aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/mips
diff options
context:
space:
mode:
authorClaudio Freire <klaussfreire@gmail.com>2015-10-11 17:29:50 -0300
committerClaudio Freire <klaussfreire@gmail.com>2015-10-11 17:29:50 -0300
commit01ecb7172b684f1c4b3e748f95c5a9a494ca36ec (patch)
tree5f724b1e5ea315dfeab49a97d15cac150d29437c /libavcodec/mips
parent624057df3fd5b0044eeed94d2b8e14105b8944dc (diff)
downloadffmpeg-01ecb7172b684f1c4b3e748f95c5a9a494ca36ec.tar.gz
AAC encoder: Extensive improvements
This finalizes merging of the work in the patches in ticket #2686. Improvements to twoloop and RC logic are extensive. The non-exhaustive list of twoloop improvments includes: - Tweaks to distortion limits on the RD optimization phase of twoloop - Deeper search in twoloop - PNS information marking to let twoloop decide when to use it (turned out having the decision made separately wasn't working) - Tonal band detection and priorization - Better band energy conservation rules - Strict hole avoidance For rate control: - Use psymodel's bit allocation to allow proper use of the bit reservoir. Don't work against the bit reservoir by moving lambda in the opposite direction when psymodel decides to allocate more/less bits to a frame. - Retry the encode if the effective rate lies outside a reasonable margin of psymodel's allocation or the selected ABR. - Log average lambda at the end. Useful info for everyone, but especially for tuning of the various encoder constants that relate to lambda feedback. Psy: - Do not apply lowpass with a FIR filter, instead just let the coder zero bands above the cutoff. The FIR filter induces group delay, and while zeroing bands causes ripple, it's lost in the quantization noise. - Experimental VBR bit allocation code - Tweak automatic lowpass filter threshold to maximize audio bandwidth at all bitrates while still providing acceptable, stable quality. I/S: - Phase decision fixes. Unrelated to #2686, but the bugs only surfaced when the merge was finalized. Measure I/S band energy accounting for phase, and prevent I/S and M/S from being applied both. PNS: - Avoid marking short bands with PNS when they're part of a window group in which there's a large variation of energy from one window to the next. PNS can't preserve those and the effect is extremely noticeable. M/S: - Implement BMLD protection similar to the specified in ISO-IEC/13818:7-2003, Appendix C Section 6.1. Since M/S decision doesn't conform to section 6.1, a different method had to be implemented, but should provide equivalent protection. - Move the decision logic closer to the method specified in ISO-IEC/13818:7-2003, Appendix C Section 6.1. Specifically, make sure M/S needs less bits than dual stereo. - Don't apply M/S in bands that are using I/S Now, this of course needed adjustments in the compare targets and fuzz factors of the AAC encoder's fate tests, but if wondering why the targets go up (more distortion), consider the previous coder was using too many bits on LF content (far more than required by psy), and thus those signals will now be more distorted, not less. The extra distortion isn't audible though, I carried extensive ABX testing to make sure. A very similar patch was also extensively tested by Kamendo2 in the context of #2686.
