernel_grayscale);
+ CL_RELEASE_KERNEL(ctx->kernel_harris_response);
+ CL_RELEASE_KERNEL(ctx->kernel_refine_features);
+ CL_RELEASE_KERNEL(ctx->kernel_brief_descriptors);
+ CL_RELEASE_KERNEL(ctx->kernel_match_descriptors);
+ CL_RELEASE_KERNEL(ctx->kernel_crop_upscale);
+ if (ctx->debug_on)
+ CL_RELEASE_KERNEL(ctx->kernel_draw_debug_info);
+
+ CL_RELEASE_QUEUE(ctx->command_queue);
+
+ if (!ctx->is_yuv)
+ CL_RELEASE_MEMORY(ctx->grayscale);
+ CL_RELEASE_MEMORY(ctx->harris_buf);
+ CL_RELEASE_MEMORY(ctx->refined_features);
+ CL_RELEASE_MEMORY(ctx->prev_refined_features);
+ CL_RELEASE_MEMORY(ctx->brief_pattern);
+ CL_RELEASE_MEMORY(ctx->descriptors);
+ CL_RELEASE_MEMORY(ctx->prev_descriptors);
+ CL_RELEASE_MEMORY(ctx->matches);
+ CL_RELEASE_MEMORY(ctx->matches_contig);
+ CL_RELEASE_MEMORY(ctx->transform_y);
+ CL_RELEASE_MEMORY(ctx->transform_uv);
+ if (ctx->debug_on) {
+ CL_RELEASE_MEMORY(ctx->debug_matches);
+ CL_RELEASE_MEMORY(ctx->debug_model_matches);
+ }
+
+ ff_opencl_filter_uninit(avctx);
+}
+
+static int deshake_opencl_init(AVFilterContext *avctx)
+{
+ DeshakeOpenCLContext *ctx = avctx->priv;
+ AVFilterLink *outlink = avctx->outputs[0];
+ AVFilterLink *inlink = avctx->inputs[0];
+ // Pointer to the host-side pattern buffer to be initialized and then copied
+ // to the GPU
+ PointPair *pattern_host;
+ cl_int cle;
+ int err;
+ cl_ulong8 zeroed_ulong8;
+ FFFrameQueueGlobal fqg;
+ cl_image_format grayscale_format;
+ cl_image_desc grayscale_desc;
+ cl_command_queue_properties queue_props;
+
+ const enum AVPixelFormat disallowed_formats[14] = {
+ AV_PIX_FMT_GBRP,
+ AV_PIX_FMT_GBRP9BE,
+ AV_PIX_FMT_GBRP9LE,
+ AV_PIX_FMT_GBRP10BE,
+ AV_PIX_FMT_GBRP10LE,
+ AV_PIX_FMT_GBRP16BE,
+ AV_PIX_FMT_GBRP16LE,
+ AV_PIX_FMT_GBRAP,
+ AV_PIX_FMT_GBRAP16BE,
+ AV_PIX_FMT_GBRAP16LE,
+ AV_PIX_FMT_GBRAP12BE,
+ AV_PIX_FMT_GBRAP12LE,
+ AV_PIX_FMT_GBRAP10BE,
+ AV_PIX_FMT_GBRAP10LE
+ };
+
+ // Number of elements for an array
+ const int image_grid_32 = ROUNDED_UP_DIV(outlink->h, 32) * ROUNDED_UP_DIV(outlink->w, 32);
+
+ const int descriptor_buf_size = image_grid_32 * (BREIFN / 8);
+ const int features_buf_size = image_grid_32 * sizeof(cl_float2);
+
+ const AVHWFramesContext *hw_frames_ctx = (AVHWFramesContext*)inlink->hw_frames_ctx->data;
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hw_frames_ctx->sw_format);
+
+ av_assert0(hw_frames_ctx);
+ av_assert0(desc);
+
+ ff_framequeue_global_init(&fqg);
+ ff_framequeue_init(&ctx->fq, &fqg);
+ ctx->eof = false;
+ ctx->smooth_window = (int)(av_q2d(avctx->inputs[0]->frame_rate) * ctx->smooth_window_multiplier);
+ ctx->curr_frame = 0;
+
+ memset(&zeroed_ulong8, 0, sizeof(cl_ulong8));
+
+ ctx->gauss_kernel = av_malloc_array(ctx->smooth_window, sizeof(float));
+ if (!ctx->gauss_kernel) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ ctx->ransac_err = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(float));
+ if (!ctx->ransac_err) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ for (int i = 0; i < RingbufCount; i++) {
+ ctx->abs_motion.ringbuffers[i] = av_fifo_alloc_array(
+ ctx->smooth_window,
+ sizeof(float)
+ );
+
+ if (!ctx->abs_motion.ringbuffers[i]) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ if (ctx->debug_on) {
+ ctx->abs_motion.debug_matches = av_fifo_alloc_array(
+ ctx->smooth_window / 2,
+ sizeof(DebugMatches)
+ );
+
+ if (!ctx->abs_motion.debug_matches) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ ctx->abs_motion.curr_frame_offset = 0;
+ ctx->abs_motion.data_start_offset = -1;
+ ctx->abs_motion.data_end_offset = -1;
+
+ pattern_host = av_malloc_array(BREIFN, sizeof(PointPair));
+ if (!pattern_host) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ ctx->matches_host = av_malloc_array(image_grid_32, sizeof(MotionVector));
+ if (!ctx->matches_host) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ ctx->matches_contig_host = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(MotionVector));
