diff options
author | Andreas Rheinhardt <andreas.rheinhardt@outlook.com> | 2024-04-04 04:14:58 +0200 |
---|---|---|
committer | Andreas Rheinhardt <andreas.rheinhardt@outlook.com> | 2024-04-04 16:45:00 +0200 |
commit | db063212c8dde0d6082856935e2b2275230bc365 (patch) | |
tree | 69d3fa02629b16fd8150b04b6266b4b86a0e9087 /libavcodec/vvc/intra_template.c | |
parent | 486a2b964ba4e496ecd821e189d495ad06585abe (diff) | |
download | ffmpeg-db063212c8dde0d6082856935e2b2275230bc365.tar.gz |
avcodec/vvc: Rename vvc_?foo->foo
A namespace is unnecessary here given that all these files
are already in the vvc subfolder.
Reviewed-by: Nuo Mi <nuomi2021@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Diffstat (limited to 'libavcodec/vvc/intra_template.c')
-rw-r--r-- | libavcodec/vvc/intra_template.c | 1015 |
1 files changed, 1015 insertions, 0 deletions
diff --git a/libavcodec/vvc/intra_template.c b/libavcodec/vvc/intra_template.c new file mode 100644 index 0000000000..1a4d5f6f93 --- /dev/null +++ b/libavcodec/vvc/intra_template.c @@ -0,0 +1,1015 @@ +/* + * VVC intra prediction DSP + * + * Copyright (C) 2021-2023 Nuomi + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "libavcodec/bit_depth_template.c" + +#include "intra.h" + +#define POS(x, y) src[(x) + stride * (y)] + +static av_always_inline void FUNC(cclm_linear_pred)(VVCFrameContext *fc, const int x0, const int y0, + const int w, const int h, const pixel* pdsy, const int *a, const int *b, const int *k) +{ + const VVCSPS *sps = fc->ps.sps; + for (int i = 0; i < VVC_MAX_SAMPLE_ARRAYS - 1; i++) { + const int c_idx = i + 1; + const int x = x0 >> sps->hshift[c_idx]; + const int y = y0 >> sps->vshift[c_idx]; + const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); + pixel *src = (pixel*)fc->frame->data[c_idx] + x + y * stride; + for (int y = 0; y < h; y++) { + for (int x = 0; x < w; x++) { + const int dsy = pdsy[y * w + x]; + const int pred = ((dsy * a[i]) >> k[i]) + b[i]; + POS(x, y) = CLIP(pred); + } + } + } +} + +#define MAX_PICK_POS 4 +#define TOP 0 +#define LEFT 1 + +static av_always_inline void FUNC(cclm_get_params_default)(int *a, int *b, int *k) +{ + for (int i = 0; i < 2; i++) { + a[i] = k[i] = 0; + b[i] = 1 << (BIT_DEPTH - 1); + } +} + +static av_always_inline int FUNC(cclm_get_select_pos)(const VVCLocalContext *lc, + const int x, const int y, const int w, const int h, const int avail_t, const int avail_l, + int cnt[2], int pos[2][MAX_PICK_POS]) +{ + const enum IntraPredMode mode = lc->cu->intra_pred_mode_c; + const int num_is4 = !avail_t || !avail_l || mode != INTRA_LT_CCLM; + int num_samp[2]; + + if (mode == INTRA_LT_CCLM) { + num_samp[TOP] = avail_t ? w : 0; + num_samp[LEFT] = avail_l ? h : 0; + } else { + num_samp[TOP] = (avail_t && mode == INTRA_T_CCLM) ? ff_vvc_get_top_available(lc, x, y, w + FFMIN(w, h), 1) : 0; + num_samp[LEFT] = (avail_l && mode == INTRA_L_CCLM) ? ff_vvc_get_left_available(lc, x, y, h + FFMIN(w, h), 1) : 0; + } + if (!num_samp[TOP] && !num_samp[LEFT]) { + return 0; + } + for (int i = TOP; i <= LEFT; i++) { + const int start = num_samp[i] >> (2 + num_is4); + const int step = FFMAX(1, num_samp[i] >> (1 + num_is4)) ; + cnt[i] = FFMIN(num_samp[i], (1 + num_is4) << 1); + for (int c = 0; c < cnt[i]; c++) + pos[i][c] = start + c * step; + } + return 1; +} + +static av_always_inline void FUNC(cclm_select_luma_444)(const pixel *src, const int step, + const int cnt, const int pos[MAX_PICK_POS], pixel *sel_luma) +{ + for (int i = 0; i < cnt; i++) + sel_luma[i] = src[pos[i] * step]; +} + +static av_always_inline void FUNC(cclm_select_luma)(const VVCFrameContext *fc, + const int x0, const int y0, const int avail_t, const int avail_l, const int cnt[2], const int pos[2][MAX_PICK_POS], + pixel *sel_luma) +{ + const VVCSPS *sps = fc->ps.sps; + + const int b_ctu_boundary = !av_mod_uintp2(y0, sps->ctb_log2_size_y); + const int hs = sps->hshift[1]; + const int vs = sps->vshift[1]; + const ptrdiff_t stride = fc->frame->linesize[0] / sizeof(pixel); + + if (!hs && !vs) { + const pixel* src = (pixel*)fc->frame->data[0] + x0 + y0 * stride; + FUNC(cclm_select_luma_444)(src - avail_t * stride, 1, cnt[TOP], pos[TOP], sel_luma); + FUNC(cclm_select_luma_444)(src - avail_l, stride, cnt[LEFT], pos[LEFT], sel_luma + cnt[TOP]); + } else { + // top + if (vs && !b_ctu_boundary) { + const pixel *source = (pixel *)fc->frame->data[0] + x0 + (y0 - 2) * stride; + for (int i = 0; i < cnt[TOP]; i++) { + const int x = pos[TOP][i] << hs; + const pixel *src = source + x; + const int has_left = x || avail_l; + const pixel l = has_left ? POS(-1, 0) : POS(0, 0); + if (sps->r->sps_chroma_vertical_collocated_flag) { + sel_luma[i] = (POS(0, -1) + l + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3; + } else { + const pixel l1 = has_left ? POS(-1, 1) : POS(0, 1); + sel_luma[i] = (l + l1 + 2 * (POS(0, 0) + POS(0, 1)) + POS(1, 0) + POS(1, 1) + 4) >> 3; + } + } + } else { + const pixel *source = (pixel*)fc->frame->data[0] + x0 + (y0 - 1) * stride; + for (int i = 0; i < cnt[TOP]; i++) { + const int x = pos[TOP][i] << hs; + const pixel *src = source + x; + const int has_left = x || avail_l; + const pixel l = has_left ? POS(-1, 0) : POS(0, 0); + sel_luma[i] = (l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2; + } + } + + // left + { + const pixel *left; + const pixel *source = (pixel *)fc->frame->data[0] + x0 + y0 * stride - (1 + hs) * avail_l; + left = source - avail_l; + + for (int i = 0; i < cnt[LEFT]; i++) { + const int y = pos[LEFT][i] << vs; + const int offset = y * stride; + const pixel *l = left + offset; + const pixel *src = source + offset; + pixel pred; + if (!vs) { + pred = (*l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2; + } else { + if (sps->r->sps_chroma_vertical_collocated_flag) { + const int has_top = y || avail_t; + const pixel t = has_top ? POS(0, -1) : POS(0, 0); + pred = (*l + t + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3; + } else { + pred = (*l + *(l + stride) + 2 * POS(0, 0) + 2 * POS(0, 1) + POS(1, 0) + POS(1, 1) + 4) >> 3; + } + } + sel_luma[i + cnt[TOP]] = pred; + } + } + } +} + +static av_always_inline void FUNC(cclm_select_chroma)(const VVCFrameContext *fc, + const int x, const int y, const int cnt[2], const int pos[2][MAX_PICK_POS], + pixel sel[][MAX_PICK_POS * 2]) +{ + for (int c_idx = 1; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { + const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); + + //top + const pixel *src = (pixel*)fc->frame->data[c_idx] + x + (y - 1)* stride; + for (int i = 0; i < cnt[TOP]; i++) { + sel[c_idx][i] = src[pos[TOP][i]]; + } + + //left + src = (pixel*)fc->frame->data[c_idx] + x - 1 + y * stride; + for (int i = 0; i < cnt[LEFT]; i++) { + sel[c_idx][i + cnt[TOP]] = src[pos[LEFT][i] * stride]; + } + } +} + +static av_always_inline int FUNC(cclm_select_samples)(const VVCLocalContext *lc, + const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l, + pixel sel[][MAX_PICK_POS * 2]) +{ + const VVCFrameContext *fc = lc->fc; + const VVCSPS *sps = fc->ps.sps; + const int x = x0 >> sps->hshift[1]; + const int y = y0 >> sps->vshift[1]; + int cnt[2], pos[2][MAX_PICK_POS]; + + if (!FUNC(cclm_get_select_pos)(lc, x, y, w, h, avail_t, avail_l, cnt, pos)) + return 0; + + FUNC(cclm_select_luma)(fc, x0, y0, avail_t, avail_l, cnt, pos, sel[LUMA]); + FUNC(cclm_select_chroma)(fc, x, y, cnt, pos, sel); + + if (cnt[TOP] + cnt[LEFT] == 2) { + for (int c_idx = 0; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { + sel[c_idx][3] = sel[c_idx][0]; + sel[c_idx][2] = sel[c_idx][1]; + sel[c_idx][0] = sel[c_idx][1]; + sel[c_idx][1] = sel[c_idx][3]; + } + } + return 1; +} + +static av_always_inline void FUNC(cclm_get_min_max)( + const pixel sel[][MAX_PICK_POS * 2], int *min, int *max) +{ + int min_grp_idx[] = { 0, 2 }; + int max_grp_idx[] = { 1, 3 }; + + if (sel[LUMA][min_grp_idx[0]] > sel[LUMA][min_grp_idx[1]]) + FFSWAP(int, min_grp_idx[0], min_grp_idx[1]); + if (sel[LUMA][max_grp_idx[0]] > sel[LUMA][max_grp_idx[1]]) + FFSWAP(int, max_grp_idx[0], max_grp_idx[1]); + if (sel[LUMA][min_grp_idx[0]] > sel[LUMA][max_grp_idx[1]]) { + FFSWAP(int, min_grp_idx[0], max_grp_idx[0]); + FFSWAP(int, min_grp_idx[1], max_grp_idx[1]); + } + if (sel[LUMA][min_grp_idx[1]] > sel[LUMA][max_grp_idx[0]]) + FFSWAP(int, min_grp_idx[1], max_grp_idx[0]); + for (int c_idx = 0; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { + max[c_idx] = (sel[c_idx][max_grp_idx[0]] + sel[c_idx][max_grp_idx[1]] + 1) >> 1; + min[c_idx] = (sel[c_idx][min_grp_idx[0]] + sel[c_idx][min_grp_idx[1]] + 