Diffstat (limited to 'libavcodec/mips')
-rw-r--r--libavcodec/mips/aaccoder_mips.c383
1 files changed, 293 insertions, 90 deletions
diff --git a/libavcodec/mips/aaccoder_mips.c b/libavcodec/mips/aaccoder_mips.c
index 18d3f88743..e85bf8c5ca 100644
--- a/libavcodec/mips/aaccoder_mips.c
+++ b/libavcodec/mips/aaccoder_mips.c
@@ -178,6 +178,7 @@ static int find_min_book(float maxval, int sf) {
float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
float Q34 = sqrtf(Q * sqrtf(Q));
int qmaxval, cb;
+ qmaxval = maxval * Q34 + 0.4054f;
if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
cb = 11;
else
@@ -192,12 +193,13 @@ static void quantize_and_encode_band_cost_SQUAD_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING)
+ int *bits, float *energy, const float ROUNDING)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
int qc1, qc2, qc3, qc4;
+ float qenergy = 0.0f;
uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1];
uint16_t *p_codes = (uint16_t *)ff_aac_spectral_codes[cb-1];
@@ -262,26 +264,38 @@ static void quantize_and_encode_band_cost_SQUAD_mips(struct AACEncContext *s,
put_bits(pb, p_bits[curidx], p_codes[curidx]);
- if (out) {
- vec = &p_vec[curidx*4];
- out[i+0] = vec[0] * IQ;
- out[i+1] = vec[1] * IQ;
- out[i+2] = vec[2] * IQ;
- out[i+3] = vec[3] * IQ;
+ if (out || energy) {
+ float e1,e2,e3,e4;
+ vec = &p_vec[curidx*4];
+ e1 = vec[0] * IQ;
+ e2 = vec[1] * IQ;
+ e3 = vec[2] * IQ;
+ e4 = vec[3] * IQ;
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
+ if (energy)
+ *energy = qenergy;
}
static void quantize_and_encode_band_cost_UQUAD_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING)
+ int *bits, float *energy, const float ROUNDING)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
int qc1, qc2, qc3, qc4;
+ float qenergy = 0.0f;
uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1];
uint16_t *p_codes = (uint16_t *)ff_aac_spectral_codes[cb-1];
@@ -365,26 +379,38 @@ static void quantize_and_encode_band_cost_UQUAD_mips(struct AACEncContext *s,
v_bits = p_bits[curidx] + count;
put_bits(pb, v_bits, v_codes);
- if (out) {
- vec = &p_vec[curidx*4];
- out[i+0] = copysignf(vec[0] * IQ, in[i+0]);
- out[i+1] = copysignf(vec[1] * IQ, in[i+1]);
- out[i+2] = copysignf(vec[2] * IQ, in[i+2]);
- out[i+3] = copysignf(vec[3] * IQ, in[i+3]);
+ if (out || energy) {
+ float e1,e2,e3,e4;
+ vec = &p_vec[curidx*4];
+ e1 = copysignf(vec[0] * IQ, in[i+0]);
+ e2 = copysignf(vec[1] * IQ, in[i+1]);
+ e3 = copysignf(vec[2] * IQ, in[i+2]);
+ e4 = copysignf(vec[3] * IQ, in[i+3]);
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
+ if (energy)
+ *energy = qenergy;
}
static void quantize_and_encode_band_cost_SPAIR_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING)
+ int *bits, float *energy, const float ROUNDING)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
int qc1, qc2, qc3, qc4;
+ float qenergy = 0.0f;
uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1];
uint16_t *p_codes = (uint16_t *)ff_aac_spectral_codes[cb-1];
@@ -455,27 +481,39 @@ static void quantize_and_encode_band_cost_SPAIR_mips(struct AACEncContext *s,
v_bits = p_bits[curidx] + p_bits[curidx2];
put_bits(pb, v_bits, v_codes);
- if (out) {
- vec1 = &p_vec[curidx*2 ];