+ if (!ctx->matches_contig_host) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ ctx->inliers = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(MotionVector));
+ if (!ctx->inliers) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ // Initializing the patch pattern for building BREIF descriptors with
+ av_lfg_init(&ctx->alfg, 234342424);
+ for (int i = 0; i < BREIFN; ++i) {
+ PointPair pair;
+
+ for (int j = 0; j < 2; ++j) {
+ pair.p1.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
+ pair.p2.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
+ }
+
+ pattern_host[i] = pair;
+ }
+
+ for (int i = 0; i < 14; i++) {
+ if (ctx->sw_format == disallowed_formats[i]) {
+ av_log(avctx, AV_LOG_ERROR, "unsupported format in deshake_opencl.\n");
+ err = AVERROR(ENOSYS);
+ goto fail;
+ }
+ }
+
+ if (desc->flags & AV_PIX_FMT_FLAG_RGB) {
+ ctx->is_yuv = false;
+ } else {
+ ctx->is_yuv = true;
+ }
+ ctx->sw_format = hw_frames_ctx->sw_format;
+
+ err = ff_opencl_filter_load_program(avctx, &ff_opencl_source_deshake, 1);
+ if (err < 0)
+ goto fail;
+
+ if (ctx->debug_on) {
+ queue_props = CL_QUEUE_PROFILING_ENABLE;
+ } else {
+ queue_props = 0;
+ }
+ ctx->command_queue = clCreateCommandQueue(
+ ctx->ocf.hwctx->context,
+ ctx->ocf.hwctx->device_id,
+ queue_props,
+ &cle
+ );
+ CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL command queue %d.\n", cle);
+
+ CL_CREATE_KERNEL(ctx, grayscale);
+ CL_CREATE_KERNEL(ctx, harris_response);
+ CL_CREATE_KERNEL(ctx, refine_features);
+ CL_CREATE_KERNEL(ctx, brief_descriptors);
+ CL_CREATE_KERNEL(ctx, match_descriptors);
+ CL_CREATE_KERNEL(ctx, transform);
+ CL_CREATE_KERNEL(ctx, crop_upscale);
+ if (ctx->debug_on)
+ CL_CREATE_KERNEL(ctx, draw_debug_info);
+
+ if (!ctx->is_yuv) {
+ grayscale_format.image_channel_order = CL_R;
+ grayscale_format.image_channel_data_type = CL_FLOAT;
+
+ grayscale_desc = (cl_image_desc) {
+ .image_type = CL_MEM_OBJECT_IMAGE2D,
+ .image_width = outlink->w,
+ .image_height = outlink->h,
+ .image_depth = 0,
+ .image_array_size = 0,
+ .image_row_pitch = 0,
+ .image_slice_pitch = 0,
+ .num_mip_levels = 0,
+ .num_samples = 0,
+ .buffer = NULL,
+ };
+
+ ctx->grayscale = clCreateImage(
+ ctx->ocf.hwctx->context,
+ 0,
+ &grayscale_format,
+ &grayscale_desc,
+ NULL,
+ &cle
+ );
+ CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create grayscale image: %d.\n", cle);
+ }
+
+ CL_CREATE_BUFFER(ctx, harris_buf, outlink->h * outlink->w * sizeof(float));
+ CL_CREATE_BUFFER(ctx, refined_features, features_buf_size);
+ CL_CREATE_BUFFER(ctx, prev_refined_features, features_buf_size);
+ CL_CREATE_BUFFER_FLAGS(
+ ctx,
+ brief_pattern,
+ CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
+ BREIFN * sizeof(PointPair),
+ pattern_host
+ );
+ CL_CREATE_BUFFER(ctx, descriptors, descriptor_buf_size);
+ CL_CREATE_BUFFER(ctx, prev_descriptors, descriptor_buf_size);
+ CL_CREATE_BUFFER(ctx, matches, image_grid_32 * sizeof(MotionVector));
+ CL_CREATE_BUFFER(ctx, matches_contig, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
+ CL_CREATE_BUFFER(ctx, transform_y, 9 * sizeof(float));
+ CL_CREATE_BUFFER(ctx, transform_uv, 9 * sizeof(float));
+ if (ctx->debug_on) {
+ CL_CREATE_BUFFER(ctx, debug_matches, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
+ CL_CREATE_BUFFER(ctx, debug_model_matches, 3 * sizeof(MotionVector));
+ }
+
+ ctx->initialized = 1;
+ av_freep(&pattern_host);
+
+ return 0;
+
+fail:
+ if (!pattern_host)
+ av_freep(&pattern_host);
+ return err;
+}
+
+// Logs debug information about the transform data
+static void transform_debug(AVFilterContext *avctx, float *new_vals, float *old_vals, int curr_frame) {
+ av_log(avctx, AV_LOG_VERBOSE,
+ "Frame %d:\n"
+ "\tframe moved from: %f x, %f y\n"
+ "\t to: %f x, %f y\n"
+ "\t rotated from: %f degrees\n"
+ "\t to: %f degrees\n"
+ "\t scaled from: %f x, %f y\n"
+ "\t to: %f x, %f y\n"
+ "\n"
+ "\tframe moved by: %f x, %f y\n"