1) >> 1; + } +} + +static av_always_inline void FUNC(cclm_get_params)(const VVCLocalContext *lc, + const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l, + int *a, int *b, int *k) +{ + pixel sel[VVC_MAX_SAMPLE_ARRAYS][MAX_PICK_POS * 2]; + int max[VVC_MAX_SAMPLE_ARRAYS], min[VVC_MAX_SAMPLE_ARRAYS]; + int diff; + + if (!FUNC(cclm_select_samples)(lc, x0, y0, w, h, avail_t, avail_l, sel)) { + FUNC(cclm_get_params_default)(a, b, k); + return; + } + + FUNC(cclm_get_min_max)(sel, min, max); + + diff = max[LUMA] - min[LUMA]; + if (diff == 0) { + for (int i = 0; i < 2; i++) { + a[i] = k[i] = 0; + b[i] = min[i + 1]; + } + return; + } + for (int i = 0; i < 2; i++) { + const static int div_sig_table[] = {0, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0}; + const int diffc = max[i + 1] - min[i + 1]; + int x = av_log2(diff); + int y, v, sign, add; + const int norm_diff = ((diff << 4) >> x) & 15; + x += (norm_diff) ? 1 : 0; + y = abs(diffc) > 0 ? av_log2(abs(diffc)) + 1 : 0; + v = div_sig_table[norm_diff] | 8; + add = (1 << y >> 1); + a[i] = (diffc * v + add) >> y; + k[i] = FFMAX(1, 3 + x -y); + sign = a[i] < 0 ? -1 : (a[i] > 0); + a[i] = ((3 + x - y) < 1) ? sign * 15 : a[i]; + b[i] = min[i + 1] - ((a[i] * min[0]) >> k[i]); + } + +} + +#undef TOP +#undef LEFT + +static av_always_inline void FUNC(cclm_get_luma_rec_pixels)(const VVCFrameContext *fc, + const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l, + pixel *pdsy) +{ + const int hs = fc->ps.sps->hshift[1]; + const int vs = fc->ps.sps->vshift[1]; + const ptrdiff_t stride = fc->frame->linesize[0] / sizeof(pixel); + const pixel *source = (pixel*)fc->frame->data[0] + x0 + y0 * stride; + const pixel *left = source - avail_l; + const pixel *top = source - avail_t * stride; + + const VVCSPS *sps = fc->ps.sps; + if (!hs && !vs) { + for (int i = 0; i < h; i++) + memcpy(pdsy + i * w, source + i * stride, w * sizeof(pixel)); + return; + } + for (int i = 0; i < h; i++) { + const pixel *src = source; + const pixel *l = left; + const pixel *t = top; + if (!vs) { + for (int j = 0; j < w; j++) { + pixel pred = (*l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2; + pdsy[i * w + j] = pred; + src += 2; + l = src - 1; + } + + } else { + if (sps->r->sps_chroma_vertical_collocated_flag) { + for (int j = 0; j < w; j++) { + pixel pred = (*l + *t + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3; + pdsy[i * w + j] = pred; + src += 2; + t += 2; + l = src - 1; + } + } else { + for (int j = 0; j < w; j++) { + pixel pred = (*l + *(l + stride) + 2 * POS(0, 0) + 2 * POS(0, 1) + POS(1, 0) + POS(1, 1) + 4) >> 3; + + pdsy[i * w + j] = pred; + src += 2; + l = src - 1; + } + } + } + source += (stride << vs); + left += (stride << vs); + top = source - stride; + } +} + +static av_always_inline void FUNC(cclm_pred_default)(VVCFrameContext *fc, + const int x, const int y, const int w, const int h, const int avail_t, const int avail_l) +{ + for (int c_idx = 1; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { + const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); + pixel *dst = (pixel*)fc->frame->data[c_idx] + x + y * stride; + for (int i = 0; i < h; i++) { + for (int j = 0; j < w; j++) { + dst[j] = 1 << (BIT_DEPTH - 1); + } + dst += stride; + } + } +} + +//8.4.5.2.14 Specification of INTRA_LT_CCLM, INTRA_L_CCLM and INTRA_T_CCLM intra prediction mode +static void FUNC(intra_cclm_pred)(const VVCLocalContext *lc, const int x0, const int y0, + const int width, const int height) +{ + VVCFrameContext *fc = lc->fc; + const VVCSPS *sps = fc->ps.sps; + const int avail_t = ff_vvc_get_top_available(lc, x0, y0, 1, 0); + const int avail_l = ff_vvc_get_left_available(lc, x0, y0, 1, 0); + const int hs = sps->hshift[1]; + const int vs = sps->vshift[1]; + const int x = x0 >> hs; + const int y = y0 >> vs; + const int w = width >> hs; + const int h = height >> vs; + int a[2], b[2], k[2]; + + pixel dsy[MAX_TB_SIZE * MAX_TB_SIZE]; + if (!avail_t && !avail_l) { + FUNC(cclm_pred_default)(fc, x, y, w, h, avail_t, avail_l); + return; + } + FUNC(cclm_get_luma_rec_pixels)(fc, x0, y0, w, h, avail_t, avail_l, dsy); + FUNC(cclm_get_params) (lc, x0, y0, w, h, avail_t, avail_l, a, b, k); + FUNC(cclm_linear_pred)(fc, x0, y0, w, h, dsy, a, b, k); +} + +static int