- vec2 = &p_vec[curidx2*2];
- out[i+0] = vec1[0] * IQ;
- out[i+1] = vec1[1] * IQ;
- out[i+2] = vec2[0] * IQ;
- out[i+3] = vec2[1] * IQ;
+ if (out || energy) {
+ float e1,e2,e3,e4;
+ vec1 = &p_vec[curidx*2 ];
+ vec2 = &p_vec[curidx2*2];
+ e1 = vec1[0] * IQ;
+ e2 = vec1[1] * IQ;
+ e3 = vec2[0] * IQ;
+ e4 = vec2[1] * IQ;
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
+ if (energy)
+ *energy = qenergy;
}
static void quantize_and_encode_band_cost_UPAIR7_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING)
+ int *bits, float *energy, const float ROUNDING)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
int qc1, qc2, qc3, qc4;
+ float qenergy = 0.0f;
uint8_t *p_bits = (uint8_t*) ff_aac_spectral_bits[cb-1];
uint16_t *p_codes = (uint16_t*)ff_aac_spectral_codes[cb-1];
@@ -561,27 +599,39 @@ static void quantize_and_encode_band_cost_UPAIR7_mips(struct AACEncContext *s,
v_bits = p_bits[curidx2] + count2;
put_bits(pb, v_bits, v_codes);
- if (out) {
- vec1 = &p_vec[curidx1*2];
- vec2 = &p_vec[curidx2*2];
- out[i+0] = copysignf(vec1[0] * IQ, in[i+0]);
- out[i+1] = copysignf(vec1[1] * IQ, in[i+1]);
- out[i+2] = copysignf(vec2[0] * IQ, in[i+2]);
- out[i+3] = copysignf(vec2[1] * IQ, in[i+3]);
+ if (out || energy) {
+ float e1,e2,e3,e4;
+ vec1 = &p_vec[curidx1*2];
+ vec2 = &p_vec[curidx2*2];
+ e1 = copysignf(vec1[0] * IQ, in[i+0]);
+ e2 = copysignf(vec1[1] * IQ, in[i+1]);
+ e3 = copysignf(vec2[0] * IQ, in[i+2]);
+ e4 = copysignf(vec2[1] * IQ, in[i+3]);
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
+ if (energy)
+ *energy = qenergy;
}
static void quantize_and_encode_band_cost_UPAIR12_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING)
+ int *bits, float *energy, const float ROUNDING)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
int qc1, qc2, qc3, qc4;
+ float qenergy = 0.0f;
uint8_t *p_bits = (uint8_t*) ff_aac_spectral_bits[cb-1];
uint16_t *p_codes = (uint16_t*)ff_aac_spectral_codes[cb-1];
@@ -666,27 +716,39 @@ static void quantize_and_encode_band_cost_UPAIR12_mips(struct AACEncContext *s,
v_bits = p_bits[curidx2] + count2;
put_bits(pb, v_bits, v_codes);
- if (out) {
- vec1 = &p_vec[curidx1*2];
- vec2 = &p_vec[curidx2*2];
- out[i+0] = copysignf(vec1[0] * IQ, in[i+0]);
- out[i+1] = copysignf(vec1[1] * IQ, in[i+1]);
- out[i+2] = copysignf(vec2[0] * IQ, in[i+2]);
- out[i+3] = copysignf(vec2[1] * IQ, in[i+3]);
+ if (out || energy) {
+ float e1,e2,e3,e4;
+ vec1 = &p_vec[curidx1*2];
+ vec2 = &p_vec[curidx2*2];
+ e1 = copysignf(vec1[0] * IQ, in[i+0]);
+ e2 = copysignf(vec1[1] * IQ, in[i+1]);
+ e3 = copysignf(vec2[0] * IQ, in[i+2]);
+ e4 = copysignf(vec2[1] * IQ, in[i+3]);
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
+ if (energy)
+ *energy = qenergy;
}
static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING)
+ int *bits, float *energy, const float ROUNDING)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
int qc1, qc2, qc3, qc4;
+ float qenergy = 0.0f;
uint8_t *p_bits = (uint8_t* )ff_aac_spectral_bits[cb-1];
uint16_t *p_codes = (uint16_t*)ff_aac_spectral_codes[cb-1];
@@ -772,13 +834,22 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
v_bits = p_bits[curidx2] + count2;
put_bits(pb, v_bits, v_codes);
- if (out) {