+ "\t rotated by: %f degrees\n"
+ "\t scaled by: %f x, %f y\n",
+ curr_frame,
+ old_vals[RingbufX], old_vals[RingbufY],
+ new_vals[RingbufX], new_vals[RingbufY],
+ old_vals[RingbufRot] * (180.0 / M_PI),
+ new_vals[RingbufRot] * (180.0 / M_PI),
+ old_vals[RingbufScaleX], old_vals[RingbufScaleY],
+ new_vals[RingbufScaleX], new_vals[RingbufScaleY],
+ old_vals[RingbufX] - new_vals[RingbufX], old_vals[RingbufY] - new_vals[RingbufY],
+ old_vals[RingbufRot] * (180.0 / M_PI) - new_vals[RingbufRot] * (180.0 / M_PI),
+ new_vals[RingbufScaleX] / old_vals[RingbufScaleX], new_vals[RingbufScaleY] / old_vals[RingbufScaleY]
+ );
+}
+
+// Uses the buffered motion information to determine a transform that smooths the
+// given frame and applies it
+static int filter_frame(AVFilterLink *link, AVFrame *input_frame)
+{
+ AVFilterContext *avctx = link->dst;
+ AVFilterLink *outlink = avctx->outputs[0];
+ DeshakeOpenCLContext *deshake_ctx = avctx->priv;
+ AVFrame *cropped_frame = NULL, *transformed_frame = NULL;
+ int err;
+ cl_int cle;
+ float new_vals[RingbufCount];
+ float old_vals[RingbufCount];
+ // Luma (in the case of YUV) transform, or just the transform in the case of RGB
+ float transform_y[9];
+ // Chroma transform
+ float transform_uv[9];
+ // Luma crop transform (or RGB)
+ float transform_crop_y[9];
+ // Chroma crop transform
+ float transform_crop_uv[9];
+ float transform_debug_rgb[9];
+ size_t global_work[2];
+ int64_t duration;
+ cl_mem src, transformed, dst;
+ cl_mem transforms[3];
+ CropInfo crops[3];
+ cl_event transform_event, crop_upscale_event;
+ DebugMatches debug_matches;
+ cl_int num_model_matches;
+
+ const float center_w = (float)input_frame->width / 2;
+ const float center_h = (float)input_frame->height / 2;
+
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(deshake_ctx->sw_format);
+ const int chroma_width = AV_CEIL_RSHIFT(input_frame->width, desc->log2_chroma_w);
+ const int chroma_height = AV_CEIL_RSHIFT(input_frame->height, desc->log2_chroma_h);
+
+ const float center_w_chroma = (float)chroma_width / 2;
+ const float center_h_chroma = (float)chroma_height / 2;
+
+ const float luma_w_over_chroma_w = ((float)input_frame->width / (float)chroma_width);
+ const float luma_h_over_chroma_h = ((float)input_frame->height / (float)chroma_height);
+
+ if (deshake_ctx->debug_on) {
+ av_fifo_generic_read(
+ deshake_ctx->abs_motion.debug_matches,
+ &debug_matches,
+ sizeof(DebugMatches),
+ NULL
+ );
+ }
+
+ if (input_frame->pkt_duration) {
+ duration = input_frame->pkt_duration;
+ } else {
+ duration = av_rescale_q(1, av_inv_q(outlink->frame_rate), outlink->time_base);
+ }
+ deshake_ctx->duration = input_frame->pts + duration;
+
+ // Get the absolute transform data for this frame
+ for (int i = 0; i < RingbufCount; i++) {
+ av_fifo_generic_peek_at(
+ deshake_ctx->abs_motion.ringbuffers[i],
+ &old_vals[i],
+ deshake_ctx->abs_motion.curr_frame_offset * sizeof(float),
+ sizeof(float),
+ NULL
+ );
+ }
+
+ if (deshake_ctx->tripod_mode) {
+ // If tripod mode is turned on we simply undo all motion relative to the
+ // first frame
+
+ new_vals[RingbufX] = 0.0f;
+ new_vals[RingbufY] = 0.0f;
+ new_vals[RingbufRot] = 0.0f;
+ new_vals[RingbufScaleX] = 1.0f;
+ new_vals[RingbufScaleY] = 1.0f;
+ } else {
+ // Tripod mode is off and we need to smooth a moving camera
+
+ new_vals[RingbufX] = smooth(
+ deshake_ctx,
+ deshake_ctx->gauss_kernel,
+ deshake_ctx->smooth_window,
+ input_frame->width,
+ deshake_ctx->abs_motion.ringbuffers[RingbufX]
+ );
+ new_vals[RingbufY] = smooth(
+ deshake_ctx,
+ deshake_ctx->gauss_kernel,
+ deshake_ctx->smooth_window,
+ input_frame->height,
+ deshake_ctx->abs_motion.ringbuffers[RingbufY]
+ );
+ new_vals[RingbufRot] = smooth(
+ deshake_ctx,
+ deshake_ctx->gauss_kernel,
+ deshake_ctx->smooth_window,
+ M_PI / 4,
+ deshake_ctx->abs_motion.ringbuffers[RingbufRot]
+ );
+ new_vals[RingbufScaleX] = smooth(
+ deshake_ctx,
