diff options
author | foo86 <foobaz86@gmail.com> | 2016-01-16 11:54:38 +0300 |
---|---|---|
committer | Hendrik Leppkes <h.leppkes@gmail.com> | 2016-01-31 17:09:38 +0100 |
commit | ae5b2c52501d5009fe712334428138a9b758849b (patch) | |
tree | 8e30d705d98efe3b249ff3a57eb01789c3ff4c4f /libavcodec/dca_core.c | |
parent | 0930b2dd1f01213ca1f08aff3a9b8b0d5515cede (diff) | |
download | ffmpeg-ae5b2c52501d5009fe712334428138a9b758849b.tar.gz |
avcodec/dca: add new decoder based on libdcadec
Diffstat (limited to 'libavcodec/dca_core.c')
-rw-r--r-- | libavcodec/dca_core.c | 2603 |
1 files changed, 2603 insertions, 0 deletions
diff --git a/libavcodec/dca_core.c b/libavcodec/dca_core.c new file mode 100644 index 0000000000..94f0f3dcf0 --- /dev/null +++ b/libavcodec/dca_core.c @@ -0,0 +1,2603 @@ +/* + * Copyright (C) 2016 foo86 + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "dcadec.h" +#include "dcadata.h" +#include "dcahuff.h" +#include "dcamath.h" +#include "dca_syncwords.h" + +#if ARCH_ARM +#include "arm/dca.h" +#endif + +enum HeaderType { + HEADER_CORE, + HEADER_XCH, + HEADER_XXCH +}; + +enum AudioMode { + AMODE_MONO, // Mode 0: A (mono) + AMODE_MONO_DUAL, // Mode 1: A + B (dual mono) + AMODE_STEREO, // Mode 2: L + R (stereo) + AMODE_STEREO_SUMDIFF, // Mode 3: (L+R) + (L-R) (sum-diff) + AMODE_STEREO_TOTAL, // Mode 4: LT + RT (left and right total) + AMODE_3F, // Mode 5: C + L + R + AMODE_2F1R, // Mode 6: L + R + S + AMODE_3F1R, // Mode 7: C + L + R + S + AMODE_2F2R, // Mode 8: L + R + SL + SR + AMODE_3F2R, // Mode 9: C + L + R + SL + SR + + AMODE_COUNT +}; + +enum ExtAudioType { + EXT_AUDIO_XCH = 0, + EXT_AUDIO_X96 = 2, + EXT_AUDIO_XXCH = 6 +}; + +enum LFEFlag { + LFE_FLAG_NONE, + LFE_FLAG_128, + LFE_FLAG_64, + LFE_FLAG_INVALID +}; + +static const int8_t prm_ch_to_spkr_map[AMODE_COUNT][5] = { + { DCA_SPEAKER_C, -1, -1, -1, -1 }, + { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, + { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, + { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, + { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, + { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , -1, -1 }, + { DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Cs, -1, -1 }, + { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , DCA_SPEAKER_Cs, -1 }, + { DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs, -1 }, + { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs } +}; + +static const uint8_t audio_mode_ch_mask[AMODE_COUNT] = { + DCA_SPEAKER_LAYOUT_MONO, + DCA_SPEAKER_LAYOUT_STEREO, + DCA_SPEAKER_LAYOUT_STEREO, + DCA_SPEAKER_LAYOUT_STEREO, + DCA_SPEAKER_LAYOUT_STEREO, + DCA_SPEAKER_LAYOUT_3_0, + DCA_SPEAKER_LAYOUT_2_1, + DCA_SPEAKER_LAYOUT_3_1, + DCA_SPEAKER_LAYOUT_2_2, + DCA_SPEAKER_LAYOUT_5POINT0 +}; + +static const uint8_t block_code_nbits[7] = { + 7, 10, 12, 13, 15, 17, 19 +}; + +static const uint8_t quant_index_sel_nbits[DCA_CODE_BOOKS] = { + 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 +}; + +static const uint8_t quant_index_group_size[DCA_CODE_BOOKS] = { + 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 +}; + +typedef struct DCAVLC { + int offset; ///< Code values offset + int max_depth; ///< Parameter for get_vlc2() + VLC vlc[7]; ///< Actual codes +} DCAVLC; + +static DCAVLC vlc_bit_allocation; +static DCAVLC vlc_transition_mode; +static DCAVLC vlc_scale_factor; +static DCAVLC vlc_quant_index[DCA_CODE_BOOKS]; + +static av_cold void dca_init_vlcs(void) +{ + static VLC_TYPE dca_table[23622][2]; + static int vlcs_initialized = 0; + int i, j, k; + + if (vlcs_initialized) + return; + +#define DCA_INIT_VLC(vlc, a, b, c, d) \ + do { \ + vlc.table = &dca_table[ff_dca_vlc_offs[k]]; \ + vlc.table_allocated = ff_dca_vlc_offs[k + 1] - ff_dca_vlc_offs[k]; \ + init_vlc(&vlc, a, b, c, 1, 1, d, 2, 2, INIT_VLC_USE_NEW_STATIC); \ + } while (0) + + vlc_bit_allocation.offset = 1; + vlc_bit_allocation.max_depth = 2; + for (i = 0, k = 0; i < 5; i++, k++) + DCA_INIT_VLC(vlc_bit_allocation.vlc[i], bitalloc_12_vlc_bits[i], 12, + bitalloc_12_bits[i], bitalloc_12_codes[i]); + + vlc_scale_factor.offset = -64; + vlc_scale_factor.max_depth = 2; + for (i = 0; i < 5; i++, k++) + DCA_INIT_VLC(vlc_scale_factor.vlc[i], SCALES_VLC_BITS, 129, + scales_bits[i], scales_codes[i]); + + vlc_transition_mode.offset = 0; + vlc_transition_mode.max_depth = 1; + for (i = 0; i < 4; i++, k++) + DCA_INIT_VLC(vlc_transition_mode.vlc[i], tmode_vlc_bits[i], 4, + tmode_bits[i], tmode_codes[i]); + + for (i = 0; i < DCA_CODE_BOOKS; i++) { + vlc_quant_index[i].offset = bitalloc_offsets[i]; + vlc_quant_index[i].max_depth = 1 + (i > 4); + for (j = 0; j < quant_index_group_size[i]; j++, k++) + DCA_INIT_VLC(vlc_quant_index[i].vlc[j], bitalloc_maxbits[i][j], + bitalloc_sizes[i], bitalloc_bits[i][j], bitalloc_codes[i][j]); + } + + vlcs_initialized = 1; +} + +static int get_vlc(GetBitContext *s, DCAVLC *v, int i) +{ + return get_vlc2(s, v->vlc[i].table, v->vlc[i].bits, v->max_depth) + v->offset; +} + +static void get_array(GetBitContext *s, int32_t *array, int size, int n) +{ + int i; + + for (i = 0; i < size; i++) + array[i] = get_sbits(s, n); +} + +// 5.3.1 - Bit stream header +static int parse_frame_header(DCACoreDecoder *s) +{ + int normal_frame, pcmr_index; + + // Frame type + normal_frame = get_bits1(&s->gb); + + // Deficit sample count + if (get_bits(&s->gb, 5) != DCA_PCMBLOCK_SAMPLES - 1) { + av_log(s->avctx, AV_LOG_ERROR, "Deficit samples are not supported\n"); + return normal_frame ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME; + } + + // CRC present flag + s->crc_present = get_bits1(&s->gb); + + // Number of PCM sample blocks + s->npcmblocks = get_bits(&s->gb, 7) + 1; + if (s->npcmblocks & (DCA_SUBBAND_SAMPLES - 1)) { + av_log(s->avctx, AV_LOG_ERROR, "Unsupported number of PCM sample blocks (%d)\n", s->npcmblocks); + return (s->npcmblocks < 6 || normal_frame) ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME; + } + + // Primary frame byte size + s->frame_size = get_bits(&s->gb, 14) + 1; + if (s->frame_size < 96) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid core frame size (%d bytes)\n", s->frame_size); + return AVERROR_INVALIDDATA; + } + + // Audio channel arrangement + s->audio_mode = get_bits(&s->gb, 6); + if (s->audio_mode >= AMODE_COUNT) { + av_log(s->avctx, AV_LOG_ERROR, "Unsupported audio channel arrangement (%d)\n", s->audio_mode); + return AVERROR_PATCHWELCOME; + } + + // Core audio sampling frequency + s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)]; + if (!s->sample_rate) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid core audio sampling frequency\n"); + return AVERROR_INVALIDDATA; + } + + // Transmission bit rate + s->bit_rate = ff_dca_bit_rates[get_bits(&s->gb, 5)]; + + // Reserved field + skip_bits1(&s->gb); + + // Embedded dynamic range flag + s->drc_present = get_bits1(&s->gb); + + // Embedded time stamp flag + s->ts_present = get_bits1(&s->gb); + + // Auxiliary data flag + s->aux_present = get_bits1(&s->gb); + + // HDCD mastering flag + skip_bits1(&s->gb); + + // Extension audio descriptor flag + s->ext_audio_type = get_bits(&s->gb, 3); + + // Extended coding flag + s->ext_audio_present = get_bits1(&s->gb); + + // Audio sync word insertion flag + s->sync_ssf = get_bits1(&s->gb); + + // Low frequency effects flag + s->lfe_present = get_bits(&s->gb, 2); + if (s->lfe_present == LFE_FLAG_INVALID) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid low frequency effects flag\n"); + return AVERROR_INVALIDDATA; + } + + // Predictor history flag switch + s->predictor_history = get_bits1(&s->gb); + + // Header CRC check bytes + if (s->crc_present) + skip_bits(&s->gb, 16); + + // Multirate interpolator switch + s->filter_perfect = get_bits1(&s->gb); + + // Encoder software revision + skip_bits(&s->gb, 4); + + // Copy history + skip_bits(&s->gb, 2); + + // Source PCM resolution + s->source_pcm_res = ff_dca_bits_per_sample[pcmr_index = get_bits(&s->gb, 3)]; + if (!s->source_pcm_res) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid source PCM resolution\n"); + return