- vec1 = &p_vectors[curidx*2 ];
- vec2 = &p_vectors[curidx2*2];
- out[i+0] = copysignf(vec1[0] * IQ, in[i+0]);
- out[i+1] = copysignf(vec1[1] * IQ, in[i+1]);
- out[i+2] = copysignf(vec2[0] * IQ, in[i+2]);
- out[i+3] = copysignf(vec2[1] * IQ, in[i+3]);
+ if (out || energy) {
+ float e1,e2,e3,e4;
+ vec1 = &p_vectors[curidx*2 ];
+ vec2 = &p_vectors[curidx2*2];
+ e1 = copysignf(vec1[0] * IQ, in[i+0]);
+ e2 = copysignf(vec1[1] * IQ, in[i+1]);
+ e3 = copysignf(vec2[0] * IQ, in[i+2]);
+ e4 = copysignf(vec2[1] * IQ, in[i+3]);
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
} else {
@@ -892,23 +963,34 @@ static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s,
put_bits(pb, len * 2 - 3, v_codes);
}
- if (out) {
- vec1 = &p_vectors[curidx*2];
- vec2 = &p_vectors[curidx2*2];
- out[i+0] = copysignf(c1 * cbrtf(c1) * IQ, in[i+0]);
- out[i+1] = copysignf(c2 * cbrtf(c2) * IQ, in[i+1]);
- out[i+2] = copysignf(c3 * cbrtf(c3) * IQ, in[i+2]);
- out[i+3] = copysignf(c4 * cbrtf(c4) * IQ, in[i+3]);
+ if (out || energy) {
+ float e1, e2, e3, e4;
+ vec1 = &p_vectors[curidx*2];
+ vec2 = &p_vectors[curidx2*2];
+ e1 = copysignf(c1 * cbrtf(c1) * IQ, in[i+0]);
+ e2 = copysignf(c2 * cbrtf(c2) * IQ, in[i+1]);
+ e3 = copysignf(c3 * cbrtf(c3) * IQ, in[i+2]);
+ e4 = copysignf(c4 * cbrtf(c4) * IQ, in[i+3]);
+ if (out) {
+ out[i+0] = e1;
+ out[i+1] = e2;
+ out[i+2] = e3;
+ out[i+3] = e4;
+ }
+ if (energy)
+ qenergy += (e1*e1 + e2*e2) + (e3*e3 + e4*e4);
}
}
}
+ if (energy)
+ *energy = qenergy;
}
static void quantize_and_encode_band_cost_NONE_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING) {
+ int *bits, float *energy, const float ROUNDING) {
av_assert0(0);
}
@@ -916,7 +998,7 @@ static void quantize_and_encode_band_cost_ZERO_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING) {
+ int *bits, float *energy, const float ROUNDING) {
int i;
if (bits)
*bits = 0;
@@ -928,13 +1010,15 @@ static void quantize_and_encode_band_cost_ZERO_mips(struct AACEncContext *s,
out[i+3] = 0.0f;
}
}
+ if (energy)
+ *energy = 0.0f;
}
static void (*const quantize_and_encode_band_cost_arr[])(struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, const float ROUNDING) = {
+ int *bits, float *energy, const float ROUNDING) = {
quantize_and_encode_band_cost_ZERO_mips,
quantize_and_encode_band_cost_SQUAD_mips,
quantize_and_encode_band_cost_SQUAD_mips,
@@ -955,17 +1039,17 @@ static void (*const quantize_and_encode_band_cost_arr[])(struct AACEncContext *s
#define quantize_and_encode_band_cost( \
s, pb, in, out, scaled, size, scale_idx, cb, \
- lambda, uplim, bits, ROUNDING) \
+ lambda, uplim, bits, energy, ROUNDING) \
quantize_and_encode_band_cost_arr[cb]( \
s, pb, in, out, scaled, size, scale_idx, cb, \
- lambda, uplim, bits, ROUNDING)
+ lambda, uplim, bits, energy, ROUNDING)
static void quantize_and_encode_band_mips(struct AACEncContext *s, PutBitContext *pb,
const float *in, float *out, int size, int scale_idx,
int cb, const float lambda, int rtz)
{
quantize_and_encode_band_cost(s, pb, in, out, NULL, size, scale_idx, cb, lambda,
- INFINITY, NULL, (rtz) ? ROUND_TO_ZERO : ROUND_STANDARD);
+ INFINITY, NULL, NULL, (rtz) ? ROUND_TO_ZERO : ROUND_STANDARD);
}
/**