+ deshake_ctx->gauss_kernel,
+ deshake_ctx->smooth_window,
+ 2.0f,
+ deshake_ctx->abs_motion.ringbuffers[RingbufScaleX]
+ );
+ new_vals[RingbufScaleY] = smooth(
+ deshake_ctx,
+ deshake_ctx->gauss_kernel,
+ deshake_ctx->smooth_window,
+ 2.0f,
+ deshake_ctx->abs_motion.ringbuffers[RingbufScaleY]
+ );
+ }
+
+ transform_center_scale(
+ old_vals[RingbufX] - new_vals[RingbufX],
+ old_vals[RingbufY] - new_vals[RingbufY],
+ old_vals[RingbufRot] - new_vals[RingbufRot],
+ new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
+ new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
+ center_w,
+ center_h,
+ transform_y
+ );
+
+ transform_center_scale(
+ (old_vals[RingbufX] - new_vals[RingbufX]) / luma_w_over_chroma_w,
+ (old_vals[RingbufY] - new_vals[RingbufY]) / luma_h_over_chroma_h,
+ old_vals[RingbufRot] - new_vals[RingbufRot],
+ new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
+ new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
+ center_w_chroma,
+ center_h_chroma,
+ transform_uv
+ );
+
+ CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_y, NULL);
+ CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_uv, 9 * sizeof(float), transform_uv, NULL);
+
+ if (deshake_ctx->debug_on)
+ transform_debug(avctx, new_vals, old_vals, deshake_ctx->curr_frame);
+
+ cropped_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
+ if (!cropped_frame) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ transformed_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
+ if (!transformed_frame) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ transforms[0] = deshake_ctx->transform_y;
+ transforms[1] = transforms[2] = deshake_ctx->transform_uv;
+
+ for (int p = 0; p < FF_ARRAY_ELEMS(transformed_frame->data); p++) {
+ // Transform all of the planes appropriately
+ src = (cl_mem)input_frame->data[p];
+ transformed = (cl_mem)transformed_frame->data[p];
+
+ if (!transformed)
+ break;
+
+ err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
+ if (err < 0)
+ goto fail;
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_transform,
+ global_work,
+ NULL,
+ &transform_event,
+ { sizeof(cl_mem), &src },
+ { sizeof(cl_mem), &transformed },
+ { sizeof(cl_mem), &transforms[p] },
+ );
+ }
+
+ if (deshake_ctx->debug_on && !deshake_ctx->is_yuv && debug_matches.num_matches > 0) {
+ CL_BLOCKING_WRITE_BUFFER(
+ deshake_ctx->command_queue,
+ deshake_ctx->debug_matches,
+ debug_matches.num_matches * sizeof(MotionVector),
+ debug_matches.matches,
+ NULL
+ );
+
+ CL_BLOCKING_WRITE_BUFFER(
+ deshake_ctx->command_queue,
+ deshake_ctx->debug_model_matches,
+ debug_matches.num_model_matches * sizeof(MotionVector),
+ debug_matches.model_matches,
+ NULL
+ );
+
+ num_model_matches = debug_matches.num_model_matches;
+
+ // Invert the transform
+ transform_center_scale(
+ new_vals[RingbufX] - old_vals[RingbufX],
+ new_vals[RingbufY] - old_vals[RingbufY],
+ new_vals[RingbufRot] - old_vals[RingbufRot],
+ old_vals[RingbufScaleX] / new_vals[RingbufScaleX],
+ old_vals[RingbufScaleY] / new_vals[RingbufScaleY],
+ center_w,
+ center_h,
+ transform_debug_rgb
+ );
+
+ CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_debug_rgb, NULL);
+
+ transformed = (cl_mem)transformed_frame->data[0];
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_draw_debug_info,
+ (size_t[]){ debug_matches.num_matches },
+ NULL,
+ NULL,
+ { sizeof(cl_mem), &transformed },
+ { sizeof(cl_mem), &deshake_ctx->debug_matches },
+ { sizeof(cl_mem), &deshake_ctx->debug_model_matches },
+ { sizeof(cl_int), &num_model_matches },
+ { sizeof(cl_mem), &deshake_ctx->transform_y }
+ );
+ }
+
+ if (deshake_ctx->should_crop) {
+ // Generate transforms for cropping
+ transform_center_scale(
+ (old_vals[RingbufX] - new_vals[RingbufX]) / 5,
+ (old_vals[RingbufY] - new_vals[RingbufY]) / 5,
+ (old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
+ new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