AVERROR_INVALIDDATA; + } + s->es_format = pcmr_index & 1; + + // Front sum/difference flag + s->sumdiff_front = get_bits1(&s->gb); + + // Surround sum/difference flag + s->sumdiff_surround = get_bits1(&s->gb); + + // Dialog normalization / unspecified + skip_bits(&s->gb, 4); + + return 0; +} + +// 5.3.2 - Primary audio coding header +static int parse_coding_header(DCACoreDecoder *s, enum HeaderType header, int xch_base) +{ + int n, ch, nchannels, header_size = 0, header_pos = get_bits_count(&s->gb); + unsigned int mask, index; + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + switch (header) { + case HEADER_CORE: + // Number of subframes + s->nsubframes = get_bits(&s->gb, 4) + 1; + + // Number of primary audio channels + s->nchannels = get_bits(&s->gb, 3) + 1; + if (s->nchannels != ff_dca_channels[s->audio_mode]) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid number of primary audio channels (%d) for audio channel arrangement (%d)\n", s->nchannels, s->audio_mode); + return AVERROR_INVALIDDATA; + } + av_assert1(s->nchannels <= DCA_CHANNELS - 2); + + s->ch_mask = audio_mode_ch_mask[s->audio_mode]; + + // Add LFE channel if present + if (s->lfe_present) + s->ch_mask |= DCA_SPEAKER_MASK_LFE1; + break; + + case HEADER_XCH: + s->nchannels = ff_dca_channels[s->audio_mode] + 1; + av_assert1(s->nchannels <= DCA_CHANNELS - 1); + s->ch_mask |= DCA_SPEAKER_MASK_Cs; + break; + + case HEADER_XXCH: + // Channel set header length + header_size = get_bits(&s->gb, 7) + 1; + + // Check CRC + if (s->xxch_crc_present + && (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) + && ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH channel set header checksum\n"); + return AVERROR_INVALIDDATA; + } + + // Number of channels in a channel set + nchannels = get_bits(&s->gb, 3) + 1; + if (nchannels > DCA_XXCH_CHANNELS_MAX) { + avpriv_request_sample(s->avctx, "%d XXCH channels", nchannels); + return AVERROR_PATCHWELCOME; + } + s->nchannels = ff_dca_channels[s->audio_mode] + nchannels; + av_assert1(s->nchannels <= DCA_CHANNELS); + + // Loudspeaker layout mask + mask = get_bits_long(&s->gb, s->xxch_mask_nbits - DCA_SPEAKER_Cs); + s->xxch_spkr_mask = mask << DCA_SPEAKER_Cs; + + if (av_popcount(s->xxch_spkr_mask) != nchannels) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH speaker layout mask (%#x)\n", s->xxch_spkr_mask); + return AVERROR_INVALIDDATA; + } + + if (s->xxch_core_mask & s->xxch_spkr_mask) { + av_log(s->avctx, AV_LOG_ERROR, "XXCH speaker layout mask (%#x) overlaps with core (%#x)\n", s->xxch_spkr_mask, s->xxch_core_mask); + return AVERROR_INVALIDDATA; + } + + // Combine core and XXCH masks together + s->ch_mask = s->xxch_core_mask | s->xxch_spkr_mask; + + // Downmix coefficients present in stream + if (get_bits1(&s->gb)) { + int *coeff_ptr = s->xxch_dmix_coeff; + + // Downmix already performed by encoder + s->xxch_dmix_embedded = get_bits1(&s->gb); + + // Downmix scale factor + index = get_bits(&s->gb, 6) * 4 - FF_DCA_DMIXTABLE_OFFSET - 3; + if (index >= FF_DCA_INV_DMIXTABLE_SIZE) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix scale index (%d)\n", index); + return AVERROR_INVALIDDATA; + } + s->xxch_dmix_scale_inv = ff_dca_inv_dmixtable[index]; + + // Downmix channel mapping mask + for (ch = 0; ch < nchannels; ch++) { + mask = get_bits_long(&s->gb, s->xxch_mask_nbits); + if ((mask & s->xxch_core_mask) != mask) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix channel mapping mask (%#x)\n", mask); + return AVERROR_INVALIDDATA; + } + s->xxch_dmix_mask[ch] = mask; + } + + // Downmix coefficients + for (ch = 0; ch < nchannels; ch++) { + for (n = 0; n < s->xxch_mask_nbits; n++) { + if (s->xxch_dmix_mask[ch] & (1U << n)) { + int code = get_bits(&s->gb, 7); + int sign = (code >> 6) - 1; + if (code &= 63) { + index = code * 4 - 3; + if (index >= FF_DCA_DMIXTABLE_SIZE) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix coefficient index (%d)\n", index); + return AVERROR_INVALIDDATA; + } + *coeff_ptr++ = (ff_dca_dmixtable[index] ^ sign) - sign; + } else { + *coeff_ptr++ = 0; + } + } + } + } + } else { + s->xxch_dmix_embedded = 0; + } + + break; + } + + // Subband activity count + for (ch = xch_base; ch < s->nchannels; ch++) { + s->nsubbands[ch] = get_bits(&s->gb, 5) + 2; + if (s->nsubbands[ch] > DCA_SUBBANDS) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid subband activity count\n"); + return AVERROR_INVALIDDATA; + } + } + + // High frequency VQ start subband + for (ch = xch_base; ch < s->nchannels; ch++) + s->subband_vq_start[ch] = get_bits(&s->gb, 5) + 1; + + // Joint intensity coding index + for (ch = xch_base; ch < s->nchannels; ch++) { + if ((n = get_bits(&s->gb, 3)) && header == HEADER_XXCH) + n += xch_base - 1; + if (n > s->nchannels) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid joint intensity coding index\n"); + return AVERROR_INVALIDDATA; + } + s->joint_intensity_index[ch] = n; + } + + // Transient mode code book + for (ch = xch_base; ch < s->nchannels; ch++) + s->transition_mode_sel[ch] = get_bits(&s->gb, 2); + + // Scale factor code book + for (ch = xch_base; ch < s->nchannels; ch++) { + s->scale_factor_sel[ch] = get_bits(&s->gb, 3); + if (s->scale_factor_sel[ch] == 7) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor code book\n"); + return AVERROR_INVALIDDATA; + } + } + + // Bit allocation quantizer select + for (ch = xch_base; ch < s->nchannels; ch++) { + s->bit_allocation_sel[ch] = get_bits(&s->gb, 3); + if (s->bit_allocation_sel[ch] == 7) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation quantizer select\n"); + return AVERROR_INVALIDDATA; + } + } + + // Quantization index codebook select + for (n = 0; n < DCA_CODE_BOOKS; n++) + for (ch = xch_base; ch < s->nchannels; ch++) + s->quant_index_sel[ch][n] = get_bits(&s->gb, quant_index_sel_nbits[n]); + + // Scale factor adjustment index + for (n = 0; n < DCA_CODE_BOOKS; n++) + for (ch = xch_base; ch < s->nchannels; ch++) + if (s->quant_index_sel[ch][n] < quant_index_group_size[n]) + s->scale_factor_adj[ch][n] = ff_dca_scale_factor_adj[get_bits(&s->gb, 2)]; + + if (header == HEADER_XXCH) { + // Reserved + // Byte align + // CRC16 of channel set header + if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set header\n"); + return AVERROR_INVALIDDATA; + } + } else { + // Audio header CRC check word + if (s->crc_present) + skip_bits(&s->gb, 16); + } + + return 0; +} + +static inline int parse_scale(DCACoreDecoder *s, int *scale_index, int sel) +{ + const uint32_t *scale_table; + unsigned int scale_size; + + // Select the root square table + if (sel > 5) { + scale_table = ff_dca_scale_factor_quant7; + scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7); + } else { + scale_table = ff_dca_scale_factor_quant6; + scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6); + } + + // If Huffman code was used, the difference of scales was encoded + if (sel < 5) + *scale_index += get_vlc(&s->gb, &vlc_scale_factor, sel); + else + *scale_index = get_bits(&s->gb, sel + 1); + + // Look up scale factor from the root square table + if ((unsigned int)*scale_index >= scale_size) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor index\n"); + return AVERROR_INVALIDDATA; + } + + return scale_table[*scale_index]; +} + +static inline int parse_joint_scale(DCACoreDecoder *s, int sel) +{ + int scale_index; + + // Absolute value was encoded even when Huffman code was used + if (sel < 5) + scale_index = get_vlc(&s->gb, &vlc_scale_factor, sel); + else + scale_index = get_bits(&s->gb, sel + 1); + + // Bias by 64 + scale_index += 64; + + // Look up joint scale factor + if ((unsigned int)scale_index >= FF_ARRAY_ELEMS(ff_dca_joint_scale_factors)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor index\n"); + return AVERROR_INVALIDDATA; + } + + return ff_dca_joint_scale_factors[scale_index]; +} + +// 5.4.1 - Primary audio coding side information +static int parse_subframe_header(DCACoreDecoder *s, int sf, + enum HeaderType header, int xch_base) +{ + int ch, band, ret; + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + if (header == HEADER_CORE) { + // Subsubframe count + s->nsubsubframes[sf] = get_bits(&s->gb, 2) + 1; + + // Partial subsubframe sample count + skip_bits(&s->gb, 3); + } + + // Prediction mode + for (ch = xch_base; ch < s->nchannels; ch++) + for (band = 0; band < s->nsubbands[ch]; band++) + s->prediction_mode[ch][band] = get_bits1(&s->gb); + + // Prediction coefficients VQ address + for (ch = xch_base; ch < s->nchannels; ch++) + for (band = 0; band < s->nsubbands[ch]; band++) + if (s->prediction_mode[ch][band]) + s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12); + + // Bit allocation index + for (ch = xch_base; ch < s->nchannels; ch++) { + int sel = s->bit_allocation_sel[ch]; + + for (band = 0; band < s->subband_vq_start[ch]; band++) { + int abits; + + if (sel < 5) + abits = get_vlc(&s->gb, &vlc_bit_allocation, sel); + else + abits = get_bits(&s->gb, sel - 1); + + if (abits > DCA_ABITS_MAX) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation index\n"); + return AVERROR_INVALIDDATA; + } + + s->bit_allocation[ch][band] = abits; + } + } + + // Transition mode + for (ch = xch_base; ch < s->nchannels; ch++) { + // Clear transition mode for all subbands + memset(s->transition_mode[sf][ch], 0, sizeof(s->transition_mode[0][0])); + + // Transient possible only if more than one subsubframe + if (s->nsubsubframes[sf] > 1) { + int sel = s->transition_mode_sel[ch]; + for (band = 0; band < s->subband_vq_start[ch]; band++) + if (s->bit_allocation[ch][band]) + s->transition_mode[sf][ch][band] = get_vlc(&s->gb, &vlc_transition_mode, sel); + } + } + + // Scale factors + for (ch = xch_base; ch < s->nchannels; ch++) { + int sel = s->scale_factor_sel[ch]; + int scale_index = 0; + + // Extract scales for subbands up to VQ + for (band = 0; band < s->subband_vq_start[ch]; band++) { + if (s->bit_allocation[ch][band]) { + if ((ret = parse_scale(s, &scale_index, sel)) < 0) + return ret; + s->scale_factors[ch][band][0] = ret; + if (s->transition_mode[sf][ch][band]) { + if ((ret = parse_scale(s, &scale_index, sel)) < 0) + return ret; + s->scale_factors[ch][band][1] = ret; + } + } else { + s->scale_factors[ch][band][0] = 0; + } + } + + // High frequency VQ subbands + for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) { + if ((ret = parse_scale(s, &scale_index, sel)) < 0) + return ret; + s->scale_factors[ch][band][0] = ret; + } + } + + // Joint subband codebook select + for (ch = xch_base; ch < s->nchannels; ch++) { + if (s->joint_intensity_index[ch]) { + s->joint_scale_sel[ch] = get_bits(&s->gb, 3); + if (s->joint_scale_sel[ch] == 7) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor code book\n"); + return AVERROR_INVALIDDATA; + } + } + } + + // Scale factors for joint subband coding + for (ch = xch_base; ch < s->nchannels; ch++) { + int src_ch = s->joint_intensity_index[ch] - 1; + if (src_ch >= 0) { + int sel = s->joint_scale_sel[ch]; + for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) { + if ((ret = parse_joint_scale(s, sel)) < 0) + return ret; + s->joint_scale_factors[ch][band] = ret; + } + } + } + + // Dynamic range coefficient + if (s->drc_present && header == HEADER_CORE) + skip_bits(&s->gb, 8); + + // Side information CRC check word + if (s->crc_present) + skip_bits(&s->gb, 16); + + return 0; +} + +#ifndef decode_blockcodes +static inline int decode_blockcodes(int code1, int code2, int levels, int32_t *audio) +{ + int offset = (levels - 1) / 2; + int n, div; + + for (n = 0; n < DCA_SUBBAND_SAMPLES / 2; n++) { + div = FASTDIV(code1, levels); + audio[n] = code1 - div * levels - offset; + code1 = div; + } + for (; n < DCA_SUBBAND_SAMPLES; n++) { + div = FASTDIV(code2, levels); + audio[n] = code2 - div * levels - offset; + code2 = div; + } + + return code1 | code2; +} +#endif + +static inline int parse_block_codes(DCACoreDecoder *s, int32_t *audio, int abits) +{ + // Extract block code indices from the bit stream + int code1 = get_bits(&s->gb, block_code_nbits[abits - 1]); + int code2 = get_bits(&s->gb, block_code_nbits[abits - 1]); + int levels = ff_dca_quant_levels[abits]; + + // Look up samples from the block code book + if (decode_blockcodes(code1, code2, levels, audio)) { + av_log(s->avctx, AV_LOG_ERROR, "Failed to decode block code(s)\n"); + return AVERROR_INVALIDDATA; + } + + return 0; +} + +static inline int parse_huffman_codes(DCACoreDecoder *s, int32_t *audio, int abits, int sel) +{ + int i; + + // Extract Huffman codes from the bit stream + for (i = 0; i < DCA_SUBBAND_SAMPLES; i++) + audio[i] = get_vlc(&s->gb, &vlc_quant_index[abits - 1], sel); + + return 1; +} + +static inline int extract_audio(DCACoreDecoder *s, int32_t *audio, int abits, int ch) +{ + av_assert1(abits >= 0 && abits <= DCA_ABITS_MAX); + + if (abits == 0) { + // No bits allocated + memset(audio, 0, DCA_SUBBAND_SAMPLES * sizeof(*audio)); + return 0; + } + + if (abits <= DCA_CODE_BOOKS) { + int sel = s->quant_index_sel[ch][abits - 1]; + if (sel < quant_index_group_size[abits - 1]) { + // Huffman codes + return parse_huffman_codes(s, audio, abits, sel); + } + if (abits <= 7) { + // Block codes + return parse_block_codes(s, audio, abits); + } + } + + // No further encoding + get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3); + return 0; +} + +static inline void dequantize(int32_t *output, const int32_t *input, + int32_t step_size, int32_t scale, int residual) +{ + // Account for quantizer step size + int64_t step_scale = (int64_t)step_size * scale; + int n, shift = 0; + + // Limit scale factor resolution to 22 bits + if (step_scale > (1 << 23)) { + shift = av_log2(step_scale >> 23) + 1; + step_scale >>= shift; + } + + // Scale the samples + if (residual) { + for (n = 0; n < DCA_SUBBAND_SAMPLES; n++) + output[n] += clip23(norm__(input[n] * step_scale, 22 - shift)); + } else { + for (n = 0; n < DCA_SUBBAND_SAMPLES; n++) + output[n] = clip23(norm__(input[n] * step_scale, 22 - shift)); + } +} + +static inline void inverse_adpcm(int32_t **subband_samples, + const int16_t *vq_index, + const int8_t *prediction_mode, + int sb_start, int sb_end, + int ofs, int len) +{ + int i, j, k; + + for (i = sb_start; i < sb_end; i++) { + if (prediction_mode[i]) { + const int16_t *coeff = ff_dca_adpcm_vb[vq_index[i]]; + int32_t *ptr = subband_samples[i] + ofs; + for (j = 0; j < len; j++) { + int64_t err = 0; + for (k = 0; k < DCA_ADPCM_COEFFS; k++) + err += (int64_t)ptr[j - k - 1] * coeff[k]; + ptr[j] = clip23(ptr[j] + clip23(norm13(err))); + } + } + } +} + +// 5.5 - Primary audio data arrays +static int parse_subframe_audio(DCACoreDecoder *s, int sf, enum HeaderType header, + int xch_base, int *sub_pos, int *lfe_pos) +{ + int32_t audio[16], scale; + int n, ssf, ofs, ch, band; + + // Check number of subband samples in this subframe + int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES; + if (*sub_pos + nsamples > s->npcmblocks) { + av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); + return AVERROR_INVALIDDATA; + } + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + // VQ encoded subbands + for (ch = xch_base; ch < s->nchannels; ch++) { + int32_t vq_index[DCA_SUBBANDS]; + + for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) + // Extract the VQ address from the bit stream + vq_index[band] = get_bits(&s->gb, 10); + + if (s->subband_vq_start[ch] < s->nsubbands[ch]) { + s->dcadsp->decode_hf(s->subband_samples[ch], vq_index, + ff_dca_high_freq_vq, s->scale_factors[ch], + s->subband_vq_start[ch], s->nsubbands[ch], + *sub_pos, nsamples); + } + } + + // Low frequency effect data + if (s->lfe_present && header == HEADER_CORE) { + unsigned int index; + + // Determine number of LFE samples in this subframe + int nlfesamples = 2 * s->lfe_present * s->nsubsubframes[sf]; + av_assert1((unsigned int)nlfesamples <= FF_ARRAY_ELEMS(audio)); + + // Extract LFE samples from the bit stream + get_array(&s->gb, audio, nlfesamples, 8); + + // Extract scale factor index from the bit stream + index = get_bits(&s->gb, 8); + if (index >= FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE scale factor index\n"); + return AVERROR_INVALIDDATA; + } + + // Look up the 7-bit root