diff options
author | Ronald S. Bultje <rsbultje@gmail.com> | 2010-04-21 18:01:34 +0000 |
---|---|---|
committer | Ronald S. Bultje <rsbultje@gmail.com> | 2010-04-21 18:01:34 +0000 |
commit | 9a32573b49aeade82c250efb8925970fac78f460 (patch) | |
tree | dac30390e8fd5246a0a66f64bdbec211becdd4c8 /libavcodec/wmavoice.c | |
parent | b1078e9fe6b5d8f034d15a6ab91430fd41921fe2 (diff) | |
download | ffmpeg-9a32573b49aeade82c250efb8925970fac78f460.tar.gz |
WMAVoice postfilter.
Originally committed as revision 22938 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/wmavoice.c')
-rw-r--r-- | libavcodec/wmavoice.c | 477 |
1 files changed, 470 insertions, 7 deletions
diff --git a/libavcodec/wmavoice.c b/libavcodec/wmavoice.c index 97dabd2526..04bb6b3420 100644 --- a/libavcodec/wmavoice.c +++ b/libavcodec/wmavoice.c @@ -36,9 +36,13 @@ #include "acelp_filters.h" #include "lsp.h" #include "libavutil/lzo.h" +#include "avfft.h" +#include "fft.h" #define MAX_BLOCKS 8 ///< maximum number of blocks per frame #define MAX_LSPS 16 ///< maximum filter order +#define MAX_LSPS_ALIGN16 16 ///< same as #MAX_LSPS; needs to be multiple + ///< of 16 for ASM input buffer alignment #define MAX_FRAMES 3 ///< maximum number of frames per superframe #define MAX_FRAMESIZE 160 ///< maximum number of samples per frame #define MAX_SIGNAL_HISTORY 416 ///< maximum excitation signal history @@ -140,8 +144,15 @@ typedef struct { int history_nsamples; ///< number of samples in history for signal ///< prediction (through ACB) + /* postfilter specific values */ int do_apf; ///< whether to apply the averaged ///< projection filter (APF) + int denoise_strength; ///< strength of denoising in Wiener filter + ///< [0-11] + int denoise_tilt_corr; ///< Whether to apply tilt correction to the + ///< Wiener filter coefficients (postfilter) + int dc_level; ///< Predicted amount of DC noise, based + ///< on which a DC removal filter is used int lsps; ///< number of LSPs per frame [10 or 16] int lsp_q_mode; ///< defines quantizer defaults [0, 1] @@ -244,6 +255,34 @@ typedef struct { float synth_history[MAX_LSPS]; ///< see #excitation_history /** * @} + * @defgroup post_filter Postfilter values + * Varibales used for postfilter implementation, mostly history for + * smoothing and so on, and context variables for FFT/iFFT. + * @{ + */ + RDFTContext rdft, irdft; ///< contexts for FFT-calculation in the + ///< postfilter (for denoise filter) + DCTContext dct, dst; ///< contexts for phase shift (in Hilbert + ///< transform, part of postfilter) + float sin[511], cos[511]; ///< 8-bit cosine/sine windows over [-pi,pi] + ///< range + float postfilter_agc; ///< gain control memory, used in + ///< #adaptive_gain_control() + float dcf_mem[2]; ///< DC filter history + float zero_exc_pf[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE]; + ///< zero filter output (i.e. excitation) + ///< by postfilter + float denoise_filter_cache[MAX_FRAMESIZE]; + int denoise_filter_cache_size; ///< samples in #denoise_filter_cache + DECLARE_ALIGNED(16, float, tilted_lpcs_pf)[0x80]; + ///< aligned buffer for LPC tilting + DECLARE_ALIGNED(16, float, denoise_coeffs_pf)[0x80]; + ///< aligned buffer for denoise coefficients + DECLARE_ALIGNED(16, float, synth_filter_out_buf)[80 + MAX_LSPS_ALIGN16]; + ///< aligned buffer for postfilter speech + ///< synthesis + /** + * @} */ } WMAVoiceContext; @@ -313,6 +352,28 @@ static av_cold int wmavoice_decode_init(AVCodecContext *ctx) flags = AV_RL32(ctx->extradata + 