@@ -1445,7 +1529,7 @@ static float (*const get_band_numbits_arr[])(struct AACEncContext *s,
static float quantize_band_cost_bits(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, int rtz)
+ int *bits, float *energy, int rtz)
{
return get_band_numbits(s, NULL, in, scaled, size, scale_idx, cb, lambda, uplim, bits);
}
@@ -1458,7 +1542,7 @@ static float get_band_cost_ZERO_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
int i;
float cost = 0;
@@ -1471,6 +1555,8 @@ static float get_band_cost_ZERO_mips(struct AACEncContext *s,
}
if (bits)
*bits = 0;
+ if (energy)
+ *energy = 0.0f;
return cost * lambda;
}
@@ -1478,7 +1564,7 @@ static float get_band_cost_NONE_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
av_assert0(0);
return 0;
@@ -1488,12 +1574,13 @@ static float get_band_cost_SQUAD_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
float cost = 0;
+ float qenergy = 0.0f;
int qc1, qc2, qc3, qc4;
int curbits = 0;
@@ -1560,6 +1647,9 @@ static float get_band_cost_SQUAD_mips(struct AACEncContext *s,
curbits += p_bits[curidx];
vec = &p_codes[curidx*4];
+ qenergy += vec[0]*vec[0] + vec[1]*vec[1]
+ + vec[2]*vec[2] + vec[3]*vec[3];
+
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
@@ -1594,6 +1684,8 @@ static float get_band_cost_SQUAD_mips(struct AACEncContext *s,
if (bits)
*bits = curbits;
+ if (energy)
+ *energy = qenergy * (IQ*IQ);
return cost * lambda + curbits;
}
@@ -1601,12 +1693,13 @@ static float get_band_cost_UQUAD_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
float cost = 0;
+ float qenergy = 0.0f;
int curbits = 0;
int qc1, qc2, qc3, qc4;
@@ -1659,6 +1752,9 @@ static float get_band_cost_UQUAD_mips(struct AACEncContext *s,
curbits += uquad_sign_bits[curidx];
vec = &p_codes[curidx*4];
+ qenergy += vec[0]*vec[0] + vec[1]*vec[1]
+ + vec[2]*vec[2] + vec[3]*vec[3];
+
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
@@ -1696,6 +1792,8 @@ static float get_band_cost_UQUAD_mips(struct AACEncContext *s,
if (bits)
*bits = curbits;
+ if (energy)
+ *energy = qenergy * (IQ*IQ);
return cost * lambda + curbits;
}
@@ -1703,12 +1801,13 @@ static float get_band_cost_SPAIR_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
float cost = 0;
+ float qenergy = 0.0f;
int qc1, qc2, qc3, qc4;
int curbits = 0;
@@ -1780,6 +1879,9 @@ static float get_band_cost_SPAIR_mips(struct AACEncContext *s,
vec = &p_codes[curidx*2];
vec2 = &p_codes[curidx2*2];
+ qenergy += vec[0]*vec[0] + vec[1]*vec[1]
+ + vec2[0]*vec2[0] + vec2[1]*vec2[1];
+
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
@@ -1814,6 +1916,8 @@ static float get_band_cost_SPAIR_mips(struct AACEncContext *s,
if (bits)
*bits = curbits;
+ if (energy)
+ *energy = qenergy * (IQ*IQ);
return cost * lambda + curbits;
}
@@ -1821,12 +1925,13 @@ static float get_band_cost_UPAIR7_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
float cost = 0;
+ float qenergy = 0.0f;
int qc1, qc2, qc3, qc4;
int curbits = 0;
@@ -1910,6 +2015,9 @@ static float get_band_cost_UPAIR7_mips(struct AACEncContext *s,
curbits += upair7_sign_bits[curidx2];
vec2 = &p_codes[curidx2*2];
+ qenergy += vec[0]*vec[0] + vec[1]*vec[1]
+ + vec2[0]*vec2[0] + vec2[1]*vec2[1];
+
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
@@ -1947,6 +2055,8 @@ static float get_band_cost_UPAIR7_mips(struct AACEncContext *s,
if (bits)
*bits = curbits;
+ if (energy)
+ *energy = qenergy * (IQ*IQ);
return cost * lambda + curbits;
}
@@ -1954,12 +2064,13 @@ static float get_band_cost_UPAIR12_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
int i;
float cost = 0;
+ float qenergy = 0.0f;
int qc1, qc2, qc3, qc4;
int curbits = 0;
@@ -2043,6 +2154,9 @@ static float get_band_cost_UPAIR12_mips(struct AACEncContext *s,
vec = &p_codes[curidx*2];
vec2 = &p_codes[curidx2*2];
+ qenergy += vec[0]*vec[0] + vec[1]*vec[1]
+ + vec2[0]*vec2[0] + vec2[1]*vec2[1];
+
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
@@ -2080,6 +2194,8 @@ static float get_band_cost_UPAIR12_mips(struct AACEncContext *s,
if (bits)
*bits = curbits;
+ if (energy)
+ *energy = qenergy * (IQ*IQ);
return cost * lambda + curbits;
}
@@ -2087,13 +2203,14 @@ static float get_band_cost_ESC_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits)
+ int *bits, float *energy)
{
const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float CLIPPED_ESCAPE = 165140.0f * IQ;
int i;
float cost = 0;
+ float qenergy = 0.0f;
int qc1, qc2, qc3, qc4;
int curbits = 0;
@@ -2103,7 +2220,7 @@ static float get_band_cost_ESC_mips(struct AACEncContext *s,
for (i = 0; i < size; i += 4) {
const float *vec, *vec2;
int curidx, curidx2;
- float t1, t2, t3, t4;
+ float t1, t2, t3, t4, V;
float di1, di2, di3, di4;
int cond0, cond1, cond2, cond3;
int c1, c2, c3, c4;
@@ -2175,38 +2292,54 @@ static float get_band_cost_ESC_mips(struct AACEncContext *s,
if (cond0) {
if (t1 >= CLIPPED_ESCAPE) {
di1 = t1 - CLIPPED_ESCAPE;
+ qenergy += CLIPPED_ESCAPE*CLIPPED_ESCAPE;
} else {
- di1 = t1 - c1 * cbrtf(c1) * IQ;
+ di1 = t1 - (V = c1 * cbrtf(c1) * IQ);
+ qenergy += V*V;
}
- } else
- di1 = t1 - vec[0] * IQ;
+ } else {
+ di1 = t1 - (V = vec[0] * IQ);
+ qenergy += V*V;
+ }
if (cond1) {
if (t2 >= CLIPPED_ESCAPE) {
di2 = t2 - CLIPPED_ESCAPE;
+ qenergy += CLIPPED_ESCAPE*CLIPPED_ESCAPE;
} else {
- di2 = t2 - c2 * cbrtf(c2) * IQ;
+ di2 = t2 - (V = c2 * cbrtf(c2) * IQ);
+ qenergy += V*V;
}
- } else
- di2 = t2 - vec[1] * IQ;
+ } else {
+ di2 = t2 - (V = vec[1] * IQ);
+ qenergy += V*V;
+ }
if (cond2) {
if (t3 >= CLIPPED_ESCAPE) {
di3 = t3 - CLIPPED_ESCAPE;
+ qenergy += CLIPPED_ESCAPE*CLIPPED_ESCAPE;
} else {
- di3 = t3 - c3 * cbrtf(c3) * IQ;
+ di3 = t3 - (V = c3 * cbrtf(c3) * IQ);
+ qenergy += V*V;
}
- } else
- di3 = t3 - vec2[0] * IQ;
+ } else {
+ di3 = t3 - (V = vec2[0] * IQ);
+ qenergy += V*V;
+ }
if (cond3) {
if (t4 >= CLIPPED_ESCAPE) {
di4 = t4 - CLIPPED_ESCAPE;
+ qenergy += CLIPPED_ESCAPE*CLIPPED_ESCAPE;
} else {
- di4 = t4 - c4 * cbrtf(c4) * IQ;
+ di4 = t4 - (V = c4 * cbrtf(c4) * IQ);
+ qenergy += V*V;
}
- } else
- di4 = t4 - vec2[1]*IQ;
+ } else {
+ di4 = t4 - (V = vec2[1]*IQ);
+ qenergy += V*V;
+ }
cost += di1 * di1 + di2 * di2
+ di3 * di3 + di4 * di4;
@@ -2221,7 +2354,7 @@ static float (*const get_band_cost_arr[])(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits) = {
+ int *bits, float *energy) = {
get_band_cost_ZERO_mips,
get_band_cost_SQUAD_mips,
get_band_cost_SQUAD_mips,
@@ -2242,17 +2375,87 @@ static float (*const get_band_cost_arr[])(struct AACEncContext *s,
#define get_band_cost( \