square quantization table + scale = ff_dca_scale_factor_quant7[index]; + + // Account for quantizer step size which is 0.035 + scale = mul23(4697620 /* 0.035 * (1 << 27) */, scale); + + // Scale and take the LFE samples + for (n = 0, ofs = *lfe_pos; n < nlfesamples; n++, ofs++) + s->lfe_samples[ofs] = clip23(audio[n] * scale >> 4); + + // Advance LFE sample pointer for the next subframe + *lfe_pos = ofs; + } + + // Audio data + for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { + for (ch = xch_base; ch < s->nchannels; ch++) { + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + // Not high frequency VQ subbands + for (band = 0; band < s->subband_vq_start[ch]; band++) { + int ret, trans_ssf, abits = s->bit_allocation[ch][band]; + int32_t step_size; + + // Extract bits from the bit stream + if ((ret = extract_audio(s, audio, abits, ch)) < 0) + return ret; + + // Select quantization step size table and look up + // quantization step size + if (s->bit_rate == 3) + step_size = ff_dca_lossless_quant[abits]; + else + step_size = ff_dca_lossy_quant[abits]; + + // Identify transient location + trans_ssf = s->transition_mode[sf][ch][band]; + + // Determine proper scale factor + if (trans_ssf == 0 || ssf < trans_ssf) + scale = s->scale_factors[ch][band][0]; + else + scale = s->scale_factors[ch][band][1]; + + // Adjust scale factor when SEL indicates Huffman code + if (ret > 0) { + int64_t adj = s->scale_factor_adj[ch][abits - 1]; + scale = clip23(adj * scale >> 22); + } + + dequantize(s->subband_samples[ch][band] + ofs, + audio, step_size, scale, 0); + } + } + + // DSYNC + if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { + av_log(s->avctx, AV_LOG_ERROR, "DSYNC check failed\n"); + return AVERROR_INVALIDDATA; + } + + ofs += DCA_SUBBAND_SAMPLES; + } + + // Inverse ADPCM + for (ch = xch_base; ch < s->nchannels; ch++) { + inverse_adpcm(s->subband_samples[ch], s->prediction_vq_index[ch], + s->prediction_mode[ch], 0, s->nsubbands[ch], + *sub_pos, nsamples); + } + + // Joint subband coding + for (ch = xch_base; ch < s->nchannels; ch++) { + int src_ch = s->joint_intensity_index[ch] - 1; + if (src_ch >= 0) { + s->dcadsp->decode_joint(s->subband_samples[ch], s->subband_samples[src_ch], + s->joint_scale_factors[ch], s->nsubbands[ch], + s->nsubbands[src_ch], *sub_pos, nsamples); + } + } + + // Advance subband sample pointer for the next subframe + *sub_pos = ofs; + return 0; +} + +static void erase_adpcm_history(DCACoreDecoder *s) +{ + int ch, band; + + // Erase ADPCM history from previous frame if + // predictor history switch was disabled + for (ch = 0; ch < DCA_CHANNELS; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) + AV_ZERO128(s->subband_samples[ch][band] - DCA_ADPCM_COEFFS); +} + +static int alloc_sample_buffer(DCACoreDecoder *s) +{ + int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks; + int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS; + int nlfesamples = DCA_LFE_HISTORY + s->npcmblocks / 2; + unsigned int size = s->subband_size; + int ch, band; + + // Reallocate subband sample buffer + av_fast_mallocz(&s->subband_buffer, &s->subband_size, + (nframesamples + nlfesamples) * sizeof(int32_t)); + if (!s->subband_buffer) + return AVERROR(ENOMEM); + + if (size != s->subband_size) { + for (ch = 0; ch < DCA_CHANNELS; ch++) + for (band = 0; band < DCA_SUBBANDS; band++) + s->subband_samples[ch][band] = s->subband_buffer + + (ch * DCA_SUBBANDS + band) * nchsamples + DCA_ADPCM_COEFFS; + s->lfe_samples = s->subband_buffer + nframesamples; + } + + if (!s->predictor_history) + erase_adpcm_history(s); + + return 0; +} + +static int parse_frame_data(DCACoreDecoder *s, enum HeaderType header, int xch_base) +{ + int sf, ch, ret, band, sub_pos, lfe_pos; + + if ((ret = parse_coding_header(s, header, xch_base)) < 0) + return ret; + + for (sf = 0, sub_pos = 0, lfe_pos = DCA_LFE_HISTORY; sf < s->nsubframes; sf++) { + if ((ret = parse_subframe_header(s, sf, header, xch_base)) < 0) + return ret; + if ((ret = parse_subframe_audio(s, sf, header, xch_base, &sub_pos, &lfe_pos)) < 0) + return ret; + } + + for (ch = xch_base; ch < s->nchannels; ch++) { + // Determine number of active subbands for this channel + int nsubbands = s->nsubbands[ch]; + if (s->joint_intensity_index[ch]) + nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]); + + // Update history for ADPCM + for (band = 0; band < nsubbands; band++) { + int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS; + AV_COPY128(samples, samples + s->npcmblocks); + } + + // Clear inactive subbands + for (; band < DCA_SUBBANDS; band++) { + int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS; + memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t)); + } + } + + return 0; +} + +static int parse_xch_frame(DCACoreDecoder *s) +{ + int ret; + + if (s->ch_mask & DCA_SPEAKER_MASK_Cs) { + av_log(s->avctx, AV_LOG_ERROR, "XCH with Cs speaker already present\n"); + return AVERROR_INVALIDDATA; + } + + if ((ret = parse_frame_data(s, HEADER_XCH, s->nchannels)) < 0) + return ret; + + // Seek to the end of core frame, don't trust XCH frame size + if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of XCH frame\n"); + return AVERROR_INVALIDDATA; + } + + return 0; +} + +static int parse_xxch_frame(DCACoreDecoder *s) +{ + int xxch_nchsets, xxch_frame_size; + int ret, mask, header_size, header_pos = get_bits_count(&s->gb); + + // XXCH sync word + if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XXCH) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH sync word\n"); + return AVERROR_INVALIDDATA; + } + + // XXCH frame header length + header_size = get_bits(&s->gb, 6) + 1; + + // Check XXCH frame header CRC + if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) + && ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH frame header checksum\n"); + return AVERROR_INVALIDDATA; + } + + // CRC presence flag for channel set header + s->xxch_crc_present = get_bits1(&s->gb); + + // Number of bits for loudspeaker mask + s->xxch_mask_nbits = get_bits(&s->gb, 5) + 1; + if (s->xxch_mask_nbits <= DCA_SPEAKER_Cs) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XXCH speaker mask (%d)\n", s->xxch_mask_nbits); + return AVERROR_INVALIDDATA; + } + + // Number of channel sets + xxch_nchsets = get_bits(&s->gb, 2) + 1; + if (xxch_nchsets > 1) { + avpriv_request_sample(s->avctx, "%d XXCH channel sets", xxch_nchsets); + return AVERROR_PATCHWELCOME; + } + + // Channel set 0 data byte size + xxch_frame_size = get_bits(&s->gb, 14) + 1; + + // Core loudspeaker activity mask + s->xxch_core_mask = get_bits_long(&s->gb, s->xxch_mask_nbits); + + // Validate the core mask + mask = s->ch_mask; + + if ((mask & DCA_SPEAKER_MASK_Ls) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss)) + mask = (mask & ~DCA_SPEAKER_MASK_Ls) | DCA_SPEAKER_MASK_Lss; + + if ((mask & DCA_SPEAKER_MASK_Rs) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss)) + mask = (mask & ~DCA_SPEAKER_MASK_Rs) | DCA_SPEAKER_MASK_Rss; + + if (mask != s->xxch_core_mask) { + av_log(s->avctx, AV_LOG_ERROR, "XXCH core speaker activity mask (%#x) disagrees with core (%#x)\n", s->xxch_core_mask, mask); + return AVERROR_INVALIDDATA; + } + + // Reserved + // Byte align + // CRC16 of XXCH frame header + if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH frame header\n"); + return AVERROR_INVALIDDATA; + } + + // Parse XXCH channel set 0 + if ((ret = parse_frame_data(s, HEADER_XXCH, s->nchannels)) < 0) + return ret; + + if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8 + xxch_frame_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set\n"); + return AVERROR_INVALIDDATA; + } + + return 0; +} + +static int parse_xbr_subframe(DCACoreDecoder *s, int xbr_base_ch, int xbr_nchannels, + int *xbr_nsubbands, int xbr_transition_mode, int sf, int *sub_pos) +{ + int xbr_nabits[DCA_CHANNELS]; + int xbr_bit_allocation[DCA_CHANNELS][DCA_SUBBANDS]; + int xbr_scale_nbits[DCA_CHANNELS]; + int32_t xbr_scale_factors[DCA_CHANNELS][DCA_SUBBANDS][2]; + int ssf, ch, band, ofs; + + // Check number of subband samples in this subframe + if (*sub_pos + s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES > s->npcmblocks) { + av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); + return AVERROR_INVALIDDATA; + } + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + // Number of bits for XBR bit allocation index + for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) + xbr_nabits[ch] = get_bits(&s->gb, 2) + 2; + + // XBR bit allocation index + for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { + for (band = 0; band < xbr_nsubbands[ch]; band++) { + xbr_bit_allocation[ch][band] = get_bits(&s->gb, xbr_nabits[ch]); + if (xbr_bit_allocation[ch][band] > DCA_ABITS_MAX) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR bit allocation index\n"); + return AVERROR_INVALIDDATA; + } + } + } + + // Number of bits for scale indices + for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { + xbr_scale_nbits[ch] = get_bits(&s->gb, 3); + if (!xbr_scale_nbits[ch]) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XBR scale factor index\n"); + return AVERROR_INVALIDDATA; + } + } + + // XBR scale factors + for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { + const uint32_t *scale_table; + int scale_size; + + // Select the root square table + if (s->scale_factor_sel[ch] > 5) { + scale_table = ff_dca_scale_factor_quant7; + scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7); + } else { + scale_table = ff_dca_scale_factor_quant6; + scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6); + } + + // Parse scale factor indices and look up scale factors from the root + // square table + for (band = 0; band < xbr_nsubbands[ch]; band++) { + if (xbr_bit_allocation[ch][band]) { + int scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]); + if (scale_index >= scale_size) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n"); + return AVERROR_INVALIDDATA; + } + xbr_scale_factors[ch][band][0] = scale_table[scale_index]; + if (xbr_transition_mode && s->transition_mode[sf][ch][band]) { + scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]); + if (scale_index >= scale_size) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n"); + return AVERROR_INVALIDDATA; + } + xbr_scale_factors[ch][band][1] = scale_table[scale_index]; + } + } + } + } + + // Audio data + for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { + for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + for (band = 0; band < xbr_nsubbands[ch]; band++) { + int ret, trans_ssf, abits = xbr_bit_allocation[ch][band]; + int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale; + + // Extract bits from the bit stream + if (abits > 7) { + // No further encoding + get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3); + } else if (abits > 0) { + // Block codes + if ((ret = parse_block_codes(s, audio, abits)) < 0) + return ret; + } else { + // No bits allocated + continue; + } + + // Look up quantization step size + step_size = ff_dca_lossless_quant[abits]; + + // Identify transient location + if (xbr_transition_mode) + trans_ssf = s->transition_mode[sf][ch][band]; + else + trans_ssf = 0; + + // Determine proper scale factor + if (trans_ssf == 0 || ssf < trans_ssf) + scale = xbr_scale_factors[ch][band][0]; + else + scale = xbr_scale_factors[ch][band][1]; + + dequantize(s->subband_samples[ch][band] + ofs, + audio, step_size, scale, 1); + } + } + + // DSYNC + if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { + av_log(s->avctx, AV_LOG_ERROR, "XBR-DSYNC check failed\n"); + return AVERROR_INVALIDDATA; + } + + ofs += DCA_SUBBAND_SAMPLES; + } + + // Advance subband sample pointer for the next subframe + *sub_pos = ofs; + return 0; +} + +static int parse_xbr_frame(DCACoreDecoder *s) +{ + int xbr_frame_size[DCA_EXSS_CHSETS_MAX]; + int xbr_nchannels[DCA_EXSS_CHSETS_MAX]; + int xbr_nsubbands[DCA_EXSS_CHSETS_MAX * DCA_EXSS_CHANNELS_MAX]; + int xbr_nchsets, xbr_transition_mode, xbr_band_nbits, xbr_base_ch; + int i, ch1, ch2, ret, header_size, header_pos = get_bits_count(&s->gb); + + // XBR sync word + if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XBR) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR sync word\n"); + return AVERROR_INVALIDDATA; + } + + // XBR frame header length + header_size = get_bits(&s->gb, 6) + 1; + + // Check XBR frame header CRC + if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) + && ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR frame header checksum\n"); + return AVERROR_INVALIDDATA; + } + + // Number of channel sets + xbr_nchsets = get_bits(&s->gb, 2) + 1; + + // Channel set data byte size + for (i = 0; i < xbr_nchsets; i++) + xbr_frame_size[i] = get_bits(&s->gb, 14) + 1; + + // Transition mode flag + xbr_transition_mode = get_bits1(&s->gb); + + // Channel set headers + for (i = 0, ch2 = 0; i < xbr_nchsets; i++) { + xbr_nchannels[i] = get_bits(&s->gb, 3) + 1; + xbr_band_nbits = get_bits(&s->gb, 2) + 5; + for (ch1 = 0; ch1 < xbr_nchannels[i]; ch1++, ch2++) { + xbr_nsubbands[ch2] = get_bits(&s->gb, xbr_band_nbits) + 1; + if (xbr_nsubbands[ch2] > DCA_SUBBANDS) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid number of active XBR subbands (%d)\n", xbr_nsubbands[ch2]); + return AVERROR_INVALIDDATA; + } + } + } + + // Reserved + // Byte align + // CRC16 of XBR frame header + if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR frame header\n"); + return AVERROR_INVALIDDATA; + } + + // Channel set data + for (i = 0, xbr_base_ch = 0; i < xbr_nchsets; i++) { + header_pos = get_bits_count(&s->gb); + + if (xbr_base_ch + xbr_nchannels[i] <= s->nchannels) { + int sf, sub_pos; + + for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) { + if ((ret = parse_xbr_subframe(s, xbr_base_ch, + xbr_base_ch + xbr_nchannels[i], + xbr_nsubbands, xbr_transition_mode, + sf, &sub_pos)) < 0) + return ret; + } + } + + xbr_base_ch += xbr_nchannels[i]; + + if (ff_dca_seek_bits(&s->gb, header_pos + xbr_frame_size[i] * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR channel set\n"); + return AVERROR_INVALIDDATA; + } + } + + return 0; +} + +// Modified ISO/IEC 9899 linear congruential generator +// Returns pseudorandom integer in range [-2^30, 2^30 - 1] +static int rand_x96(DCACoreDecoder *s) +{ + s->x96_rand = 1103515245U * s->x96_rand + 12345U; + return (s->x96_rand & 0x7fffffff) - 0x40000000; +} + +static int parse_x96_subframe_audio(DCACoreDecoder *s, int sf, int xch_base, int *sub_pos) +{ + int n, ssf, ch, band, ofs; + + // Check number of subband samples in this subframe + int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES; + if (*sub_pos + nsamples > s->npcmblocks) { + av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); + return AVERROR_INVALIDDATA; + } + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + // VQ encoded or unallocated subbands + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { + // Get the sample pointer and scale factor + int32_t *samples = s->x96_subband_samples[ch][band] + *sub_pos; + int32_t scale = s->scale_factors[ch][band >> 1][band & 1]; + + switch (s->bit_allocation[ch][band]) { + case 0: // No bits allocated for subband + if (scale <= 1) + memset(samples, 0, nsamples * sizeof(int32_t)); + else for (n = 0; n < nsamples; n++) + // Generate scaled random samples + samples[n] = mul31(rand_x96(s), scale); + break; + + case 1: // VQ encoded subband + for (ssf = 0; ssf < (s->nsubsubframes[sf] + 1) / 2; ssf++) { + // Extract the VQ address from the bit stream and look up + // the VQ code book for up to 16 subband samples + const int8_t *vq_samples = ff_dca_high_freq_vq[get_bits(&s->gb, 10)]; + // Scale and take the samples + for (n = 0; n < FFMIN(nsamples - ssf * 16, 16); n++) + *samples++ = clip23(vq_samples[n] * scale + (1 << 3) >> 4); + } + break; + } + } + } + + // Audio data + for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { + int ret, abits = s->bit_allocation[ch][band] - 1; + int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale; + + // Not VQ encoded or unallocated subbands + if (abits < 1) + continue; + + // Extract bits from the bit stream + if ((ret = extract_audio(s, audio, abits, ch)) < 