FUNC(lmcs_sum_samples)(const pixel *start, ptrdiff_t stride, const int avail, const int target_size) +{ + const int size = FFMIN(avail, target_size); + int sum = 0; + for (int i = 0; i < size; i++) { + sum += *start; + start += stride; + } + sum += *(start - stride) * (target_size - size); + return sum; +} + +// 8.7.5.3 Picture reconstruction with luma dependent chroma residual scaling process for chroma samples +static int FUNC(lmcs_derive_chroma_scale)(VVCLocalContext *lc, const int x0, const int y0) +{ + VVCFrameContext *fc = lc->fc; + const VVCLMCS *lmcs = &fc->ps.lmcs; + const int size_y = FFMIN(fc->ps.sps->ctb_size_y, 64); + + const int x = x0 & ~(size_y - 1); + const int y = y0 & ~(size_y - 1); + if (lc->lmcs.x_vpdu != x || lc->lmcs.y_vpdu != y) { + int cnt = 0, luma = 0, i; + const pixel *src = (const pixel *)(fc->frame->data[LUMA] + y * fc->frame->linesize[LUMA] + (x << fc->ps.sps->pixel_shift)); + const ptrdiff_t stride = fc->frame->linesize[LUMA] / sizeof(pixel); + const int avail_t = ff_vvc_get_top_available (lc, x, y, 1, 0); + const int avail_l = ff_vvc_get_left_available(lc, x, y, 1, 0); + if (avail_l) { + luma += FUNC(lmcs_sum_samples)(src - 1, stride, fc->ps.pps->height - y, size_y); + cnt = size_y; + } + if (avail_t) { + luma += FUNC(lmcs_sum_samples)(src - stride, 1, fc->ps.pps->width - x, size_y); + cnt += size_y; + } + if (cnt) + luma = (luma + (cnt >> 1)) >> av_log2(cnt); + else + luma = 1 << (BIT_DEPTH - 1); + + for (i = lmcs->min_bin_idx; i <= lmcs->max_bin_idx; i++) { + if (luma < lmcs->pivot[i + 1]) + break; + } + i = FFMIN(i, LMCS_MAX_BIN_SIZE - 1); + + lc->lmcs.chroma_scale = lmcs->chroma_scale_coeff[i]; + lc->lmcs.x_vpdu = x; + lc->lmcs.y_vpdu = y; + } + return lc->lmcs.chroma_scale; +} + +// 8.7.5.3 Picture reconstruction with luma dependent chroma residual scaling process for chroma samples +static void FUNC(lmcs_scale_chroma)(VVCLocalContext *lc, int *dst, const int *coeff, + const int width, const int height, const int x0_cu, const int y0_cu) +{ + const int chroma_scale = FUNC(lmcs_derive_chroma_scale)(lc, x0_cu, y0_cu); + + for (int y = 0; y < height; y++) { + for (int x = 0; x < width; x++) { + const int c = av_clip_intp2(*coeff, BIT_DEPTH); + + if (c > 0) + *dst = (c * chroma_scale + (1 << 10)) >> 11; + else + *dst = -((-c * chroma_scale + (1 << 10)) >> 11); + coeff++; + dst++; + } + } +} + +static av_always_inline void FUNC(ref_filter)(const pixel *left, const pixel *top, + pixel *filtered_left, pixel *filtered_top, const int left_size, const int top_size, + const int unfilter_last_one) +{ + filtered_left[-1] = filtered_top[-1] = (left[0] + 2 * left[-1] + top[0] + 2 ) >> 2; + for (int i = 0; i < left_size - unfilter_last_one; i++) { + filtered_left[i] = (left[i- 1] + 2 * left[i] + left[i + 1] + 2) >> 2; + } + for (int i = 0; i < top_size - unfilter_last_one; i++) { + filtered_top[i] = (top[i-1] + 2 * top[i] + top[i + 1] + 2) >> 2; + } + if (unfilter_last_one) { + filtered_top[top_size - 1] = top[top_size - 1]; + filtered_left[left_size - 1] = left[left_size - 1]; + } +} + +static av_always_inline void FUNC(prepare_intra_edge_params)(const VVCLocalContext *lc, + IntraEdgeParams* edge, const pixel *src, const ptrdiff_t stride, + const int x, int y, int w, int h, int c_idx, const int is_intra_mip, + const int mode, const int ref_idx, const int need_pdpc) +{ +#define EXTEND(ptr, val, len) \ +do { \ + for (i = 0; i < (len); i++) \ + *(ptr + i) = val; \ +} while (0) + const CodingUnit *cu = lc->cu; + const int ref_filter_flag = is_intra_mip ? 0 : ff_vvc_ref_filter_flag_derive(mode); + const int filter_flag = !ref_idx && w * h > 32 && !c_idx && + cu->isp_split_type == ISP_NO_SPLIT && ref_filter_flag; + int cand_up_left = lc->na.cand_up_left; + pixel *left = (pixel*)edge->left_array + MAX_TB_SIZE + 3; + pixel *top = (pixel*)edge->top_array + MAX_TB_SIZE + 3; + pixel *filtered_left = (pixel*)edge->filtered_left_array + MAX_TB_SIZE + 3; + pixel *filtered_top = (pixel*)edge->filtered_top_array + MAX_TB_SIZE + 3; + const int ref_line = ref_idx == 3 ? -4 : (-1 - ref_idx); + int left_size, top_size, unfilter_left_size, unfilter_top_size; + int left_available, top_available; + int refw, refh; + int intra_pred_angle, inv_angle; + int i; + + if (is_intra_mip || mode == INTRA_PLANAR) { + left_size = h + 1; + top_size = w + 1; + unfilter_left_size = left_size + filter_flag; + unfilter_top_size = top_size + filter_flag; + } else if (mode == INTRA_DC) { + unfilter_left_size = left_size = h; + unfilter_top_size = top_size = w; + } else if (mode == INTRA_VERT) { + //we may need 1 pixel to predict the top left. + unfilter_left_size = left_size = need_pdpc ? h : 1; + unfilter_top_size = top_size = w; + } else if (mode == INTRA_HORZ) { + unfilter_left_size = left_size = h; + //even need_pdpc == 0, we may need 1 pixel to predict the top left. + unfilter_top_size = top_size = need_pdpc ? w : 1; + } else { + if (cu->isp_split_type == ISP_NO_SPLIT || c_idx) { + refw = w * 2; + refh = h * 2; + } else { + refw = cu->cb_width + w; + refh = cu->cb_height + h; + } + intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode); + inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle); + unfilter_top_size = top_size = refw; + unfilter_left_size = left_size = refh; + } + + left_available = ff_vvc_get_left_available(lc, x, y, unfilter_left_size, c_idx); + for (i = 0; i < left_available; i++) + left[i] = POS(ref_line, i); + + top_available = ff_vvc_get_top_available(lc, x, y, unfilter_top_size, c_idx); + memcpy(top, src + ref_line * stride, top_available * sizeof(pixel)); + + for (int i = -1; i >= ref_line; i--) { + if (cand_up_left) { + left[i] = POS(ref_line, i); + top[i] = POS(i, ref_line); + } else if (left_available) { + left[i] = top[i] = left[0]; + } else if (top_available) { + left[i] = top[i] = top[0]; + } else { + left[i] = top[i] = 1 << (BIT_DEPTH - 1); + } + } + + EXTEND(top + top_available, top[top_available-1], unfilter_top_size - top_available); + EXTEND(left + left_available, left[left_available-1], unfilter_left_size - left_available); + + if (ref_filter_flag) { + if (!ref_idx && w * h > 32 && !c_idx && cu->isp_split_type == ISP_NO_SPLIT ) { + const int unfilter_last_one = left_size == unfilter_left_size; + FUNC(ref_filter)(left, top, filtered_left, filtered_top, unfilter_left_size, unfilter_top_size, unfilter_last_one); + left = filtered_left; + top = filtered_top; + } + } + if (!is_intra_mip && mode != INTRA_PLANAR && mode != INTRA_DC) { + if (ref_filter_flag || ref_idx || cu->isp_split_type != ISP_NO_SPLIT) { + edge->filter_flag = 0; + } else { + const int min_dist_ver_hor = FFMIN(abs(mode - 50), abs(mode - 18)); + const int intra_hor_ver_dist_thres[] = {24, 14, 2, 0, 0}; + const int ntbs = (av_log2(w) + av_log2(h)) >> 1; + edge->filter_flag = min_dist_ver_hor > intra_hor_ver_dist_thres[ntbs - 2]; + } + + if (mode != INTRA_VERT && mode != INTRA_HORZ) { + if (mode >= INTRA_DIAG) { + if (intra_pred_angle < 0) { + pixel *p = top - (ref_idx + 1); + for (int x = -h; x < 0; x++) { + const int idx = -1 - ref_idx + FFMIN((x*inv_angle + 256) >> 9, h); + p[x] = left[idx]; + } + } else { + for (int i = refw; i <= refw + FFMAX(1, w/h) * ref_idx + 1; i++) + top[i] = top[refw - 1]; + } + } else { + if (intra_pred_angle < 0) { + pixel *p = left - (ref_idx + 1); + for (int x = -w; x < 0; x++) { + const int idx = -1 - ref_idx + FFMIN((x*inv_angle + 256) >> 9, w); + p[x] = top[idx]; + } + } else { + for (int i = refh; i <= refh + FFMAX(1, h/w) * ref_idx + 1; i++) + left[i] = left[refh - 1]; + } + } + } + } + edge->left = (uint8_t*)left; + edge->top = (uint8_t*)top; +} + +//8.4.1 General decoding process for coding units coded in intra prediction mode +static void FUNC(intra_pred)(const VVCLocalContext *lc, int x0, int y0, + const int width, const int height, int c_idx) +{ + VVCFrameContext *fc = lc->fc; + const VVCSPS *sps = fc->ps.sps; + const VVCPPS *pps = fc->ps.pps; + const CodingUnit *cu = lc->cu; + const int log2_min_cb_size = sps->min_cb_log2_size_y; + const int min_cb_width = pps->min_cb_width; + const int x_cb = x0 >> log2_min_cb_size; + const int y_cb = y0 >> log2_min_cb_size; + + const int hshift = fc->ps.sps->hshift[c_idx]; + const int vshift = fc->ps.sps->vshift[c_idx]; + const int x = x0 >> hshift; + const int y = y0 >> vshift; + const int w = width >> hshift; + const int h = height >> vshift; + const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); + + const int pred_mode = c_idx ? cu->intra_pred_mode_c : cu->intra_pred_mode_y; + const int mode = ff_vvc_wide_angle_mode_mapping(cu, w, h, c_idx, pred_mode); + + const int intra_mip_flag = SAMPLE_CTB(fc->tab.imf, x_cb, y_cb); + const int is_intra_mip = intra_mip_flag && (!c_idx || cu->mip_chroma_direct_flag); + const int ref_idx = c_idx ? 