diff options
author | Guo, Yejun <yejun.guo@intel.com> | 2019-12-27 16:34:20 +0800 |
---|---|---|
committer | Pedro Arthur <bygrandao@gmail.com> | 2020-01-07 10:51:38 -0300 |
commit | 37d24a6c8fdff897c5e01a8767bfcdc9ddf1f003 (patch) | |
tree | 3cc79dcb7a2bb26d90f7eb5f8e4265b736036faa /libavcodec/ulti_cb.h | |
parent | 04e6f8a143dc8bcec385e94a653b89c67cbaaca1 (diff) | |
download | ffmpeg-37d24a6c8fdff897c5e01a8767bfcdc9ddf1f003.tar.gz |
vf_dnn_processing: add support for more formats gray8 and grayf32
The following is a python script to halve the value of the gray
image. It demos how to setup and execute dnn model with python+tensorflow.
It also generates .pb file which will be used by ffmpeg.
import tensorflow as tf
import numpy as np
from skimage import color
from skimage import io
in_img = io.imread('input.jpg')
in_img = color.rgb2gray(in_img)
io.imsave('ori_gray.jpg', np.squeeze(in_img))
in_data = np.expand_dims(in_img, axis=0)
in_data = np.expand_dims(in_data, axis=3)
filter_data = np.array([0.5]).reshape(1,1,1,1).astype(np.float32)
filter = tf.Variable(filter_data)
x = tf.placeholder(tf.float32, shape=[1, None, None, 1], name='dnn_in')
y = tf.nn.conv2d(x, filter, strides=[1, 1, 1, 1], padding='VALID', name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'halve_gray_float.pb', as_text=False)
print("halve_gray_float.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate halve_gray_float.model\n")
output = sess.run(y, feed_dict={x: in_data})
output = output * 255.0
output = output.astype(np.uint8)
io.imsave("out.jpg", np.squeeze(output))
To do the same thing with ffmpeg:
- generate halve_gray_float.pb with the above script
- generate halve_gray_float.model with tools/python/convert.py
- try with following commands
./ffmpeg -i input.jpg -vf format=grayf32,dnn_processing=model=halve_gray_float.model:input=dnn_in:output=dnn_out:dnn_backend=native out.native.png
./ffmpeg -i input.jpg -vf format=grayf32,dnn_processing=model=halve_gray_float.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow out.tf.png
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
Diffstat (limited to 'libavcodec/ulti_cb.h')
0 files changed, 0 insertions, 0 deletions