s, pb, in, scaled, size, scale_idx, cb, \
- lambda, uplim, bits) \
+ lambda, uplim, bits, energy) \
get_band_cost_arr[cb]( \
s, pb, in, scaled, size, scale_idx, cb, \
- lambda, uplim, bits)
+ lambda, uplim, bits, energy)
static float quantize_band_cost(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
- int *bits, int rtz)
+ int *bits, float *energy, int rtz)
{
- return get_band_cost(s, NULL, in, scaled, size, scale_idx, cb, lambda, uplim, bits);
+ return get_band_cost(s, NULL, in, scaled, size, scale_idx, cb, lambda, uplim, bits, energy);
+}
+
+static float find_form_factor(int group_len, int swb_size, float thresh, const float *scaled, float nzslope) {
+ const float iswb_size = 1.0f / swb_size;
+ const float iswb_sizem1 = 1.0f / (swb_size - 1);
+ const float ethresh = thresh, iethresh = 1.0f / ethresh;
+ float form = 0.0f, weight = 0.0f;
+ int w2, i;
+ for (w2 = 0; w2 < group_len; w2++) {
+ float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
+ float nzl = 0;
+ for (i = 0; i < swb_size; i+=4) {
+ float s1 = fabsf(scaled[w2*128+i ]);
+ float s2 = fabsf(scaled[w2*128+i+1]);
+ float s3 = fabsf(scaled[w2*128+i+2]);
+ float s4 = fabsf(scaled[w2*128+i+3]);
+ maxval = FFMAX(maxval, FFMAX(FFMAX(s1, s2), FFMAX(s3, s4)));
+ e += (s1+s2)+(s3+s4);
+ s1 *= s1;
+ s2 *= s2;
+ s3 *= s3;
+ s4 *= s4;
+ e2 += (s1+s2)+(s3+s4);
+ /* We really don't want a hard non-zero-line count, since
+ * even below-threshold lines do add up towards band spectral power.
+ * So, fall steeply towards zero, but smoothly
+ */
+ if (s1 >= ethresh) {
+ nzl += 1.0f;
+ } else {
+ nzl += powf(s1 * iethresh, nzslope);
+ }
+ if (s2 >= ethresh) {
+ nzl += 1.0f;
+ } else {
+ nzl += powf(s2 * iethresh, nzslope);
+ }
+ if (s3 >= ethresh) {
+ nzl += 1.0f;
+ } else {
+ nzl += powf(s3 * iethresh, nzslope);
+ }
+ if (s4 >= ethresh) {
+ nzl += 1.0f;
+ } else {
+ nzl += powf(s4 * iethresh, nzslope);
+ }
+ }
+ if (e2 > thresh) {
+ float frm;
+ e *= iswb_size;
+
+ /** compute variance */
+ for (i = 0; i < swb_size; i++) {
+ float d = fabsf(scaled[w2*128+i]) - e;
+ var += d*d;
+ }
+ var = sqrtf(var * iswb_sizem1);
+
+ e2 *= iswb_size;
+ frm = e / FFMIN(e+4*var,maxval);
+ form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
+ weight += e2;
+ }
+ }
+ if (weight > 0) {
+ return form / weight;
+ } else {
+ return 1.0f;
+ }
}
#include "libavcodec/aaccoder_twoloop.h"
@@ -2305,25 +2508,25 @@ static void search_for_ms_mips(AACEncContext *s, ChannelElement *cpe)
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
- lambda / band0->threshold, INFINITY, NULL, 0);
+ lambda / band0->threshold, INFINITY, NULL, NULL, 0);
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
R34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
- lambda / band1->threshold, INFINITY, NULL, 0);
+ lambda / band1->threshold, INFINITY, NULL, NULL, 0);
dist2 += quantize_band_cost(s, M,
M34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
- lambda / maxthr, INFINITY, NULL, 0);
+ lambda / maxthr, INFINITY, NULL, NULL, 0);
dist2 += quantize_band_cost(s, S,
S34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
- lambda / minthr, INFINITY, NULL, 0);
+ lambda / minthr, INFINITY, NULL, NULL, 0);
}
cpe->ms_mask[w*16+g] = dist2 < dist1;
}