0 : cu->intra_luma_ref_idx; + const int need_pdpc = ff_vvc_need_pdpc(w, h, cu->bdpcm_flag[c_idx], mode, ref_idx); + + + pixel *src = (pixel*)fc->frame->data[c_idx] + x + y * stride; + IntraEdgeParams edge; + + FUNC(prepare_intra_edge_params)(lc, &edge, src, stride, x, y, w, h, c_idx, is_intra_mip, mode, ref_idx, need_pdpc); + + if (is_intra_mip) { + int intra_mip_transposed_flag = SAMPLE_CTB(fc->tab.imtf, x_cb, y_cb); + int intra_mip_mode = SAMPLE_CTB(fc->tab.imm, x_cb, y_cb); + + fc->vvcdsp.intra.pred_mip((uint8_t *)src, edge.top, edge.left, + w, h, stride, intra_mip_mode, intra_mip_transposed_flag); + } else if (mode == INTRA_PLANAR) { + fc->vvcdsp.intra.pred_planar((uint8_t *)src, edge.top, edge.left, w, h, stride); + } else if (mode == INTRA_DC) { + fc->vvcdsp.intra.pred_dc((uint8_t *)src, edge.top, edge.left, w, h, stride); + } else if (mode == INTRA_VERT) { + fc->vvcdsp.intra.pred_v((uint8_t *)src, edge.top, w, h, stride); + } else if (mode == INTRA_HORZ) { + fc->vvcdsp.intra.pred_h((uint8_t *)src, edge.left, w, h, stride); + } else { + if (mode >= INTRA_DIAG) { + fc->vvcdsp.intra.pred_angular_v((uint8_t *)src, edge.top, edge.left, + w, h, stride, c_idx, mode, ref_idx, + edge.filter_flag, need_pdpc); + } else { + fc->vvcdsp.intra.pred_angular_h((uint8_t *)src, edge.top, edge.left, + w, h, stride, c_idx, mode, ref_idx, + edge.filter_flag, need_pdpc); + } + } + if (need_pdpc) { + //8.4.5.2.15 Position-dependent intra prediction sample filtering process + if (!is_intra_mip && (mode == INTRA_PLANAR || mode == INTRA_DC || + mode == INTRA_VERT || mode == INTRA_HORZ)) { + const int scale = (av_log2(w) + av_log2(h) - 2) >> 2; + const pixel *left = (pixel*)edge.left; + const pixel *top = (pixel*)edge.top; + for (int y = 0; y < h; y++) { + for (int x = 0; x < w; x++) { + int l, t, wl, wt, pred; + pixel val; + if (mode == INTRA_PLANAR || mode == INTRA_DC) { + l = left[y]; + t = top[x]; + wl = 32 >> FFMIN((x << 1) >> scale, 31); + wt = 32 >> FFMIN((y << 1) >> scale, 31); + } else { + l = left[y] - left[-1] + POS(x,y); + t = top[x] - top[-1] + POS(x,y); + wl = (mode == INTRA_VERT) ? (32 >> FFMIN((x << 1) >> scale, 31)) : 0; + wt = (mode == INTRA_HORZ) ? (32 >> FFMIN((y << 1) >> scale, 31)) : 0; + } + val = POS(x, y); + pred = val + ((wl * (l - val) + wt * (t - val) + 32) >> 6); + POS(x, y) = CLIP(pred); + } + } + } + } +} + +//8.4.5.2.11 Specification of INTRA_PLANAR intra prediction mode +static av_always_inline void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top, + const uint8_t *_left, const int w, const int h, const ptrdiff_t stride) +{ + int x, y; + pixel *src = (pixel *)_src; + const pixel *top = (const pixel *)_top; + const pixel *left = (const pixel *)_left; + const int logw = av_log2(w); + const int logh = av_log2(h); + const int size = w * h; + const int shift = (logw + logh + 1); + for (y = 0; y < h; y++) { + for (x = 0; x < w; x++) { + const int pred_v = ((h - 1 - y) * top[x] + (y + 1) * left[h]) << logw; + const int pred_h = ((w - 1 - x) * left[y] + (x + 1) * top[w]) << logh; + const int pred = (pred_v + pred_h + size) >> shift; + POS(x, y) = pred; + } + } +} + +//8.4.5.2.3 MIP boundary sample downsampling process +static av_always_inline void FUNC(mip_downsampling)(int *reduced, const int boundary_size, + const pixel *ref, const int n_tb_s) +{ + const int b_dwn = n_tb_s / boundary_size; + const int log2 = av_log2(b_dwn); + + if (boundary_size == n_tb_s) { + for (int i = 0; i < n_tb_s; i++) + reduced[i] = ref[i]; + return; + } + for (int i = 0; i < boundary_size; i++) { + int r; + r = *ref++; + for (int j = 1; j < b_dwn; j++) + r += *ref++; + reduced[i] = (r + (1 << (log2 - 1))) >> log2; + } +} + +static av_always_inline void FUNC(mip_reduced_pred)(pixel *src, const ptrdiff_t stride, + const int up_hor, const int up_ver, const int pred_size, const int *reduced, const int reduced_size, + const int ow, const int temp0, const uint8_t *matrix, int is_transposed) +{ + src = &POS(up_hor - 1, up_ver - 1); + for (int y = 