diff options
author | Shubhanshu Saxena <shubhanshu.e01@gmail.com> | 2021-07-05 16:00:53 +0530 |
---|---|---|
committer | Guo Yejun <yejun.guo@intel.com> | 2021-07-11 20:12:27 +0800 |
commit | 68cf14d2b1c0d9bad4da78058172d079136fbddc (patch) | |
tree | 423582d56bd4b59dca954ac3ffbf52a2f651c94a /libavfilter/dnn | |
parent | 79ebdbb9b9da0a86b277e3f85981196c781af398 (diff) | |
download | ffmpeg-68cf14d2b1c0d9bad4da78058172d079136fbddc.tar.gz |
lavfi/dnn_backend_tf: TaskItem Based Inference
This commit uses the common TaskItem and InferenceItem typedefs
for execution in TensorFlow backend.
Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
Diffstat (limited to 'libavfilter/dnn')
-rw-r--r-- | libavfilter/dnn/dnn_backend_tf.c | 134 |
1 files changed, 94 insertions, 40 deletions
diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c index 4c16c2bdb0..8762211ebc 100644 --- a/libavfilter/dnn/dnn_backend_tf.c +++ b/libavfilter/dnn/dnn_backend_tf.c @@ -35,6 +35,7 @@ #include "dnn_backend_native_layer_maximum.h" #include "dnn_io_proc.h" #include "dnn_backend_common.h" +#include "queue.h" #include <tensorflow/c/c_api.h> typedef struct TFOptions{ @@ -52,6 +53,7 @@ typedef struct TFModel{ TF_Graph *graph; TF_Session *session; TF_Status *status; + Queue *inference_queue; } TFModel; #define OFFSET(x) offsetof(TFContext, x) @@ -63,15 +65,29 @@ static const AVOption dnn_tensorflow_options[] = { AVFILTER_DEFINE_CLASS(dnn_tensorflow); -static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, - const char **output_names, uint32_t nb_output, AVFrame *out_frame, - int do_ioproc); +static DNNReturnType execute_model_tf(Queue *inference_queue); static void free_buffer(void *data, size_t length) { av_freep(&data); } +static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue) +{ + InferenceItem *inference = av_malloc(sizeof(*inference)); + if (!inference) { + return DNN_ERROR; + } + task->inference_todo = 1; + task->inference_done = 0; + inference->task = task; + if (ff_queue_push_back(inference_queue, inference) < 0) { + av_freep(&inference); + return DNN_ERROR; + } + return DNN_SUCCESS; +} + static TF_Buffer *read_graph(const char *model_filename) { TF_Buffer *graph_buf; @@ -171,6 +187,7 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu TFContext *ctx = &tf_model->ctx; AVFrame *in_frame = av_frame_alloc(); AVFrame *out_frame = NULL; + TaskItem task; if (!in_frame) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); @@ -187,7 +204,21 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu in_frame->width = input_width; in_frame->height = input_height; - ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0); + task.do_ioproc = 0; + task.async = 0; + task.input_name = input_name; + task.in_frame = in_frame; + task.output_names = &output_name; + task.out_frame = out_frame; + task.model = tf_model; + task.nb_output = 1; + + if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) { + av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); + return DNN_ERROR; + } + + ret = execute_model_tf(tf_model->inference_queue); *output_width = out_frame->width; *output_height = out_frame->height; @@ -723,6 +754,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ } } + tf_model->inference_queue = ff_queue_create(); model->model = tf_model; model->get_input = &get_input_tf; model->get_output = &get_output_tf; @@ -733,26 +765,33 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ return model; } -static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, - const char **output_names, uint32_t nb_output, AVFrame *out_frame, - int do_ioproc) +static DNNReturnType execute_model_tf(Queue *inference_queue) { TF_Output *tf_outputs; - TFModel *tf_model = model->model; - TFContext *ctx = &tf_model->ctx; + TFModel *tf_model; + TFContext *ctx; + InferenceItem *inference; + TaskItem *task; DNNData input, *outputs; TF_Tensor **output_tensors; TF_Output tf_input; TF_Tensor *input_tensor; - if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS) + inference = ff_queue_pop_front(inference_queue); + av_assert0(inference); + task = inference->task; + tf_model = task->model; + ctx = &tf_model->ctx; + + if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) return DNN_ERROR; - input.height = in_frame->height; - input.width = in_frame->width; - tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name); + input.height = task->in_frame->height; + input.width = task->in_frame->width; + + tf_input.oper = TF_GraphOperationByName(tf_model->graph, task->input_name); if (!tf_input.oper){ - av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); + av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); return DNN_ERROR; } tf_input.index = 0; @@ -765,30 +804,30 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n switch (tf_model->model->func_type) { case DFT_PROCESS_FRAME: - if (do_ioproc) { + if (task->do_ioproc) { if (tf_model->model->frame_pre_proc != NULL) { - tf_model->model->frame_pre_proc(in_frame, &input, tf_model->model->filter_ctx); + tf_model->model->frame_pre_proc(task->in_frame, &input, tf_model->model->filter_ctx); } else { - ff_proc_from_frame_to_dnn(in_frame, &input, ctx); + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); } } break; case