+ new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
+ center_w,
+ center_h,
+ transform_crop_y
+ );
+ update_needed_crop(&deshake_ctx->crop_y, transform_crop_y, input_frame->width, input_frame->height);
+
+ transform_center_scale(
+ (old_vals[RingbufX] - new_vals[RingbufX]) / (5 * luma_w_over_chroma_w),
+ (old_vals[RingbufY] - new_vals[RingbufY]) / (5 * luma_h_over_chroma_h),
+ (old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
+ new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
+ new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
+ center_w_chroma,
+ center_h_chroma,
+ transform_crop_uv
+ );
+ update_needed_crop(&deshake_ctx->crop_uv, transform_crop_uv, chroma_width, chroma_height);
+
+ crops[0] = deshake_ctx->crop_y;
+ crops[1] = crops[2] = deshake_ctx->crop_uv;
+
+ for (int p = 0; p < FF_ARRAY_ELEMS(cropped_frame->data); p++) {
+ // Crop all of the planes appropriately
+ dst = (cl_mem)cropped_frame->data[p];
+ transformed = (cl_mem)transformed_frame->data[p];
+
+ if (!dst)
+ break;
+
+ err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
+ if (err < 0)
+ goto fail;
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_crop_upscale,
+ global_work,
+ NULL,
+ &crop_upscale_event,
+ { sizeof(cl_mem), &transformed },
+ { sizeof(cl_mem), &dst },
+ { sizeof(cl_float2), &crops[p].top_left },
+ { sizeof(cl_float2), &crops[p].bottom_right },
+ );
+ }
+ }
+
+ if (deshake_ctx->curr_frame < deshake_ctx->smooth_window / 2) {
+ // This means we are somewhere at the start of the video. We need to
+ // increment the current frame offset until it reaches the center of
+ // the ringbuffers (as the current frame will be located there for
+ // the rest of the video).
+ //
+ // The end of the video is taken care of by draining motion data
+ // one-by-one out of the buffer, causing the (at that point fixed)
+ // offset to move towards later frames' data.
+ ++deshake_ctx->abs_motion.curr_frame_offset;
+ }
+
+ if (deshake_ctx->abs_motion.data_end_offset != -1) {
+ // Keep the end offset in sync with the frame it's supposed to be
+ // positioned at
+ --deshake_ctx->abs_motion.data_end_offset;
+
+ if (deshake_ctx->abs_motion.data_end_offset == deshake_ctx->abs_motion.curr_frame_offset - 1) {
+ // The end offset would be the start of the new video sequence; flip to
+ // start offset
+ deshake_ctx->abs_motion.data_end_offset = -1;
+ deshake_ctx->abs_motion.data_start_offset = deshake_ctx->abs_motion.curr_frame_offset;
+ }
+ } else if (deshake_ctx->abs_motion.data_start_offset != -1) {
+ // Keep the start offset in sync with the frame it's supposed to be
+ // positioned at
+ --deshake_ctx->abs_motion.data_start_offset;
+ }
+
+ if (deshake_ctx->debug_on) {
+ deshake_ctx->transform_time += ff_opencl_get_event_time(transform_event);
+ if (deshake_ctx->should_crop) {
+ deshake_ctx->crop_upscale_time += ff_opencl_get_event_time(crop_upscale_event);
+ }
+ }
+
+ ++deshake_ctx->curr_frame;
+
+ if (deshake_ctx->debug_on)
+ av_freep(&debug_matches.matches);
+
+ if (deshake_ctx->should_crop) {
+ err = av_frame_copy_props(cropped_frame, input_frame);
+ if (err < 0)
+ goto fail;
+
+ av_frame_free(&transformed_frame);
+ av_frame_free(&input_frame);
+ return ff_filter_frame(outlink, cropped_frame);
+
+ } else {
+ err = av_frame_copy_props(transformed_frame, input_frame);
+ if (err < 0)
+ goto fail;
+
+ av_frame_free(&cropped_frame);
+ av_frame_free(&input_frame);
+ return ff_filter_frame(outlink, transformed_frame);
+ }
+
+fail:
+ clFinish(deshake_ctx->command_queue);
+
+ if (deshake_ctx->debug_on)
+ if (debug_matches.matches)
+ av_freep(&debug_matches.matches);
+
+ av_frame_free(&input_frame);
+ av_frame_free(&transformed_frame);
+ av_frame_free(&cropped_frame);
+ return err;
+}
+
+// Add the given frame to the frame queue to eventually be processed.
+//
+// Also determines the motion from the previous frame and updates the stored
+// motion information accordingly.