0; y < pred_size; y++) { + for (int x = 0; x < pred_size; x++) { + int pred = 0; + for (int i = 0; i < reduced_size; i++) + pred += reduced[i] * matrix[i]; + matrix += reduced_size; + pred = ((pred + ow) >> 6) + temp0; + pred = av_clip(pred, 0, (1<<BIT_DEPTH) - 1); + if (is_transposed) + POS(y * up_hor, x * up_ver) = pred; + else + POS(x * up_hor, y * up_ver) = pred; + } + } +} + +static av_always_inline void FUNC(mip_upsampling_1d)(pixel *dst, const int dst_step, const int dst_stride, const int dst_height, const int factor, + const pixel *boundary, const int boundary_step, const int pred_size) +{ + + for (int i = 0; i < dst_height; i++) { + const pixel *before = boundary; + const pixel *after = dst - dst_step; + pixel *d = dst; + for (int j = 0; j < pred_size; j++) { + after += dst_step * factor; + for (int k = 1; k < factor; k++) { + int mid = (factor - k) * (*before) + k * (*after); + *d = (mid + factor / 2) / factor; + d += dst_step; + } + before = after; + d += dst_step; + } + boundary += boundary_step; + dst += dst_stride; + } +} + +//8.4.5.2.2 Matrix-based intra sample prediction +static av_always_inline void FUNC(pred_mip)(uint8_t *_src, const uint8_t *_top, + const uint8_t *_left, const int w, const int h, const ptrdiff_t stride, + int mode_id, int is_transposed) +{ + pixel *src = (pixel *)_src; + const pixel *top = (const pixel *)_top; + const pixel *left = (const pixel *)_left; + + const int size_id = ff_vvc_get_mip_size_id(w, h); + static const int boundary_sizes[] = {2, 4, 4}; + static const int pred_sizes[] = {4, 4, 8}; + const int boundary_size = boundary_sizes[size_id]; + const int pred_size = pred_sizes[size_id]; + const int in_size = 2 * boundary_size - ((size_id == 2) ? 1 : 0); + const uint8_t *matrix = ff_vvc_get_mip_matrix(size_id, mode_id); + const int up_hor = w / pred_size; + const int up_ver = h / pred_size; + + int reduced[16]; + int *red_t = reduced; + int *red_l = reduced + boundary_size; + int off = 1, ow = 0; + int temp0; + + if (is_transposed) { + FFSWAP(int*, red_t, red_l); + } + FUNC(mip_downsampling)(red_t, boundary_size, top, w); + FUNC(mip_downsampling)(red_l, boundary_size, left, h); + + temp0 = reduced[0]; + if (size_id != 2) { + off = 0; + ow = (1 << (BIT_DEPTH - 1)) - temp0; + } else { + ow = reduced[1] - temp0; + } + reduced[0] = ow; + for (int i = 1; i < in_size; i++) { + reduced[i] = reduced[i + off] - temp0; + ow += reduced[i]; + } + ow = 32 - 32 * ow; + + FUNC(mip_reduced_pred)(src, stride, up_hor, up_ver, pred_size, reduced, in_size, ow, temp0, matrix, is_transposed); + if (up_hor > 1 || up_ver > 1) { + if (up_hor > 1) + FUNC(mip_upsampling_1d)(&POS(0, up_ver - 1), 1, up_ver * stride, pred_size, up_hor, left + up_ver - 1, up_ver, pred_size); + if (up_ver > 1) + FUNC(mip_upsampling_1d)(src, stride, 1, w, up_ver, top, 1, pred_size); + } +} + +static av_always_inline pixel FUNC(pred_dc_val)(const pixel *top, const pixel *left, + const int w, const int h) +{ + pixel dc_val; + int sum = 0; + unsigned int offset = (w == h) ? (w << 1) : FFMAX(w, h); + const int shift = av_log2(offset); + offset >>= 1; + if (w >= h) { + for (int i = 0; i < w; i++) + sum += top[i]; + } + if (w <= h) { + for (int i = 0; i < h; i++) + sum += left[i]; + } + dc_val = (sum + offset) >> shift; + return dc_val; +} + +//8.4.5.2.12 Specification of INTRA_DC intra prediction mode +static av_always_inline void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top, + const uint8_t *_left, const int w, const int h, const ptrdiff_t stride) +{ + int x, y; + pixel *src = (pixel *)_src; + const pixel *top = (const pixel *)_top; + const pixel *left = (const pixel *)_left; + const pixel dc = FUNC(pred_dc_val)(top, left, w, h); + const pixel4 a = PIXEL_SPLAT_X4(dc); + for (y = 0; y < h; y++) { + pixel *s = src; + for (x = 0; x < w; x += 4) { + AV_WN4P(s, a); + s += 4; + } + src += stride; + } +} + +static av_always_inline void FUNC(pred_v)(uint8_t *_src, const uint8_t *_top, + const int w, const int h, const ptrdiff_t stride) +{ + pixel *src = (pixel *)_src; + const pixel *top = (const pixel *)_top; + for (int y = 0; y < h; y++) { + memcpy(src, top, sizeof(pixel) * w); + src += stride; + } +} + +static void FUNC(pred_h)(uint8_t *_src, const uint8_t *_left, const int w, const int h, + const ptrdiff_t stride) +{ + pixel *src = (pixel *)_src; + const pixel *left = (const pixel *)_left; + for (int y = 0; y < h; y++) { + const pixel4 a = PIXEL_SPLAT_X4(left[y]); + for (int x = 0; x < w; x += 4) { + AV_WN4P(&POS(x, y), a); + } + } +} + +#define INTRA_LUMA_FILTER(p) CLIP((p[0] * f[0] + p[1] * f[1] + p[2] * f[2] + p[3] * f[3] + 32) >> 6) +#define INTRA_CHROMA_FILTER(p) (((32 - fact) * p[1] + fact * p[2] + 16) >> 5) + +//8.4.5.2.13 Specification of INTRA_ANGULAR2..INTRA_ANGULAR66 intra prediction modes +static void FUNC(pred_angular_v)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, + const int w, const int h, const ptrdiff_t stride, const int c_idx, const int mode, + const int ref_idx, const int filter_flag, const int need_pdpc) +{ + pixel *src = (pixel *)_src; + const pixel *left = (const pixel *)_left; + const pixel *top = (const pixel *)_top - (1 + ref_idx); + const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode); + int pos = (1 + ref_idx) * intra_pred_angle; + const int dp = intra_pred_angle; + const int is_luma = !c_idx; + int nscale, inv_angle; + + if (need_pdpc) { + inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle); + nscale = ff_vvc_nscale_derive(w, h, mode); + } + + for (int y = 0; y < h; y++) { + const int idx = (pos >> 5) + ref_idx; + const int fact = pos & 31; + if (!fact && (!is_luma || !filter_flag)) { + for (int x = 0; x < w; x++) { + const pixel *p = top + x + idx + 1; + POS(x, y) = *p; + } + } else { + if (!c_idx) { + const int8_t *f = ff_vvc_intra_luma_filter[filter_flag][fact]; + for (int x = 0; x < w; x++) { + const pixel *p = top + x + idx; + POS(x, y) = INTRA_LUMA_FILTER(p); + } + } else { + for (int x = 0; x < w; x++) { + const pixel *p = top + x + idx; + POS(x, y) = INTRA_CHROMA_FILTER(p); + } + } + } + if (need_pdpc) { + int inv_angle_sum = 256 + inv_angle; + for (int x = 0; x < FFMIN(w, 3 << nscale); x++) { + const pixel l = left[y + (inv_angle_sum >> 9)]; + const pixel val = POS(x, y); + const int wl = 32 >> ((x << 1) >> nscale); + const int pred = val + (((l - val) * wl + 32) >> 6); + POS(x, y) = CLIP(pred); + inv_angle_sum += inv_angle; + } + } + pos += dp; + } +} + +//8.4.5.2.13 Specification of INTRA_ANGULAR2..INTRA_ANGULAR66 intra prediction modes +static void FUNC(pred_angular_h)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, + const int w, const int h, const ptrdiff_t stride, const int c_idx, const int mode, + const int ref_idx, const int filter_flag, const int need_pdpc) +{ + pixel *src = (pixel *)_src; + const pixel *left = (const pixel *)_left - (1 + ref_idx); + const pixel *top = (const pixel *)_top; + const int is_luma = !c_idx; + const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode); + const int dp = intra_pred_angle; + int nscale = 0, inv_angle, inv_angle_sum; + + if (need_pdpc) { + inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle); + inv_angle_sum = 256 + inv_angle; + nscale = ff_vvc_nscale_derive(w, h, mode); + } + + for (int y = 0; y < h; y++) { + int pos = (1 + ref_idx) * intra_pred_angle; + int wt; + if (need_pdpc) + wt = (32 >> FFMIN(31, (y * 2) >> nscale)); + + for (int x = 0; x < w; x++) { + const int idx = (pos >> 5) + ref_idx; + const int fact = pos & 31; + const pixel *p = left + y + idx; + int pred; + if (!fact && (!is_luma || !filter_flag)) { + pred = p[1]; + } else { + if (!c_idx) { + const int8_t *f = ff_vvc_intra_luma_filter[filter_flag][fact]; + pred = INTRA_LUMA_FILTER(p); + } else { + pred = INTRA_CHROMA_FILTER(p); + } + } + if (need_pdpc) { + if (y < (3 << nscale)) { + const pixel t = top[x + (inv_angle_sum >> 9)]; + pred = CLIP(pred + (((t - pred) * wt + 32) >> 6)); + } + } + POS(x, y) = pred; + pos += dp; + } + if (need_pdpc) + inv_angle_sum += inv_angle; + } +} + +static void FUNC(ff_vvc_intra_dsp_init)(VVCIntraDSPContext *const intra) +{ + intra->lmcs_scale_chroma = FUNC(lmcs_scale_chroma); + intra->intra_cclm_pred = FUNC(intra_cclm_pred); + intra->intra_pred = FUNC(intra_pred); + intra->pred_planar = FUNC(pred_planar); + intra->pred_mip = FUNC(pred_mip); + intra->pred_dc = FUNC(pred_dc); + intra->pred_v = FUNC(pred_v); + intra->pred_h = FUNC(pred_h); + intra->pred_angular_v = FUNC(pred_angular_v); + intra->pred_angular_h = FUNC(pred_angular_h); +} |