DFT_ANALYTICS_DETECT: - ff_frame_to_dnn_detect(in_frame, &input, ctx); + ff_frame_to_dnn_detect(task->in_frame, &input, ctx); break; default: avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type); break; } - tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs)); + tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output)); if (tf_outputs == NULL) { TF_DeleteTensor(input_tensor); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \ return DNN_ERROR; } - output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors)); + output_tensors = av_mallocz_array(task->nb_output, sizeof(*output_tensors)); if (!output_tensors) { TF_DeleteTensor(input_tensor); av_freep(&tf_outputs); @@ -796,13 +835,13 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n return DNN_ERROR; } - for (int i = 0; i < nb_output; ++i) { - tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]); + for (int i = 0; i < task->nb_output; ++i) { + tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]); if (!tf_outputs[i].oper) { TF_DeleteTensor(input_tensor); av_freep(&tf_outputs); av_freep(&output_tensors); - av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \ + av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); \ return DNN_ERROR; } tf_outputs[i].index = 0; @@ -810,7 +849,7 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n TF_SessionRun(tf_model->session, NULL, &tf_input, &input_tensor, 1, - tf_outputs, output_tensors, nb_output, + tf_outputs, output_tensors, task->nb_output, NULL, 0, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { TF_DeleteTensor(input_tensor); @@ -820,7 +859,7 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n return DNN_ERROR; } - outputs = av_malloc_array(nb_output, sizeof(*outputs)); + outputs = av_malloc_array(task->nb_output, sizeof(*outputs)); if (!outputs) { TF_DeleteTensor(input_tensor); av_freep(&tf_outputs); @@ -829,36 +868,36 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n return DNN_ERROR; } - for (uint32_t i = 0; i < nb_output; ++i) { + for (uint32_t i = 0; i < task->nb_output; ++i) { outputs[i].height = TF_Dim(output_tensors[i], 1); outputs[i].width = TF_Dim(output_tensors[i], 2); outputs[i].channels = TF_Dim(output_tensors[i], 3); outputs[i].data = TF_TensorData(output_tensors[i]); outputs[i].dt = TF_TensorType(output_tensors[i]); } - switch (model->func_type) { + switch (tf_model->model->func_type) { case DFT_PROCESS_FRAME: //it only support 1 output if it's frame in & frame out - if (do_ioproc) { + if (task->do_ioproc) { if (tf_model->model->frame_post_proc != NULL) { - tf_model->model->frame_post_proc(out_frame, outputs, tf_model->model->filter_ctx); + tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx); } else { - ff_proc_from_dnn_to_frame(out_frame, outputs, ctx); + ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx); } } else { - out_frame->width = outputs[0].width; - out_frame->height = outputs[0].height; + task->out_frame->width = outputs[0].width; + task->out_frame->height = outputs[0].height; } break; case DFT_ANALYTICS_DETECT: - if (!model->detect_post_proc) { + if (!tf_model->model->detect_post_proc) { av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n"); return DNN_ERROR; } - model->detect_post_proc(out_frame, outputs, nb_output, model->filter_ctx); + tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx); break; default: - for (uint32_t i = 0; i < nb_output; ++i) { + for (uint32_t i = 0; i < task->nb_output; ++i) { if (output_tensors[i]) { TF_DeleteTensor(output_tensors[i]); } @@ -871,30 +910,39 @@ static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_n av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); return DNN_ERROR; } - - for (uint32_t i = 0; i < nb_output; ++i) { + for (uint32_t i = 0; i < task->nb_output; ++i) { if (output_tensors[i]) { TF_DeleteTensor(output_tensors[i]); } } + task->inference_done++; TF_DeleteTensor(input_tensor); av_freep(&output_tensors); av_freep(&tf_outputs); av_freep(&outputs); return DNN_SUCCESS; + return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR; } DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params) { TFModel *tf_model = model->model; TFContext *ctx = &tf_model->ctx; + TaskItem task; if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) { - return DNN_ERROR; + return DNN_ERROR; } - return execute_model_tf(model, exec_params->input_name, exec_params->in_frame, - exec_params->output_names, exec_params->nb_output, exec_params->out_frame, 1); + if (ff_dnn_fill_task(&task, exec_params, tf_model, 0, 1) != DNN_SUCCESS) { + return DNN_ERROR; + } + + if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) { + av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); + return DNN_ERROR; + } + return execute_model_tf(tf_model->inference_queue); } void ff_dnn_free_model_tf(DNNModel **model) @@ -903,6 +951,12 @@ void ff_dnn_free_model_tf(DNNModel **model) if (*model){ tf_model = (*model)->model; + while (ff_queue_size(tf_model->inference_queue) != 0) { + InferenceItem *item = ff_queue_pop_front(tf_model->inference_queue); + av_freep(&item); + } + ff_queue_destroy(tf_model->inference_queue); + if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } |