aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/dnn
diff options
context:
space:
mode:
authorShubhanshu Saxena <shubhanshu.e01@gmail.com>2022-03-02 23:35:56 +0530
committerGuo Yejun <yejun.guo@intel.com>2022-03-12 15:10:28 +0800
commitd0a999a0ab8313fd1b5e9cb09e35fb769fb3e51c (patch)
tree7da55fe036df4955601d52dc13260ee2a60c380d /libavfilter/dnn
parent1df77bab08ac53482f94c4d4be2449cfa50b8e68 (diff)
downloadffmpeg-d0a999a0ab8313fd1b5e9cb09e35fb769fb3e51c.tar.gz
libavfilter: Remove DNNReturnType from DNN Module
This patch removes all occurences of DNNReturnType from the DNN module. This commit replaces DNN_SUCCESS by 0 (essentially the same), so the functions with DNNReturnType now return 0 in case of success, the negative values otherwise. Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com> Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
Diffstat (limited to 'libavfilter/dnn')
-rw-r--r--libavfilter/dnn/dnn_backend_common.c10
-rw-r--r--libavfilter/dnn/dnn_backend_common.h8
-rw-r--r--libavfilter/dnn/dnn_backend_native.c16
-rw-r--r--libavfilter/dnn/dnn_backend_native_layer_avgpool.c2
-rw-r--r--libavfilter/dnn/dnn_backend_native_layer_conv2d.c4
-rw-r--r--libavfilter/dnn/dnn_backend_native_layer_dense.c2
-rw-r--r--libavfilter/dnn/dnn_backend_native_layer_depth2space.c2
-rw-r--r--libavfilter/dnn/dnn_backend_openvino.c48
-rw-r--r--libavfilter/dnn/dnn_backend_tf.c56
-rw-r--r--libavfilter/dnn/dnn_io_proc.c14
10 files changed, 81 insertions, 81 deletions
diff --git a/libavfilter/dnn/dnn_backend_common.c b/libavfilter/dnn/dnn_backend_common.c
index 64ed441415..91a4a3c4bf 100644
--- a/libavfilter/dnn/dnn_backend_common.c
+++ b/libavfilter/dnn/dnn_backend_common.c
@@ -70,7 +70,7 @@ int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backe
task->nb_output = exec_params->nb_output;
task->output_names = exec_params->output_names;
- return DNN_SUCCESS;
+ return 0;
}
/**
@@ -82,7 +82,7 @@ static void *async_thread_routine(void *args)
DNNAsyncExecModule *async_module = args;
void *request = async_module->args;
- if (async_module->start_inference(request) != DNN_SUCCESS) {
+ if (async_module->start_inference(request) != 0) {
return DNN_ASYNC_FAIL;
}
async_module->callback(request);
@@ -105,7 +105,7 @@ int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
async_module->start_inference = NULL;
async_module->callback = NULL;
async_module->args = NULL;
- return DNN_SUCCESS;
+ return 0;
}
int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module)
@@ -131,12 +131,12 @@ int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module)
}
#else
ret = async_module->start_inference(async_module->args);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
return ret;
}
async_module->callback(async_module->args);
#endif
- return DNN_SUCCESS;
+ return 0;
}
DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVFrame **out)
diff --git a/libavfilter/dnn/dnn_backend_common.h b/libavfilter/dnn/dnn_backend_common.h
index fa79caee1f..42c67c7040 100644
--- a/libavfilter/dnn/dnn_backend_common.h
+++ b/libavfilter/dnn/dnn_backend_common.h
@@ -92,7 +92,7 @@ int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func
* @param async flag for async execution. Must be 0 or 1
* @param do_ioproc flag for IO processing. Must be 0 or 1
*
- * @returns DNN_SUCCESS if successful or error code otherwise.
+ * @returns 0 if successful or error code otherwise.