+static int queue_frame(AVFilterLink *link, AVFrame *input_frame)
+{
+ AVFilterContext *avctx = link->dst;
+ DeshakeOpenCLContext *deshake_ctx = avctx->priv;
+ int err;
+ int num_vectors;
+ int num_inliers = 0;
+ cl_int cle;
+ FrameDelta relative;
+ SimilarityMatrix model;
+ size_t global_work[2];
+ size_t harris_global_work[2];
+ size_t grid_32_global_work[2];
+ int grid_32_h, grid_32_w;
+ size_t local_work[2];
+ cl_mem src, temp;
+ float prev_vals[5];
+ float new_vals[5];
+ cl_event grayscale_event, harris_response_event, refine_features_event,
+ brief_event, match_descriptors_event, read_buf_event;
+ DebugMatches debug_matches;
+
+ num_vectors = 0;
+
+ local_work[0] = 8;
+ local_work[1] = 8;
+
+ err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, 0, 0);
+ if (err < 0)
+ goto fail;
+
+ err = ff_opencl_filter_work_size_from_image(avctx, harris_global_work, input_frame, 0, 8);
+ if (err < 0)
+ goto fail;
+
+ err = ff_opencl_filter_work_size_from_image(avctx, grid_32_global_work, input_frame, 0, 32);
+ if (err < 0)
+ goto fail;
+
+ // We want a single work-item for each 32x32 block of pixels in the input frame
+ grid_32_global_work[0] /= 32;
+ grid_32_global_work[1] /= 32;
+
+ grid_32_h = ROUNDED_UP_DIV(input_frame->height, 32);
+ grid_32_w = ROUNDED_UP_DIV(input_frame->width, 32);
+
+ if (deshake_ctx->is_yuv) {
+ deshake_ctx->grayscale = (cl_mem)input_frame->data[0];
+ } else {
+ src = (cl_mem)input_frame->data[0];
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_grayscale,
+ global_work,
+ NULL,
+ &grayscale_event,
+ { sizeof(cl_mem), &src },
+ { sizeof(cl_mem), &deshake_ctx->grayscale }
+ );
+ }
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_harris_response,
+ harris_global_work,
+ local_work,
+ &harris_response_event,
+ { sizeof(cl_mem), &deshake_ctx->grayscale },
+ { sizeof(cl_mem), &deshake_ctx->harris_buf }
+ );
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_refine_features,
+ grid_32_global_work,
+ NULL,
+ &refine_features_event,
+ { sizeof(cl_mem), &deshake_ctx->grayscale },
+ { sizeof(cl_mem), &deshake_ctx->harris_buf },
+ { sizeof(cl_mem), &deshake_ctx->refined_features },
+ { sizeof(cl_int), &deshake_ctx->refine_features }
+ );
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_brief_descriptors,
+ grid_32_global_work,
+ NULL,
+ &brief_event,
+ { sizeof(cl_mem), &deshake_ctx->grayscale },
+ { sizeof(cl_mem), &deshake_ctx->refined_features },
+ { sizeof(cl_mem), &deshake_ctx->descriptors },
+ { sizeof(cl_mem), &deshake_ctx->brief_pattern}
+ );
+
+ if (av_fifo_size(deshake_ctx->abs_motion.ringbuffers[RingbufX]) == 0) {
+ // This is the first frame we've been given to queue, meaning there is
+ // no previous frame to match descriptors to
+
+ goto no_motion_data;
+ }
+
+ CL_RUN_KERNEL_WITH_ARGS(
+ deshake_ctx->command_queue,
+ deshake_ctx->kernel_match_descriptors,
+ grid_32_global_work,
+ NULL,
+ &match_descriptors_event,
+ { sizeof(cl_mem), &deshake_ctx->prev_refined_features },
+ { sizeof(cl_mem), &deshake_ctx->refined_features },
+ { sizeof(cl_mem), &deshake_ctx->descriptors },
+ { sizeof(cl_mem), &deshake_ctx->prev_descriptors },
+ { sizeof(cl_mem), &deshake_ctx->matches }
+ );
+
+ cle = clEnqueueReadBuffer(
+ deshake_ctx->command_queue,
+ deshake_ctx->matches,
+ CL_TRUE,
+ 0,
+ grid_32_h * grid_32_w * sizeof(MotionVector),
+ deshake_ctx->matches_host,
+ 0,
+ NULL,
+ &read_buf_event
+ );
+ CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read matches to host: %d.\n", cle);
+
+ num_vectors = make_vectors_contig(deshake_ctx, grid_32_h, grid_32_w);
+
+ if (num_vectors < 10) {
+ // Not enough matches to get reliable motion data for this frame
+ //
+ // From this point on all data is relative to this frame rather than the
+ // original frame. We have to make sure that we don't mix values that were
+ // relative to the original frame with the new values relative to this
+ // frame when doing the gaussian smoothing. We keep track of where the old
+ // values end using this data_end_offset field in order to accomplish
+ // that goal.