18); s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align); s->do_apf = flags & 0x1; + if (s->do_apf) { + ff_rdft_init(&s->rdft, 7, DFT_R2C); + ff_rdft_init(&s->irdft, 7, IDFT_C2R); + ff_dct_init(&s->dct, 6, DCT_I); + ff_dct_init(&s->dst, 6, DST_I); + + ff_sine_window_init(s->cos, 256); + memcpy(&s->sin[255], s->cos, 256 * sizeof(s->cos[0])); + for (n = 0; n < 255; n++) { + s->sin[n] = -s->sin[510 - n]; + s->cos[510 - n] = s->cos[n]; + } + } + s->denoise_strength = (flags >> 2) & 0xF; + if (s->denoise_strength >= 12) { + av_log(ctx, AV_LOG_ERROR, + "Invalid denoise filter strength %d (max=11)\n", + s->denoise_strength); + return -1; + } + s->denoise_tilt_corr = !!(flags & 0x40); + s->dc_level = (flags >> 7) & 0xF; s->lsp_q_mode = !!(flags & 0x2000); s->lsp_def_mode = !!(flags & 0x4000); lsp16_flag = flags & 0x1000; @@ -370,6 +431,366 @@ static av_cold int wmavoice_decode_init(AVCodecContext *ctx) } /** + * @defgroup postfilter Postfilter functions + * Postfilter functions (gain control, wiener denoise filter, DC filter, + * kalman smoothening, plus surrounding code to wrap it) + * @{ + */ +/** + * Adaptive gain control (as used in postfilter). + * + * Identical to #ff_adaptive_gain_control() in acelp_vectors.c, except + * that the energy here is calculated using sum(abs(...)), whereas the + * other codecs (e.g. AMR-NB, SIPRO) use sqrt(dotproduct(...)). + * + * @param out output buffer for filtered samples + * @param in input buffer containing the samples as they are after the + * postfilter steps so far + * @param speech_synth input buffer containing speech synth before postfilter + * @param size input buffer size + * @param alpha exponential filter factor + * @param gain_mem pointer to filter memory (single float) + */ +static void adaptive_gain_control(float *out, const float *in, + const float *speech_synth, + int size, float alpha, float *gain_mem) +{ + int i; + float speech_energy = 0.0, postfilter_energy = 0.0, gain_scale_factor; + float mem = *gain_mem; + + for (i = 0; i < size; i++) { + speech_energy += fabsf(speech_synth[i]); + postfilter_energy += fabsf(in[i]); + } + gain_scale_factor = (1.0 - alpha) * speech_energy / postfilter_energy; + + for (i = 0; i < size; i++) { + mem = alpha * mem + gain_scale_factor; + out[i] = in[i] * mem; + } + + *gain_mem = mem; +} + +/** + * Kalman smoothing function. + * + * This function looks back pitch +/- 3 samples back into history to find + * the best fitting curve (that one giving the optimal gain of the two + * signals, i.e. the highest dot product between the two), and then + * uses that signal history to smoothen the output of the speech synthesis + * filter. + * + * @param s WMA Voice decoding context + * @param pitch pitch of the speech signal + * @param in input speech signal + * @param out output pointer for smoothened signal + * @param size input/output buffer size + * + * @returns -1 if no smoothening took place, e.g. because no optimal + * fit could be found, or 0 on success. + */ +static int kalman_smoothen(WMAVoiceContext *s, int pitch, + const float *in, float *out, int size) +{ + int n; + float optimal_gain = 0, dot; + const float *ptr = &in[-FFMAX(s->min_pitch_val, pitch - 3)], + *end = &in[-FFMIN(s->max_pitch_val, pitch + 3)], + *best_hist_ptr; + + /* find best fitting point in history */ + do { + dot = ff_dot_productf(in, ptr, size); + if (dot > optimal_gain) { + optimal_gain = dot; + best_hist_ptr = ptr; + } + } while (--ptr >= end); + + if (optimal_gain <= 0) + return -1; + dot = ff_dot_productf(best_hist_ptr, best_hist_ptr, size); + if (dot <= 0) // would be 1.0 + return -1; + + if (optimal_gain <= dot) { + dot = dot / (dot + 0.6 * optimal_gain); // 0.625-1.000 + } else + dot = 0.625; + + /* actual smoothing */ + for (n = 0; n < size; n++) + out[n] = best_hist_ptr[n] + dot * (in[n] - best_hist_ptr[n]); + + return 0; +} + +/** + * Get the tilt factor of a formant filter from its transfer function + * @see #tilt_factor() in amrnbdec.c, which does essentially the same, + * but somehow (??) it does a speech synthesis filter in the + * middle, which is missing here + * + * @param lpcs LPC coefficients + * @param n_lpcs Size of LPC buffer + * @returns the tilt factor + */ +static float tilt_factor(const float *lpcs, int n_lpcs) +{ + float rh0, rh1; + + rh0 = 1.0 + ff_dot_productf(lpcs, lpcs, n_lpcs); + rh1 = lpcs[0] + ff_dot_productf(lpcs, &lpcs[1], n_lpcs - 1); + + return rh1 / rh0; +} + +/** + * Derive denoise filter coefficients (in real domain) from the LPCs. + */ +static void calc_input_response(WMAVoiceContext *s, float *lpcs, + int fcb_type, float *coeffs, int remainder) +{ + float last_coeff, min = 15.0, max = -15.0; + float irange, angle_mul, gain_mul, range, sq; + int n, idx; + + /* Create frequency power spectrum of speech input (i.e. RDFT of LPCs) */ + ff_rdft_calc(&s->rdft, lpcs); +#define log_range(var, assign) do { \ + float tmp = log10f(assign); var = tmp; \ + max = FFMAX(max, tmp); min = FFMIN(min, tmp); \ + } while (0) + log_range(last_coeff, lpcs[1] * lpcs[1]); + for (n = 1; n < 64; n++) + log_range(lpcs[n], lpcs[n * 2] * lpcs[n * 2] + + lpcs[n * 2 + 1] * lpcs[n * 2 + 1]); + log_range(lpcs[0], lpcs[0] * lpcs[0]); +#undef log_range + range = max - min; + lpcs[64] = last_coeff; + + /* Now, use this spectrum to pick out these frequencies with higher + * (relative) power/energy (which we then take to be "not noise"), + * and set up a table (still in lpc[]) of (relative) gains per frequency. + * These frequencies will be maintained, while others ("noise") will be + * decreased in the filter output. */ + irange = 64.0 / range; // so irange*(max-value) is in the range [0, 63] + gain_mul = range * (fcb_type == FCB_TYPE_HARDCODED ? (5.0 / 13.0) : + (5.0 / 14.7)); + angle_mul = gain_mul * (8.0 * M_LN10 / M_PI); + for (n = 0; n <= 64; n++) { + float pow; + + idx = FFMAX(0, lrint((max - lpcs[n]) * irange) - 1); + pow = wmavoice_denoise_power_table[s->denoise_strength][idx]; + lpcs[n] = angle_mul * pow; + + /* 70.57 =~ 1/log10(1.0331663) */ + idx = (pow * gain_mul - 0.0295) * 70.570526123; + if (idx > 127) { // fallback if index falls outside table range + coeffs[n] = wmavoice_energy_table[127] * + powf(1.0331663, idx - 127); + } else + coeffs[n] = wmavoice_energy_table[FFMAX(0, idx)]; + } + + /* calculate the Hilbert transform of the gains, which we do (since this + * is a sinus input) by doing a phase shift (in theory, H(sin())=cos()). + * Hilbert_Transform(RDFT(x)) = Laplace_Transform(x), which calculates the + * "moment" of the LPCs in this filter. */ + ff_dct_calc(&s->dct, lpcs); + ff_dct_calc(&s->dst, lpcs); + + /* Split out the coefficient indexes into phase/magnitude pairs */ + idx = 255 + av_clip(lpcs[64], -255, 255); + coeffs[0] = coeffs[0] * s->cos[idx]; + idx = 255 + av_clip(lpcs[64] - 2 * lpcs[63], -255, 255); + last_coeff = coeffs[64] * s->cos[idx]; + for (n = 63;; n--) { + idx = 255 + av_clip(-lpcs[64] - 2 * lpcs[n - 1], -255, 255); + coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx]; + coeffs[n * 2] = coeffs[n] * s->cos[idx]; + + if (!--n) break; + + idx = 255 + av_clip( lpcs[64] - 2 * lpcs[n - 1], -255, 255); + coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx]; + coeffs[n * 2] = coeffs[n] * s->cos[idx]; + } + coeffs[1] = last_coeff; + + /* move into real domain */ + ff_rdft_calc(&s->irdft, coeffs); + + /* tilt correction and normalize scale */ + memset(&coeffs[remainder], 0, sizeof(coeffs[0]) * (128 - remainder)); + if (s->denoise_tilt_corr) { + float tilt_mem = 0; + + coeffs[remainder - 1] = 0; + ff_tilt_compensation(&tilt_mem, + -1.8 * tilt_factor(coeffs, remainder - 1), + coeffs, remainder); + } + sq = (1.0 / 64.0) * sqrtf(1 / ff_dot_productf(coeffs, coeffs, remainder)); + for (n = 0; n < remainder; n++) + coeffs[n] *= sq; +} + +/** + * This function applies a Wiener filter on the (noisy) speech signal as + * a means to denoise it. + * + * - take RDFT of LPCs to get the power spectrum of the noise + speech; + * - using this power spectrum, calculate (for each frequency) the Wiener + * filter gain, which depends on the frequency power and desired level + * of noise subtraction (when set too high, this leads to artifacts) + * We can do this symmetrically over the X-axis (so 0-4kHz is the inverse + * of 4-8kHz); + * - by doing a phase shift, calculate the Hilbert transform of this array + * of per-frequency filter-gains to get the filtering coefficients; + * - smoothen/normalize/de-tilt these filter coefficients as desired; + * - take RDFT of noisy sound, apply the coefficients and take its IRDFT + * to get the denoised speech signal; + * - the leftover (i.e. output of the IRDFT on denoised speech data beyond + * the frame boundary) are saved and applied to subsequent frames by an + * overlap-add method (otherwise you get clicking-artifacts). + * + * @param s WMA Voice decoding context + * @param s fcb_type Frame (codebook) type + * @param synth_pf input: the noisy speech signal, output: denoised speech + * data; should be 16-byte aligned (for ASM purposes) + * @param size size of the speech data + * @param lpcs LPCs used to synthesize this frame's speech data + */ +static void wiener_denoise(WMAVoiceContext *s, int fcb_type, + float *synth_pf, int size, + const float *lpcs) +{ + int remainder, lim, n; + + if (fcb_type != FCB_TYPE_SILENCE) { + float *tilted_lpcs = s->tilted_lpcs_pf, + *coeffs = s->denoise_coeffs_pf, tilt_mem = 0; + + tilted_lpcs[0] = 1.0; + memcpy(&tilted_lpcs[1], lpcs, sizeof(lpcs[0]) * s->lsps); + memset(&tilted_lpcs[s->lsps + 1], 0, + sizeof(tilted_lpcs[0]) * (128 - s->lsps - 1)); + ff_tilt_compensation(&tilt_mem, 0.7 * tilt_factor(lpcs, s->lsps), + tilted_lpcs, s->lsps + 2); + + /* The IRDFT output (127 samples for 7-bit filter) beyond the frame + * size is applied to the next frame. All input beyond this is zero, + * and thus all output beyond this will go towards zero, hence we can + * limit to min(size-1, 127-size) as a performance consideration. */ + remainder = FFMIN(127 - size, size - 1); + calc_input_response(s, tilted_lpcs, fcb_type, coeffs, remainder); + + /* apply coefficients (in frequency spectrum domain), i.e. complex + * number multiplication */ + memset(&synth_pf[size], 0, sizeof(synth_pf[0]) * (128 - size)); + ff_rdft_calc(&s->rdft, synth_pf); + ff_rdft_calc(&s->rdft, coeffs); + synth_pf[0] *= coeffs[0]; + synth_pf[1] *= coeffs[1]; + for (n = 1; n < 128; n++) { + float v1 = synth_pf[n * 2], v2 = synth_pf[n * 2 + 1]; + synth_pf[n * 2] = v1 * coeffs[n * 2] - v2 * coeffs[n * 2 + 1]; + synth_pf[n * 2 + 1] = v2 * coeffs[n * 2] + v1 * coeffs[n * 2 + 1]; + } + ff_rdft_calc(&s->irdft, synth_pf); + } + + /* merge filter output with the history of previous runs */ + if (s->denoise_filter_cache_size) { + lim = FFMIN(s->denoise_filter_cache_size, size); + for (n = 0; n < lim; n++) + synth_pf[n] += s->denoise_filter_cache[n]; + s->denoise_filter_cache_size -= lim; + memmove(s->denoise_filter_cache, &s->denoise_filter_cache[size], + sizeof(s->denoise_filter_cache[0]) * s->denoise_filter_cache_size); + } + + /* move remainder of filter output into a cache for future runs */ + if (fcb_type != FCB_TYPE_SILENCE) { + lim = FFMIN(remainder, s->denoise_filter_cache_size); + for (n = 0; n < lim; n++) + s->denoise_filter_cache[n] += synth_pf[size + n]; + if (lim < remainder) { + memcpy(&s->denoise_filter_cache[lim], &synth_pf[size + lim], + sizeof(s->denoise_filter_cache[0]) * (remainder - lim)); + s->denoise_filter_cache_size = remainder; + } + } +} + +/** + * Averaging projection filter, the postfilter used in WMAVoice. + * + * This uses the following steps: + * - A zero-synthesis filter (generate excitation from synth signal) + * - Kalman smoothing on excitation, based on pitch + * - Re-synthesized smoothened output + * - Iterative Wiener denoise filter + * - Adaptive gain filter + * - DC filter + * + * @param s WMAVoice decoding context + * @param synth Speech synthesis output (before postfilter) + * @param samples Output buffer for filtered samples + * @param size Buffer size of synth & samples + * @param lpcs Generated LPCs used for speech synthesis + * @param fcb_type Frame type (silence, hardcoded, AW-pulses or FCB-pulses) + * @param pitch Pitch of the input signal + */ +static void postfilter(WMAVoiceContext *s, const float *synth, + float *samples, int size, + const float *lpcs, float *zero_exc_pf, + int fcb_type, int pitch) +{ + float synth_filter_in_buf[MAX_FRAMESIZE / 2], + *synth_pf = &s->synth_filter_out_buf[MAX_LSPS_ALIGN16], + *synth_filter_in = zero_exc_pf; + + assert(size <= MAX_FRAMESIZE / 2); + + /* generate excitation from input signal */ + ff_celp_lp_zero_synthesis_filterf(zero_exc_pf, lpcs, synth, size, s->lsps); + + if (fcb_type >= FCB_TYPE_AW_PULSES && + !kalman_smoothen(s, pitch, zero_exc_pf, synth_filter_in_buf, size)) + synth_filter_in = synth_filter_in_buf; + + /* re-synthesize speech after smoothening, and keep history */ + ff_celp_lp_synthesis_filterf(synth_pf, lpcs, + synth_filter_in, size, s->lsps); + memcpy(&synth_pf[-s->lsps], &synth_pf[size - s->lsps], + sizeof(synth_pf[0]) * s->lsps); + + wiener_denoise(s, fcb_type, synth_pf, size, lpcs); + + adaptive_gain_control(samples, synth_pf, synth, size, 0.99, + &s->postfilter_agc); + + if (s->dc_level > 8) { + /* remove ultra-low frequency DC noise / highpass filter; + * coefficients are identical to those used in SIPR decoding, + * and very closely resemble those used in AMR-NB decoding. */ + ff_acelp_apply_order_2_transfer_function(samples, samples, + (const float[2]) { -1.99997, 1.0 }, + (const float[2]) { -1.9330735188, 0.93589198496 }, + 0.93980580475, s->dcf_mem, size); + } +} +/** + * @} + */ + +/** * Dequantize LSPs * @param lsps output pointer to the array that will hold the LSPs * @param num number of LSPs to be dequantized @@ -980,6 +1401,7 @@ static void synth_block(WMAVoiceContext *s, GetBitContext *gb, * * @param ctx WMA Voice decoder context * @param gb bit I/O context (s->gb or one for cross-packet superframes) + * @param frame_idx Frame number within superframe [0-2] * @param samples pointer to output sample buffer, has space for at least 160 * samples * @param lsps LSP array @@ -988,7 +1410,7 @@ static void synth_block(WMAVoiceContext *s, GetBitContext *gb, * @param synth target buffer for synthesized speech data * @return 0 on success, <0 on error. */ -static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, +static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, int frame_idx, float *samples, const double *lsps, const double *prev_lsps, float *excitation, float *synth) @@ -1113,10 +1535,23 @@ static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, /* Averaging projection filter, if applicable. Else, just copy samples * from synthesis buffer */ if (s->do_apf) { - // FIXME this is where APF would take place, currently not implemented - av_log_missing_feature(ctx, "APF", 0); - s->do_apf = 0; - } //else + double i_lsps[MAX_LSPS]; + float lpcs[MAX_LSPS]; + + for (n = 0; n < s->lsps; n++) // LSF -> LSP + i_lsps[n] = cos(0.5 * (prev_lsps[n] + lsps[n])); + ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1); + postfilter(s, synth, samples, 80, lpcs, + &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx], + frame_descs[bd_idx].fcb_type, pitch[0]); + + for (n = 0; n < s->lsps; n++) // LSF -> LSP + i_lsps[n] = cos(lsps[n]); + ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1); + postfilter(s, &synth[80], &samples[80], 80, lpcs, + &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx + 80], + frame_descs[bd_idx].fcb_type, pitch[0]); + } else memcpy(samples, synth, 160 * sizeof(synth[0])); /* Cache values for next frame */ @@ -1355,7 +1790,7 @@ static int synth_superframe(AVCodecContext *ctx, stabilize_lsps(lsps[n], s->lsps); } - if ((res = synth_frame(ctx, gb, + if ((res = synth_frame(ctx, gb, n, &samples[n * MAX_FRAMESIZE], lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1], &excitation[s->history_nsamples + n * MAX_FRAMESIZE], @@ -1381,6 +1816,9 @@ static int synth_superframe(AVCodecContext *ctx, s->lsps * sizeof(*synth)); memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE], s->history_nsamples * sizeof(*excitation)); + if (s->do_apf) + memmove(s->zero_exc_pf, &s->zero_exc_pf[MAX_SFRAMESIZE], + s->history_nsamples * sizeof(*s->zero_exc_pf)); return 0; } @@ -1535,11 +1973,26 @@ static int wmavoice_decode_packet(AVCodecContext *ctx, void *data, return size; } +static av_cold int wmavoice_decode_end(AVCodecContext *ctx) +{ + WMAVoiceContext *s = ctx->priv_data; + + if (s->do_apf) { + ff_rdft_end(&s->rdft); + ff_rdft_end(&s->irdft); + ff_dct_end(&s->dct); + ff_dct_end(&s->dst); + } + + return 0; +} + static av_cold void wmavoice_flush(AVCodecContext *ctx) { WMAVoiceContext *s = ctx->priv_data; int n; + s->postfilter_agc = 0; s->sframe_cache_size = 0; s->skip_bits_next = 0; for (n = 0; n < s->lsps; n++) @@ -1550,6 +2003,16 @@ static av_cold void wmavoice_flush(AVCodecContext *ctx) sizeof(*s->synth_history) * MAX_LSPS); memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err)); + + if (s->do_apf) { + memset(&s->synth_filter_out_buf[MAX_LSPS_ALIGN16 - s->lsps], 0, + sizeof(*s->synth_filter_out_buf) * s->lsps); + memset(s->dcf_mem, 0, + sizeof(*s->dcf_mem) * 2); + memset(s->zero_exc_pf, 0, + sizeof(*s->zero_exc_pf) * s->history_nsamples); + memset(s->denoise_filter_cache, 0, sizeof(s->denoise_filter_cache)); + } } AVCodec wmavoice_decoder = { @@ -1559,7 +2022,7 @@ AVCodec wmavoice_decoder = { sizeof(WMAVoiceContext), wmavoice_decode_init, NULL, - NULL, + wmavoice_decode_end, wmavoice_decode_packet, CODEC_CAP_SUBFRAMES, .flush = wmavoice_flush, |