*/
int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc);
@@ -101,7 +101,7 @@ int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backe
*
* @param async_module pointer to DNNAsyncExecModule module
*
- * @returns DNN_SUCCESS if successful or error code otherwise.
+ * @returns 0 if successful or error code otherwise.
*/
int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module);
@@ -117,7 +117,7 @@ int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module);
* @param ctx pointer to the backend context
* @param async_module pointer to DNNAsyncExecModule module
*
- * @returns DNN_SUCCESS on the start of async inference or error code otherwise.
+ * @returns 0 on the start of async inference or error code otherwise.
*/
int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module);
@@ -146,7 +146,7 @@ DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVF
* @param input_width width of input frame
* @param ctx pointer to the backend context
*
- * @returns DNN_SUCCESS if successful or error code otherwise.
+ * @returns 0 if successful or error code otherwise.
*/
int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx);
diff --git a/libavfilter/dnn/dnn_backend_native.c b/libavfilter/dnn/dnn_backend_native.c
index f29e0e06bd..b53799f04d 100644
--- a/libavfilter/dnn/dnn_backend_native.c
+++ b/libavfilter/dnn/dnn_backend_native.c
@@ -67,7 +67,7 @@ static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
av_freep(&lltask);
return AVERROR(ENOMEM);
}
- return DNN_SUCCESS;
+ return 0;
}
static int get_input_native(void *model, DNNData *input, const char *input_name)
@@ -87,7 +87,7 @@ static int get_input_native(void *model, DNNData *input, const char *input_name)
input->height = oprd->dims[1];
input->width = oprd->dims[2];
input->channels = oprd->dims[3];
- return DNN_SUCCESS;
+ return 0;
}
}
@@ -112,12 +112,12 @@ static int get_output_native(void *model, const char *input_name, int input_widt
};
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
ret = extract_lltask_from_task(&task, native_model->lltask_queue);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
goto err;
}
@@ -387,7 +387,7 @@ static int execute_model_native(Queue *lltask_queue)
native_model->layers[layer].output_operand_index,
native_model->layers[layer].params,
&native_model->ctx);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n");
goto err;
}
@@ -451,7 +451,7 @@ int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_p
}
ret = ff_dnn_fill_task(task, exec_params, native_model, ctx->options.async, 1);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_freep(&task);
return ret;
}
@@ -463,7 +463,7 @@ int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_p
}
ret = extract_lltask_from_task(task, native_model->lltask_queue);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
return ret;
}
@@ -477,7 +477,7 @@ int ff_dnn_flush_native(const DNNModel *model)
if (ff_queue_size(native_model->lltask_queue) == 0) {
// no pending task need to flush
- return DNN_SUCCESS;
+ return 0;
}
// for now, use sync node with flush operation
diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c b/libavfilter/dnn/dnn_backend_native_layer_avgpool.c
index 510a28a8c9..d6fcac8a35 100644
--- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c
+++ b/libavfilter/dnn/dnn_backend_native_layer_avgpool.c
@@ -143,5 +143,5 @@ int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_ope
}
}
- return DNN_SUCCESS;
+ return 0;
}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c
index dfa0d1ed36..2ac37d8855 100644
--- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c
+++ b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c
@@ -190,7 +190,7 @@ int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_opera