+ //
+ // If no motion data is present for multiple frames in a short window of
+ // time, we leave the end where it was to avoid mixing 0s in with the
+ // old data (and just treat them all as part of the new values)
+ if (deshake_ctx->abs_motion.data_end_offset == -1) {
+ deshake_ctx->abs_motion.data_end_offset =
+ av_fifo_size(deshake_ctx->abs_motion.ringbuffers[RingbufX]) / sizeof(float) - 1;
+ }
+
+ goto no_motion_data;
+ }
+
+ if (!estimate_affine_2d(
+ deshake_ctx,
+ deshake_ctx->matches_contig_host,
+ &debug_matches,
+ num_vectors,
+ model.matrix,
+ 10.0,
+ 3000,
+ 0.999999999999
+ )) {
+ goto no_motion_data;
+ }
+
+ for (int i = 0; i < num_vectors; i++) {
+ if (deshake_ctx->matches_contig_host[i].should_consider) {
+ deshake_ctx->inliers[num_inliers] = deshake_ctx->matches_contig_host[i];
+ num_inliers++;
+ }
+ }
+
+ if (!minimize_error(
+ deshake_ctx,
+ deshake_ctx->inliers,
+ &debug_matches,
+ num_inliers,
+ model.matrix,
+ 400
+ )) {
+ goto no_motion_data;
+ }
+
+
+ relative = decompose_transform(model.matrix);
+
+ // Get the absolute transform data for the previous frame
+ for (int i = 0; i < RingbufCount; i++) {
+ av_fifo_generic_peek_at(
+ deshake_ctx->abs_motion.ringbuffers[i],
+ &prev_vals[i],
+ av_fifo_size(deshake_ctx->abs_motion.ringbuffers[i]) - sizeof(float),
+ sizeof(float),
+ NULL
+ );
+ }
+
+ new_vals[RingbufX] = prev_vals[RingbufX] + relative.translation.s[0];
+ new_vals[RingbufY] = prev_vals[RingbufY] + relative.translation.s[1];
+ new_vals[RingbufRot] = prev_vals[RingbufRot] + relative.rotation;
+ new_vals[RingbufScaleX] = prev_vals[RingbufScaleX] / relative.scale.s[0];
+ new_vals[RingbufScaleY] = prev_vals[RingbufScaleY] / relative.scale.s[1];
+
+ if (deshake_ctx->debug_on) {
+ if (!deshake_ctx->is_yuv) {
+ deshake_ctx->grayscale_time += ff_opencl_get_event_time(grayscale_event);
+ }
+ deshake_ctx->harris_response_time += ff_opencl_get_event_time(harris_response_event);
+ deshake_ctx->refine_features_time += ff_opencl_get_event_time(refine_features_event);
+ deshake_ctx->brief_descriptors_time += ff_opencl_get_event_time(brief_event);
+ deshake_ctx->match_descriptors_time += ff_opencl_get_event_time(match_descriptors_event);
+ deshake_ctx->read_buf_time += ff_opencl_get_event_time(read_buf_event);
+ }
+
+ goto end;
+
+no_motion_data:
+ new_vals[RingbufX] = 0.0f;
+ new_vals[RingbufY] = 0.0f;
+ new_vals[RingbufRot] = 0.0f;
+ new_vals[RingbufScaleX] = 1.0f;
+ new_vals[RingbufScaleY] = 1.0f;
+
+ for (int i = 0; i < num_vectors; i++) {
+ deshake_ctx->matches_contig_host[i].should_consider = false;
+ }
+ debug_matches.num_model_matches = 0;
+
+ if (deshake_ctx->debug_on) {
+ av_log(avctx, AV_LOG_VERBOSE,
+ "\n[ALERT] No motion data found in queue_frame, motion reset to 0\n\n"
+ );
+ }
+
+ goto end;
+
+end:
+ // Swap the descriptor buffers (we don't need the previous frame's descriptors
+ // again so we will use that space for the next frame's descriptors)
+ temp = deshake_ctx->prev_descriptors;
+ deshake_ctx->prev_descriptors = deshake_ctx->descriptors;
+ deshake_ctx->descriptors = temp;
+
+ // Same for the refined features
+ temp = deshake_ctx->prev_refined_features;
+ deshake_ctx->prev_refined_features = deshake_ctx->refined_features;
+ deshake_ctx->refined_features = temp;
+
+ if (deshake_ctx->debug_on) {
+ if (num_vectors == 0) {
+ debug_matches.matches = NULL;
+ } else {
+ debug_matches.matches = av_malloc_array(num_vectors, sizeof(MotionVector));
+
+ if (!debug_matches.matches) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ for (int i = 0; i < num_vectors; i++) {
+ debug_matches.matches[i] = deshake_ctx->matches_contig_host[i];
+ }
+ debug_matches.num_matches = num_vectors;
+
+ av_fifo_generic_write(
+ deshake_ctx->abs_motion.debug_matches,
+ &debug_matches,
+ sizeof(DebugMatches),
+ NULL
+ );
+ }
+
+ for (int i = 0; i < RingbufCount; i++) {
+ av_fifo_generic_write(
+ deshake_ctx->abs_motion.ringbuffers[i],
+ &new_vals[i],
+ sizeof(float),
+ NULL
+ );
+ }
+
+ return ff_framequeue_add(&deshake_ctx->fq, input_frame);
+
+fail:
+ clFinish(deshake_ctx->command_queue);
+ av_frame_free(&input_frame);
+ return err;
+}
+
+static int activate(AVFilterContext *ctx)
+{
+ AVFilterLink *inlink = ctx->inputs[0];
+ AVFilterLink *outlink = ctx->outputs[0];
+ DeshakeOpenCLContext *deshake_ctx = ctx->priv;
+ AVFrame *frame = NULL;
+ int ret, status;
+ int64_t pts;
+
+ FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
+
+ if (!deshake_ctx->eof) {
+ ret = ff_inlink_consume_frame(inlink, &frame);
+ if (ret < 0)
+ return ret;
+ if (ret > 0) {
+ if (!frame->hw_frames_ctx)
+ return AVERROR(EINVAL);
+
+ if (!deshake_ctx->initialized) {
+ ret = deshake_opencl_init(ctx);
+ if (ret < 0)
+ return ret;
+ }
+
+ // If there is no more space in the ringbuffers, remove the oldest
+ // values to make room for the new ones
+ if (av_fifo_space(deshake_ctx->abs_motion.ringbuffers[RingbufX]) == 0) {
+ for (int i = 0; i < RingbufCount; i++) {
+ av_fifo_drain(deshake_ctx->abs_motion.ringbuffers[i], sizeof(float));
+ }
+ }
+ ret = queue_frame(inlink, frame);
+ if (ret < 0)
+ return ret;
+ if (ret >= 0) {
+ // See if we have enough buffered frames to process one
+ //
+ // "enough" is half the smooth window of queued frames into the future
+ if (ff_framequeue_queued_frames(&deshake_ctx->fq) >= deshake_ctx->smooth_window / 2) {
+ return filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
+ }
+ }
+ }
+ }
+
+ if (!deshake_ctx->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
+ if (status == AVERROR_EOF) {
+ deshake_ctx->eof = true;
+ }
+ }
+
+ if (deshake_ctx->eof) {
+ // Finish processing the rest of the frames in the queue.
+ while(ff_framequeue_queued_frames(&deshake_ctx->fq) != 0) {
+ for (int i = 0; i < RingbufCount; i++) {
+ av_fifo_drain(deshake_ctx->abs_motion.ringbuffers[i], sizeof(float));
+ }
+
+ ret = filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ if (deshake_ctx->debug_on) {
+ av_log(ctx, AV_LOG_VERBOSE,
+ "Average kernel execution times:\n"
+ "\t grayscale: %0.3f ms\n"
+ "\t harris_response: %0.3f ms\n"
+ "\t refine_features: %0.3f ms\n"
+ "\tbrief_descriptors: %0.3f ms\n"
+ "\tmatch_descriptors: %0.3f ms\n"
+ "\t transform: %0.3f ms\n"
+ "\t crop_upscale: %0.3f ms\n"
+ "Average buffer read times:\n"
+ "\t features buf: %0.3f ms\n",
+ averaged_event_time_ms(deshake_ctx->grayscale_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->harris_response_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->refine_features_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->brief_descriptors_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->match_descriptors_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->transform_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->crop_upscale_time, deshake_ctx->curr_frame),
+ averaged_event_time_ms(deshake_ctx->read_buf_time, deshake_ctx->curr_frame)
+ );
+ }
+
+ ff_outlink_set_status(outlink, AVERROR_EOF, deshake_ctx->duration);
+ return 0;
+ }
+
+ if (!deshake_ctx->eof) {
+ FF_FILTER_FORWARD_WANTED(outlink, inlink);
+ }
+
+ return FFERROR_NOT_READY;
+}
+
+static const AVFilterPad deshake_opencl_inputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = &ff_opencl_filter_config_input,
+ },
+ { NULL }
+};
+
+static const AVFilterPad deshake_opencl_outputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = &ff_opencl_filter_config_output,
+ },
+ { NULL }
+};
+
+#define OFFSET(x) offsetof(DeshakeOpenCLContext, x)
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
+
+static const AVOption deshake_opencl_options[] = {
+ {
+ "tripod", "simulates a tripod by preventing any camera movement whatsoever "
+ "from the original frame",
+ OFFSET(tripod_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
+ },
+ {
+ "debug", "turn on additional debugging information",
+ OFFSET(debug_on), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
+ },
+ {
+ "adaptive_crop", "attempt to subtly crop borders to reduce mirrored content",
+ OFFSET(should_crop), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
+ },
+ {
+ "refine_features", "refine feature point locations at a sub-pixel level",
+ OFFSET(refine_features), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
+ },
+ {
+ "smooth_strength", "smoothing strength (0 attempts to adaptively determine optimal strength)",
+ OFFSET(smooth_percent), AV_OPT_TYPE_FLOAT, {.dbl = 0.0f}, 0.0f, 1.0f, FLAGS
+ },
+ {
+ "smooth_window_multiplier", "multiplier for number of frames to buffer for motion data",
+ OFFSET(smooth_window_multiplier), AV_OPT_TYPE_FLOAT, {.dbl = 2.0}, 0.1, 10.0, FLAGS
+ },
+ { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(deshake_opencl);
+
+AVFilter ff_vf_deshake_opencl = {
+ .name = "deshake_opencl",
+ .description = NULL_IF_CONFIG_SMALL("Feature-point based video stabilization filter"),
+ .priv_size = sizeof(DeshakeOpenCLContext),
+ .priv_class = &deshake_opencl_class,
+ .init = &ff_opencl_filter_init,
+ .uninit = &deshake_opencl_uninit,
+ .query_formats = &ff_opencl_filter_query_formats,
+ .activate = activate,
+ .inputs = deshake_opencl_inputs,
+ .outputs = deshake_opencl_outputs,
+ .flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE
+};