#if HAVE_PTHREAD_CANCEL
int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
- int ret = DNN_SUCCESS, thread_stride;
+ int ret = 0, thread_stride;
ThreadParam *thread_param;
#else
ThreadParam thread_param = { 0 };
@@ -260,6 +260,6 @@ int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_opera
thread_param.thread_end = height - pad_size;
dnn_execute_layer_conv2d_thread(&thread_param);
- return DNN_SUCCESS;
+ return 0;
#endif
}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.c b/libavfilter/dnn/dnn_backend_native_layer_dense.c
index a22a484464..dff342c1f3 100644
--- a/libavfilter/dnn/dnn_backend_native_layer_dense.c
+++ b/libavfilter/dnn/dnn_backend_native_layer_dense.c
@@ -147,5 +147,5 @@ int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operan
output += dense_params->output_num;
}
}
- return DNN_SUCCESS;
+ return 0;
}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c b/libavfilter/dnn/dnn_backend_native_layer_depth2space.c
index 82b1a52be2..358ac3bcaa 100644
--- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c
+++ b/libavfilter/dnn/dnn_backend_native_layer_depth2space.c
@@ -98,5 +98,5 @@ int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_
}
output += output_linesize;
}
- return DNN_SUCCESS;
+ return 0;
}
diff --git a/libavfilter/dnn/dnn_backend_openvino.c b/libavfilter/dnn/dnn_backend_openvino.c
index 2f140e996b..cf012aca4c 100644
--- a/libavfilter/dnn/dnn_backend_openvino.c
+++ b/libavfilter/dnn/dnn_backend_openvino.c
@@ -191,7 +191,7 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
}
ie_blob_free(&input_blob);
- return DNN_SUCCESS;
+ return 0;
}
static void infer_completion_callback(void *args)
@@ -303,7 +303,7 @@ static void infer_completion_callback(void *args)
static int init_model_ov(OVModel *ov_model, const char *input_name, const char *output_name)
{
- int ret = DNN_SUCCESS;
+ int ret = 0;
OVContext *ctx = &ov_model->ctx;
IEStatusCode status;
ie_available_devices_t a_dev;
@@ -433,7 +433,7 @@ static int init_model_ov(OVModel *ov_model, const char *input_name, const char *
goto err;
}
- return DNN_SUCCESS;
+ return 0;
err:
ff_dnn_free_model_ov(&ov_model->model);
@@ -444,7 +444,7 @@ static int execute_model_ov(OVRequestItem *request, Queue *inferenceq)
{
IEStatusCode status;
LastLevelTaskItem *lltask;
- int ret = DNN_SUCCESS;
+ int ret = 0;
TaskItem *task;
OVContext *ctx;
OVModel *ov_model;
@@ -452,7 +452,7 @@ static int execute_model_ov(OVRequestItem *request, Queue *inferenceq)
if (ff_queue_size(inferenceq) == 0) {
ie_infer_request_free(&request->infer_request);
av_freep(&request);
- return DNN_SUCCESS;
+ return 0;
}
lltask = ff_queue_peek_front(inferenceq);
@@ -462,7 +462,7 @@ static int execute_model_ov(OVRequestItem *request, Queue *inferenceq)
if (task->async) {
ret = fill_model_input_ov(ov_model, request);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
status = ie_infer_set_completion_callback(request->infer_request, &request->callback);
@@ -477,10 +477,10 @@ static int execute_model_ov(OVRequestItem *request, Queue *inferenceq)
ret = DNN_GENERIC_ERROR;
goto err;
}
- return DNN_SUCCESS;
+ return 0;
} else {
ret = fill_model_input_ov(ov_model, request);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
status = ie_infer_request_infer(request->infer_request);
@@ -490,7 +490,7 @@ static int execute_model_ov(OVRequestItem *request, Queue *inferenceq)
goto err;
}
infer_completion_callback(request);
- return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_GENERIC_ERROR;
+ return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
}
err:
if (ff_safe_queue_push_back(ov_model->request_queue, request) < 0) {
@@ -537,7 +537,7 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
input->height = input_resizable ? -1 : dims.dims[2];
input->width = input_resizable ? -1 : dims.dims[3];
input->dt = precision_to_datatype(precision);
- return DNN_SUCCESS;
+ return 0;
} else {
//incorrect input name
APPEND_STRING(all_input_names, model_input_name)
@@ -604,7 +604,7 @@ static int extract_lltask_from_task(DNNFunctionType func_type, TaskItem *task, Q
av_freep(&lltask);
return AVERROR(ENOMEM);
}
- return DNN_SUCCESS;
+ return 0;
}
case DFT_ANALYTICS_CLASSIFY:
{
@@ -617,7 +617,7 @@ static int extract_lltask_from_task(DNNFunctionType func_type, TaskItem *task, Q
task->inference_done = 0;
if (!contain_valid_detection_bbox(frame)) {
- return DNN_SUCCESS;
+ return 0;
}
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
@@ -645,7 +645,7 @@ static int extract_lltask_from_task(DNNFunctionType func_type, TaskItem *task, Q
return AVERROR(ENOMEM);
}
}
- return DNN_SUCCESS;
+ return 0;
}
default:
av_assert0(!"should not reach here");
@@ -690,19 +690,19 @@ static int get_output_ov(void *model, const char *input_name, int input_width, i
if (!ov_model->exe_network) {
ret = init_model_ov(ov_model, input_name, output_name);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "Failed init OpenVINO exectuable network or inference request\n");
return ret;
}
}
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, ov_model, input_height, input_width, ctx);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
ret = extract_lltask_from_task(ov_model->model->func_type, &task, ov_model->lltask_queue, NULL);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
goto err;
}
@@ -795,7 +795,7 @@ int ff_dnn_execute_model_ov(const DNNModel *model, DNNExecBaseParams *exec_param
if (!ov_model->exe_network) {
ret = init_model_ov(ov_model, exec_params->input_name, exec_params->output_names[0]);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "Failed init OpenVINO exectuable network or inference request\n");
return ret;
}
@@ -808,7 +808,7 @@ int ff_dnn_execute_model_ov(const DNNModel *model, DNNExecBaseParams *exec_param
}
ret = ff_dnn_fill_task(task, exec_params, ov_model, ctx->options.async, 1);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_freep(&task);
return ret;
}
@@ -820,7 +820,7 @@ int ff_dnn_execute_model_ov(const DNNModel *model, DNNExecBaseParams *exec_param
}
ret = extract_lltask_from_task(model->func_type, task, ov_model->lltask_queue, exec_params);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
return ret;
}
@@ -834,12 +834,12 @@ int ff_dnn_execute_model_ov(const DNNModel *model, DNNExecBaseParams *exec_param
}
ret = execute_model_ov(request, ov_model->lltask_queue);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
return ret;
}
}
- return DNN_SUCCESS;
+ return 0;
}
else {
if (model->func_type == DFT_ANALYTICS_CLASSIFY) {
@@ -879,7 +879,7 @@ int ff_dnn_flush_ov(const DNNModel *model)
if (ff_queue_size(ov_model->lltask_queue) == 0) {
// no pending task need to flush
- return DNN_SUCCESS;
+ return 0;
}
request = ff_safe_queue_pop_front(ov_model->request_queue);
@@ -889,7 +889,7 @@ int ff_dnn_flush_ov(const DNNModel *model)
}
ret = fill_model_input_ov(ov_model, request);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to fill model input.\n");
return ret;
}
@@ -904,7 +904,7 @@ int ff_dnn_flush_ov(const DNNModel *model)
return DNN_GENERIC_ERROR;
}
- return DNN_SUCCESS;
+ return 0;
}
void ff_dnn_free_model_ov(DNNModel **model)
diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c
index cede1286c3..3b5084b67b 100644
--- a/libavfilter/dnn/dnn_backend_tf.c
+++ b/libavfilter/dnn/dnn_backend_tf.c
@@ -151,7 +151,7 @@ static TFInferRequest *tf_create_inference_request(void)
* Start synchronous inference for the TensorFlow model.
*
* @param request pointer to the TFRequestItem for inference
- * @retval DNN_SUCCESS if execution is successful
+ * @retval 0 if execution is successful
* @retval AVERROR(EINVAL) if request is NULL
* @retval DNN_GENERIC_ERROR if execution fails
*/
@@ -181,7 +181,7 @@ static int tf_start_inference(void *args)
}
return DNN_GENERIC_ERROR;
}
- return DNN_SUCCESS;
+ return 0;
}
/**
@@ -220,7 +220,7 @@ static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
av_freep(&lltask);
return AVERROR(ENOMEM);
}
- return DNN_SUCCESS;
+ return 0;
}
static TF_Buffer *read_graph(const char *model_filename)
@@ -311,7 +311,7 @@ static int get_input_tf(void *model, DNNData *input, const char *input_name)
input->width = dims[2];
input->channels = dims[3];
- return DNN_SUCCESS;
+ return 0;
}
static int get_output_tf(void *model, const char *input_name, int input_width, int input_height,
@@ -331,12 +331,12 @@ static int get_output_tf(void *model, const char *input_name, int input_width, i
};
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, tf_model, input_height, input_width, ctx);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
ret = extract_lltask_from_task(&task, tf_model->lltask_queue);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
goto err;
}
@@ -487,7 +487,7 @@ static int load_tf_model(TFModel *tf_model, const char *model_filename)
}
}
- return DNN_SUCCESS;
+ return 0;
}
#define NAME_BUFFER_SIZE 256
@@ -606,7 +606,7 @@ static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Oper
goto err;
}
- return DNN_SUCCESS;
+ return 0;
err:
TF_DeleteTensor(kernel_tensor);
TF_DeleteTensor(biases_tensor);
@@ -635,7 +635,7 @@ static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
return DNN_GENERIC_ERROR;
}
- return DNN_SUCCESS;
+ return 0;
}
static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
@@ -693,7 +693,7 @@ static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
return DNN_GENERIC_ERROR;
}
- return DNN_SUCCESS;
+ return 0;
}
static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
@@ -742,7 +742,7 @@ static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
return DNN_GENERIC_ERROR;
}
- return DNN_SUCCESS;
+ return 0;
}
static int load_native_model(TFModel *tf_model, const char *model_filename)
@@ -808,7 +808,7 @@ static int load_native_model(TFModel *tf_model, const char *model_filename)
for (layer = 0; layer < native_model->layers_num; ++layer){
switch (native_model->layers[layer].type){
case DLT_INPUT:
- layer_add_res = DNN_SUCCESS;
+ layer_add_res = 0;
break;
case DLT_CONV2D:
layer_add_res = add_conv_layer(tf_model, transpose_op, &op,
@@ -830,7 +830,7 @@ static int load_native_model(TFModel *tf_model, const char *model_filename)
CLEANUP_ON_ERROR(tf_model);
}
- if (layer_add_res != DNN_SUCCESS){
+ if (layer_add_res != 0){
CLEANUP_ON_ERROR(tf_model);
}
}
@@ -846,7 +846,7 @@ static int load_native_model(TFModel *tf_model, const char *model_filename)
ff_dnn_free_model_native(&model);
- return DNN_SUCCESS;
+ return 0;
}
DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
@@ -876,8 +876,8 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
goto err;
}
- if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
- if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
+ if (load_tf_model(tf_model, model_filename) != 0){
+ if (load_native_model(tf_model, model_filename) != 0){
goto err;
}
}
@@ -958,7 +958,7 @@ static int fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
request->lltask = lltask;
ret = get_input_tf(tf_model, &input, task->input_name);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
@@ -1032,7 +1032,7 @@ static int fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
infer_request->tf_outputs[i].index = 0;
}
- return DNN_SUCCESS;
+ return 0;
err:
tf_free_request(infer_request);
return ret;
@@ -1106,7 +1106,7 @@ static int execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
if (ff_queue_size(lltask_queue) == 0) {
destroy_request_item(&request);
- return DNN_SUCCESS;
+ return 0;
}
lltask = ff_queue_peek_front(lltask_queue);
@@ -1115,23 +1115,23 @@ static int execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
ctx = &tf_model->ctx;
ret = fill_model_input_tf(tf_model, request);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
if (task->async) {
- if (ff_dnn_start_inference_async(ctx, &request->exec_module) != DNN_SUCCESS) {
+ if (ff_dnn_start_inference_async(ctx, &request->exec_module) != 0) {
goto err;
}
- return DNN_SUCCESS;
+ return 0;
}
else {
ret = tf_start_inference(request);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
goto err;
}
infer_completion_callback(request);
- return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_GENERIC_ERROR;
+ return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
}
err:
tf_free_request(request->infer_request);
@@ -1161,7 +1161,7 @@ int ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_param
}
ret = ff_dnn_fill_task(task, exec_params, tf_model, ctx->options.async, 1);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_freep(&task);
return ret;
}
@@ -1173,7 +1173,7 @@ int ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_param
}
ret = extract_lltask_from_task(task, tf_model->lltask_queue);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
return ret;
}
@@ -1201,7 +1201,7 @@ int ff_dnn_flush_tf(const DNNModel *model)
if (ff_queue_size(tf_model->lltask_queue) == 0) {
// no pending task need to flush
- return DNN_SUCCESS;
+ return 0;
}
request = ff_safe_queue_pop_front(tf_model->request_queue);
@@ -1211,7 +1211,7 @@ int ff_dnn_flush_tf(const DNNModel *model)
}
ret = fill_model_input_tf(tf_model, request);
- if (ret != DNN_SUCCESS) {
+ if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to fill model input.\n");
if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) {
destroy_request_item(&request);
diff --git a/libavfilter/dnn/dnn_io_proc.c b/libavfilter/dnn/dnn_io_proc.c
index 36cc051e5e..7961bf6b95 100644
--- a/libavfilter/dnn/dnn_io_proc.c
+++ b/libavfilter/dnn/dnn_io_proc.c
@@ -57,12 +57,12 @@ int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
(const int[4]){frame->width * 3 * sizeof(float), 0, 0, 0}, 0, frame->height,
(uint8_t * const*)frame->data, frame->linesize);
sws_freeContext(sws_ctx);
- return DNN_SUCCESS;
+ return 0;
case AV_PIX_FMT_GRAYF32:
av_image_copy_plane(frame->data[0], frame->linesize[0],
output->data, bytewidth,
bytewidth, frame->height);
- return DNN_SUCCESS;
+ return 0;
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV444P:
@@ -88,13 +88,13 @@ int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
(const int[4]){frame->width * sizeof(float), 0, 0, 0}, 0, frame->height,
(uint8_t * const*)frame->data, frame->linesize);
sws_freeContext(sws_ctx);
- return DNN_SUCCESS;
+ return 0;
default:
avpriv_report_missing_feature(log_ctx, "%s", av_get_pix_fmt_name(frame->format));
return AVERROR(ENOSYS);
}
- return DNN_SUCCESS;
+ return 0;
}
int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
@@ -169,7 +169,7 @@ int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
return AVERROR(ENOSYS);
}
- return DNN_SUCCESS;
+ return 0;
}
static enum AVPixelFormat get_pixel_format(DNNData *data)
@@ -197,7 +197,7 @@ int ff_frame_to_dnn_classify(AVFrame *frame, DNNData *input, uint32_t bbox_index
uint8_t *bbox_data[4];
struct SwsContext *sws_ctx;
int linesizes[4];
- int ret = DNN_SUCCESS;
+ int ret = 0;
enum AVPixelFormat fmt;
int left, top, width, height;
const AVDetectionBBoxHeader *header;
@@ -255,7 +255,7 @@ int ff_frame_to_dnn_detect(AVFrame *frame, DNNData *input, void *log_ctx)
{
struct SwsContext *sws_ctx;
int linesizes[4];
- int ret = DNN_SUCCESS;
+ int ret = 0;
enum AVPixelFormat fmt = get_pixel_format(input);
sws_ctx = sws_getContext(frame->width, frame->height, frame->format,
input->width, input->height, fmt,