0) + return ret; + + // Select quantization step size table and look up quantization + // step size + if (s->bit_rate == 3) + step_size = ff_dca_lossless_quant[abits]; + else + step_size = ff_dca_lossy_quant[abits]; + + // Get the scale factor + scale = s->scale_factors[ch][band >> 1][band & 1]; + + dequantize(s->x96_subband_samples[ch][band] + ofs, + audio, step_size, scale, 0); + } + } + + // DSYNC + if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { + av_log(s->avctx, AV_LOG_ERROR, "X96-DSYNC check failed\n"); + return AVERROR_INVALIDDATA; + } + + ofs += DCA_SUBBAND_SAMPLES; + } + + // Inverse ADPCM + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + inverse_adpcm(s->x96_subband_samples[ch], s->prediction_vq_index[ch], + s->prediction_mode[ch], s->x96_subband_start, s->nsubbands[ch], + *sub_pos, nsamples); + } + + // Joint subband coding + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + int src_ch = s->joint_intensity_index[ch] - 1; + if (src_ch >= 0) { + s->dcadsp->decode_joint(s->x96_subband_samples[ch], s->x96_subband_samples[src_ch], + s->joint_scale_factors[ch], s->nsubbands[ch], + s->nsubbands[src_ch], *sub_pos, nsamples); + } + } + + // Advance subband sample pointer for the next subframe + *sub_pos = ofs; + return 0; +} + +static void erase_x96_adpcm_history(DCACoreDecoder *s) +{ + int ch, band; + + // Erase ADPCM history from previous frame if + // predictor history switch was disabled + for (ch = 0; ch < DCA_CHANNELS; ch++) + for (band = 0; band < DCA_SUBBANDS_X96; band++) + AV_ZERO128(s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS); +} + +static int alloc_x96_sample_buffer(DCACoreDecoder *s) +{ + int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks; + int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS_X96; + unsigned int size = s->x96_subband_size; + int ch, band; + + // Reallocate subband sample buffer + av_fast_mallocz(&s->x96_subband_buffer, &s->x96_subband_size, + nframesamples * sizeof(int32_t)); + if (!s->x96_subband_buffer) + return AVERROR(ENOMEM); + + if (size != s->x96_subband_size) { + for (ch = 0; ch < DCA_CHANNELS; ch++) + for (band = 0; band < DCA_SUBBANDS_X96; band++) + s->x96_subband_samples[ch][band] = s->x96_subband_buffer + + (ch * DCA_SUBBANDS_X96 + band) * nchsamples + DCA_ADPCM_COEFFS; + } + + if (!s->predictor_history) + erase_x96_adpcm_history(s); + + return 0; +} + +static int parse_x96_subframe_header(DCACoreDecoder *s, int xch_base) +{ + int ch, band, ret; + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + // Prediction mode + for (ch = xch_base; ch < s->x96_nchannels; ch++) + for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) + s->prediction_mode[ch][band] = get_bits1(&s->gb); + + // Prediction coefficients VQ address + for (ch = xch_base; ch < s->x96_nchannels; ch++) + for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) + if (s->prediction_mode[ch][band]) + s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12); + + // Bit allocation index + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + int sel = s->bit_allocation_sel[ch]; + int abits = 0; + + for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { + // If Huffman code was used, the difference of abits was encoded + if (sel < 7) + abits += get_vlc(&s->gb, &vlc_quant_index[5 + 2 * s->x96_high_res], sel); + else + abits = get_bits(&s->gb, 3 + s->x96_high_res); + + if (abits < 0 || abits > 7 + 8 * s->x96_high_res) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 bit allocation index\n"); + return AVERROR_INVALIDDATA; + } + + s->bit_allocation[ch][band] = abits; + } + } + + // Scale factors + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + int sel = s->scale_factor_sel[ch]; + int scale_index = 0; + + // Extract scales for subbands which are transmitted even for + // unallocated subbands + for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { + if ((ret = parse_scale(s, &scale_index, sel)) < 0) + return ret; + s->scale_factors[ch][band >> 1][band & 1] = ret; + } + } + + // Joint subband codebook select + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + if (s->joint_intensity_index[ch]) { + s->joint_scale_sel[ch] = get_bits(&s->gb, 3); + if (s->joint_scale_sel[ch] == 7) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint scale factor code book\n"); + return AVERROR_INVALIDDATA; + } + } + } + + // Scale factors for joint subband coding + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + int src_ch = s->joint_intensity_index[ch] - 1; + if (src_ch >= 0) { + int sel = s->joint_scale_sel[ch]; + for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) { + if ((ret = parse_joint_scale(s, sel)) < 0) + return ret; + s->joint_scale_factors[ch][band] = ret; + } + } + } + + // Side information CRC check word + if (s->crc_present) + skip_bits(&s->gb, 16); + + return 0; +} + +static int parse_x96_coding_header(DCACoreDecoder *s, int exss, int xch_base) +{ + int n, ch, header_size = 0, header_pos = get_bits_count(&s->gb); + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + if (exss) { + // Channel set header length + header_size = get_bits(&s->gb, 7) + 1; + + // Check CRC + if (s->x96_crc_present + && (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) + && ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 channel set header checksum\n"); + return AVERROR_INVALIDDATA; + } + } + + // High resolution flag + s->x96_high_res = get_bits1(&s->gb); + + // First encoded subband + if (s->x96_rev_no < 8) { + s->x96_subband_start = get_bits(&s->gb, 5); + if (s->x96_subband_start > 27) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband start index (%d)\n", s->x96_subband_start); + return AVERROR_INVALIDDATA; + } + } else { + s->x96_subband_start = DCA_SUBBANDS; + } + + // Subband activity count + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + s->nsubbands[ch] = get_bits(&s->gb, 6) + 1; + if (s->nsubbands[ch] < DCA_SUBBANDS) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband activity count (%d)\n", s->nsubbands[ch]); + return AVERROR_INVALIDDATA; + } + } + + // Joint intensity coding index + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + if ((n = get_bits(&s->gb, 3)) && xch_base) + n += xch_base - 1; + if (n > s->x96_nchannels) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint intensity coding index\n"); + return AVERROR_INVALIDDATA; + } + s->joint_intensity_index[ch] = n; + } + + // Scale factor code book + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + s->scale_factor_sel[ch] = get_bits(&s->gb, 3); + if (s->scale_factor_sel[ch] >= 6) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 scale factor code book\n"); + return AVERROR_INVALIDDATA; + } + } + + // Bit allocation quantizer select + for (ch = xch_base; ch < s->x96_nchannels; ch++) + s->bit_allocation_sel[ch] = get_bits(&s->gb, 3); + + // Quantization index codebook select + for (n = 0; n < 6 + 4 * s->x96_high_res; n++) + for (ch = xch_base; ch < s->x96_nchannels; ch++) + s->quant_index_sel[ch][n] = get_bits(&s->gb, quant_index_sel_nbits[n]); + + if (exss) { + // Reserved + // Byte align + // CRC16 of channel set header + if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set header\n"); + return AVERROR_INVALIDDATA; + } + } else { + if (s->crc_present) + skip_bits(&s->gb, 16); + } + + return 0; +} + +static int parse_x96_frame_data(DCACoreDecoder *s, int exss, int xch_base) +{ + int sf, ch, ret, band, sub_pos; + + if ((ret = parse_x96_coding_header(s, exss, xch_base)) < 0) + return ret; + + for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) { + if ((ret = parse_x96_subframe_header(s, xch_base)) < 0) + return ret; + if ((ret = parse_x96_subframe_audio(s, sf, xch_base, &sub_pos)) < 0) + return ret; + } + + for (ch = xch_base; ch < s->x96_nchannels; ch++) { + // Determine number of active subbands for this channel + int nsubbands = s->nsubbands[ch]; + if (s->joint_intensity_index[ch]) + nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]); + + // Update history for ADPCM and clear inactive subbands + for (band = 0; band < DCA_SUBBANDS_X96; band++) { + int32_t *samples = s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS; + if (band >= s->x96_subband_start && band < nsubbands) + AV_COPY128(samples, samples + s->npcmblocks); + else + memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t)); + } + } + + return 0; +} + +static int parse_x96_frame(DCACoreDecoder *s) +{ + int ret; + + // Revision number + s->x96_rev_no = get_bits(&s->gb, 4); + if (s->x96_rev_no < 1 || s->x96_rev_no > 8) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no); + return AVERROR_INVALIDDATA; + } + + s->x96_crc_present = 0; + s->x96_nchannels = s->nchannels; + + if ((ret = alloc_x96_sample_buffer(s)) < 0) + return ret; + + if ((ret = parse_x96_frame_data(s, 0, 0)) < 0) + return ret; + + // Seek to the end of core frame + if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame\n"); + return AVERROR_INVALIDDATA; + } + + return 0; +} + +static int parse_x96_frame_exss(DCACoreDecoder *s) +{ + int x96_frame_size[DCA_EXSS_CHSETS_MAX]; + int x96_nchannels[DCA_EXSS_CHSETS_MAX]; + int x96_nchsets, x96_base_ch; + int i, ret, header_size, header_pos = get_bits_count(&s->gb); + + // X96 sync word + if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_X96) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 sync word\n"); + return AVERROR_INVALIDDATA; + } + + // X96 frame header length + header_size = get_bits(&s->gb, 6) + 1; + + // Check X96 frame header CRC + if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) + && ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 frame header checksum\n"); + return AVERROR_INVALIDDATA; + } + + // Revision number + s->x96_rev_no = get_bits(&s->gb, 4); + if (s->x96_rev_no < 1 || s->x96_rev_no > 8) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no); + return AVERROR_INVALIDDATA; + } + + // CRC presence flag for channel set header + s->x96_crc_present = get_bits1(&s->gb); + + // Number of channel sets + x96_nchsets = get_bits(&s->gb, 2) + 1; + + // Channel set data byte size + for (i = 0; i < x96_nchsets; i++) + x96_frame_size[i] = get_bits(&s->gb, 12) + 1; + + // Number of channels in channel set + for (i = 0; i < x96_nchsets; i++) + x96_nchannels[i] = get_bits(&s->gb, 3) + 1; + + // Reserved + // Byte align + // CRC16 of X96 frame header + if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame header\n"); + return AVERROR_INVALIDDATA; + } + + if ((ret = alloc_x96_sample_buffer(s)) < 0) + return ret; + + // Channel set data + for (i = 0, x96_base_ch = 0; i < x96_nchsets; i++) { + header_pos = get_bits_count(&s->gb); + + if (x96_base_ch + x96_nchannels[i] <= s->nchannels) { + s->x96_nchannels = x96_base_ch + x96_nchannels[i]; + if ((ret = parse_x96_frame_data(s, 1, x96_base_ch)) < 0) + return ret; + } + + x96_base_ch += x96_nchannels[i]; + + if (ff_dca_seek_bits(&s->gb, header_pos + x96_frame_size[i] * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set\n"); + return AVERROR_INVALIDDATA; + } + } + + return 0; +} + +static int parse_aux_data(DCACoreDecoder *s) +{ + int aux_pos; + + if (get_bits_left(&s->gb) < 0) + return AVERROR_INVALIDDATA; + + // Auxiliary data byte count (can't be trusted) + skip_bits(&s->gb, 6); + + // 4-byte align + skip_bits_long(&s->gb, -get_bits_count(&s->gb) & 31); + + // Auxiliary data sync word + if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_REV1AUX) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data sync word\n"); + return AVERROR_INVALIDDATA; + } + + aux_pos = get_bits_count(&s->gb); + + // Auxiliary decode time stamp flag + if (get_bits1(&s->gb)) + skip_bits_long(&s->gb, 47); + + // Auxiliary dynamic downmix flag + if (s->prim_dmix_embedded = get_bits1(&s->gb)) { + int i, m, n; + + // Auxiliary primary channel downmix type + s->prim_dmix_type = get_bits(&s->gb, 3); + if (s->prim_dmix_type >= DCA_DMIX_TYPE_COUNT) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid primary channel set downmix type\n"); + return AVERROR_INVALIDDATA; + } + + // Size of downmix coefficients matrix + m = ff_dca_dmix_primary_nch[s->prim_dmix_type]; + n = ff_dca_channels[s->audio_mode] + !!s->lfe_present; + + // Dynamic downmix code coefficients + for (i = 0; i < m * n; i++) { + int code = get_bits(&s->gb, 9); + int sign = (code >> 8) - 1; + unsigned int index = code & 0xff; + if (index >= FF_DCA_DMIXTABLE_SIZE) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid downmix coefficient index\n"); + return AVERROR_INVALIDDATA; + } + s->prim_dmix_coeff[i] = (ff_dca_dmixtable[index] ^ sign) - sign; + } + } + + // Byte align + skip_bits(&s->gb, -get_bits_count(&s->gb) & 7); + + // CRC16 of auxiliary data + skip_bits(&s->gb, 16); + + // Check CRC + if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) + && ff_dca_check_crc(&s->gb, aux_pos, get_bits_count(&s->gb))) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data checksum\n"); + return AVERROR_INVALIDDATA; + } + + return 0; +} + +static int parse_optional_info(DCACoreDecoder *s) +{ + DCAContext *dca = s->avctx->priv_data; + int ret = -1; + + // Time code stamp + if (s->ts_present) + skip_bits_long(&s->gb, 32); + + // Auxiliary data + if (s->aux_present && (ret = parse_aux_data(s)) < 0 + && (s->avctx->err_recognition & AV_EF_EXPLODE)) + return ret; + + if (ret < 0) + s->prim_dmix_embedded = 0; + + // Core extensions + if (s->ext_audio_present && !dca->core_only) { + int sync_pos = FFMIN(s->frame_size / 4, s->gb.size_in_bits / 32) - 1; + int last_pos = get_bits_count(&s->gb) / 32; + int size, dist; + + // Search for extension sync words aligned on 4-byte boundary. Search + // must be done backwards from the end of core frame to work around + // sync word aliasing issues. + switch (s->ext_audio_type) { + case EXT_AUDIO_XCH: + if (dca->request_channel_layout) + break; + + // The distance between XCH sync word and end of the core frame + // must be equal to XCH frame size. Off by one error is allowed for + // compatibility with legacy bitstreams. Minimum XCH frame size is + // 96 bytes. AMODE and PCHS are further checked to reduce + // probability of alias sync detection. + for (; sync_pos >= last_pos; sync_pos--) { + if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XCH) { + s->gb.index = (sync_pos + 1) * 32; + size = get_bits(&s->gb, 10) + 1; + dist = s->frame_size - sync_pos * 4; + if (size >= 96 + && (size == dist || size - 1 == dist) + && get_bits(&s->gb, 7) == 0x08) { + s->xch_pos = get_bits_count(&s->gb); + break; + } + } + } + + if (s->avctx->err_recognition & AV_EF_EXPLODE) { + av_log(s->avctx, AV_LOG_ERROR, "XCH sync word not found\n"); + return AVERROR_INVALIDDATA; + } + break; + + case EXT_AUDIO_X96: + // The distance between X96 sync word and end of the core frame + // must be equal to X96 frame size. Minimum X96 frame size is 96 + // bytes. + for (; sync_pos >= last_pos; sync_pos--) { + if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_X96) { + s->gb.index = (sync_pos + 1) * 32; + size = get_bits(&s->gb, 12) + 1; + dist = s->frame_size - sync_pos * 4; + if (size >= 96 && size == dist) { + s->x96_pos = get_bits_count(&s->gb); + break; + } + } + } + + if (s->avctx->err_recognition & AV_EF_EXPLODE) { + av_log(s->avctx, AV_LOG_ERROR, "X96 sync word not found\n"); + return AVERROR_INVALIDDATA; + } + break; + + case EXT_AUDIO_XXCH: + if (dca->request_channel_layout) + break; + + // XXCH frame header CRC must be valid. Minimum XXCH frame header + // size is 11 bytes. + for (; sync_pos >= last_pos; sync_pos--) { + if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XXCH) { + s->gb.index = (sync_pos + 1) * 32; + size = get_bits(&s->gb, 6) + 1; + if (size >= 11 && + !ff_dca_check_crc(&s->gb, (sync_pos + 1) * 32, + sync_pos * 32 + size * 8)) { + s->xxch_pos = sync_pos * 32; + break; + } + } + } + + if (s->avctx->err_recognition & AV_EF_EXPLODE) { + av_log(s->avctx, AV_LOG_ERROR, "XXCH sync word not found\n"); + return AVERROR_INVALIDDATA; + } + break; + } + } + + return 0; +} + +int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size) +{ + int ret; + + s->ext_audio_mask = 0; + s->xch_pos = s->xxch_pos = s->x96_pos = 0; + + if ((ret = init_get_bits8(&s->gb, data, size)) < 0) + return ret; + + skip_bits_long(&s->gb, 32); + if ((ret = parse_frame_header(s)) < 0) + return ret; + if ((ret = alloc_sample_buffer(s)) < 0) + return ret; + if ((ret = parse_frame_data(s, HEADER_CORE, 0)) < 0) + return ret; + if ((ret = parse_optional_info(s)) < 0) + return ret; + + // Workaround for DTS in WAV + if (s->frame_size > size && s->frame_size < size + 4) { + av_log(s->avctx, AV_LOG_DEBUG, "Working around excessive core frame size (%d > %d)\n", s->frame_size, size); + s->frame_size = size; + } + + if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { + av_log(s->avctx, AV_LOG_ERROR, "Read past end of core frame\n"); + if (s->avctx->err_recognition & AV_EF_EXPLODE) + return AVERROR_INVALIDDATA; + } + + return 0; +} + +int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset) +{ + AVCodecContext *avctx = s->avctx; + DCAContext *dca = avctx->priv_data; + GetBitContext gb = s->gb; + int exss_mask = asset ? asset->extension_mask : 0; + int ret = 0, ext = 0; + + // Parse (X)XCH unless downmixing + if (!dca->request_channel_layout) { + if (exss_mask & DCA_EXSS_XXCH) { + if ((ret = init_get_bits8(&s->gb, data + asset->xxch_offset, asset->xxch_size)) < 0) + return ret; + ret = parse_xxch_frame(s); + ext = DCA_EXSS_XXCH; + } else if (s->xxch_pos) { + s->gb.index = s->xxch_pos; + ret = parse_xxch_frame(s); + ext = DCA_CSS_XXCH; + } else if (s->xch_pos) { + s->gb.index = s->xch_pos; + ret = parse_xch_frame(s); + ext = DCA_CSS_XCH; + } + + // Revert to primary channel set in case (X)XCH parsing fails + if (ret < 0) { + if (avctx->err_recognition & AV_EF_EXPLODE) + return ret; + s->nchannels = ff_dca_channels[s->audio_mode]; + s->ch_mask = audio_mode_ch_mask[s->audio_mode]; + if (s->lfe_present) + s->ch_mask |= DCA_SPEAKER_MASK_LFE1; + } else { + s->ext_audio_mask |= ext; + } + } + + // Parse XBR + if (exss_mask & DCA_EXSS_XBR) { + if ((ret = init_get_bits8(&s->gb, data + asset->xbr_offset, asset->xbr_size)) < 0) + return ret; + if ((ret = parse_xbr_frame(s)) < 0) { + if (avctx->err_recognition & AV_EF_EXPLODE) + return ret; + } else { + s->ext_audio_mask |= DCA_EXSS_XBR; + } + } + + // Parse X96 unless decoding XLL + if (!(dca->packet & DCA_PACKET_XLL)) { + if (exss_mask & DCA_EXSS_X96) { + if ((ret = init_get_bits8(&s->gb, data + asset->x96_offset, asset->x96_size)) < 0) + return ret; + if ((ret = parse_x96_frame_exss(s)) < 0) { + if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) + return ret; + } else { + s->ext_audio_mask |= DCA_EXSS_X96; + } + } else if (s->x96_pos) { + s->gb = gb; + s->gb.index = s->x96_pos; + if ((ret = parse_x96_frame(s)) < 0) { + if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) + return ret; + } else { + s->ext_audio_mask |= DCA_CSS_X96; + } + } + } + + return 0; +} + +static int map_prm_ch_to_spkr(DCACoreDecoder *s, int ch) +{ + int pos, spkr; + + // Try to map this channel to core first + pos = ff_dca_channels[s->audio_mode]; + if (ch < pos) { + spkr = prm_ch_to_spkr_map[s->audio_mode][ch]; + if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) { + if (s->xxch_core_mask & (1U << spkr)) + return spkr; + if (spkr == DCA_SPEAKER_Ls && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss)) + return DCA_SPEAKER_Lss; + if (spkr == DCA_SPEAKER_Rs && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss)) + return DCA_SPEAKER_Rss; + return -1; + } + return spkr; + } + + // Then XCH + if ((s->ext_audio_mask & DCA_CSS_XCH) && ch == pos) + return DCA_SPEAKER_Cs; + + // Then XXCH + if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) { + for (spkr = DCA_SPEAKER_Cs; spkr < s->xxch_mask_nbits; spkr++) + if (s->xxch_spkr_mask & (1U << spkr)) + if (pos++ == ch) + return spkr; + } + + // No mapping + return -1; +} + +static void erase_dsp_history(DCACoreDecoder *s) +{ + memset(s->dcadsp_data, 0, sizeof(s->dcadsp_data)); + s->output_history_lfe_fixed = 0; + s->output_history_lfe_float = 0; +} + +static void set_filter_mode(DCACoreDecoder *s, int mode) +{ + if (s->filter_mode != mode) { + erase_dsp_history(s); + s->filter_mode = mode; + } +} + +int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth) +{ + int n, ch, spkr, nsamples, x96_nchannels = 0; + const int32_t *filter_coeff; + int32_t *ptr; + + // Externally set x96_synth flag implies that X96 synthesis should be + // enabled, yet actual X96 subband data should be discarded. This is a + // special case for lossless residual decoder that ignores X96 data if + // present. + if (!x96_synth && (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96))) { + x96_nchannels = s->x96_nchannels; + x96_synth = 1; + } + if (x96_synth < 0) + x96_synth = 0; + + s->output_rate = s->sample_rate << x96_synth; + s->npcmsamples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth; + + // Reallocate PCM output buffer + av_fast_malloc(&s->output_buffer, &s->output_size, + nsamples * av_popcount(s->ch_mask) * sizeof(int32_t)); + if (!s->output_buffer) + return AVERROR(ENOMEM); + + ptr = (int32_t *)s->output_buffer; + for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) { + if (s->ch_mask & (1U << spkr)) { + s->output_samples[spkr] = ptr; + ptr += nsamples; + } else { + s->output_samples[spkr] = NULL; + } + } + + // Handle change of filtering mode + set_filter_mode(s, x96_synth | DCA_FILTER_MODE_FIXED); + + // Select filter + if (x96_synth) + filter_coeff = ff_dca_fir_64bands_fixed; + else if (s->filter_perfect) + filter_coeff = ff_dca_fir_32bands_perfect_fixed; + else + filter_coeff = ff_dca_fir_32bands_nonperfect_fixed; + + // Filter primary channels + for (ch = 0; ch < s->nchannels; ch++) { + // Map this primary channel to speaker + spkr = map_prm_ch_to_spkr(s, ch); + if (spkr < 0) + return AVERROR(EINVAL); + + // Filter bank reconstruction + s->dcadsp->sub_qmf_fixed[x96_synth]( + &s->synth, + &s->dcadct, + s->output_samples[spkr], + s->subband_samples[ch], + ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL, + s->dcadsp_data[ch].u.fix.hist1, + &s->dcadsp_data[ch].offset, + s->dcadsp_data[ch].u.fix.hist2, + filter_coeff, + s->npcmblocks); + } + + // Filter LFE channel + if (s->lfe_present) { + int32_t *samples = s->output_samples[DCA_SPEAKER_LFE1]; + int nlfesamples = s->npcmblocks >> 1; + + // Check LFF + if (s->lfe_present == LFE_FLAG_128) { + av_log(s->avctx, AV_LOG_ERROR, "Fixed point mode doesn't support LFF=1\n"); + return AVERROR(EINVAL); + } + + // Offset intermediate buffer for X96 + if (x96_synth) + samples += nsamples / 2; + + // Interpolate LFE channel + s->dcadsp->lfe_fir_fixed(samples, s->lfe_samples + DCA_LFE_HISTORY, + ff_dca_lfe_fir_64_fixed, s->npcmblocks); + + if (x96_synth) { + // Filter 96 kHz oversampled LFE PCM to attenuate high frequency + // (47.6 - 48.0 kHz) components of interpolation image + s->dcadsp->lfe_x96_fixed(s->output_samples[DCA_SPEAKER_LFE1], + samples, &s->output_history_lfe_fixed, + nsamples / 2); + + } + + // Update LFE history + for (n = DCA_LFE_HISTORY - 1; n >= 0; n--) + s->lfe_samples[n] = s->lfe_samples[nlfesamples + n]; + } + + return 0; +} + +static int filter_frame_fixed(DCACoreDecoder *s, AVFrame *frame) +{ + AVCodecContext *avctx = s->avctx; + DCAContext *dca = avctx->priv_data; + int i, n, ch, ret, spkr, nsamples; + + // Don't filter twice when falling back from XLL + if (!(dca->packet & DCA_PACKET_XLL) && (ret = ff_dca_core_filter_fixed(s, 0)) < 0) + return ret; + + avctx->sample_rate = s->output_rate; + avctx->sample_fmt = AV_SAMPLE_FMT_S32P; + avctx->bits_per_raw_sample = 24; + + frame->nb_samples = nsamples = s->npcmsamples; + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) + return ret; + + // Undo embedded XCH downmix + if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH) + && s->audio_mode >= AMODE_2F2R) { + s->dcadsp->dmix_sub_xch(s->output_samples[DCA_SPEAKER_Ls], + s->output_samples[DCA_SPEAKER_Rs], + s->output_samples[DCA_SPEAKER_Cs], + nsamples); + + } + + // Undo embedded XXCH downmix + if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) + && s->xxch_dmix_embedded) { + int scale_inv = s->xxch_dmix_scale_inv; + int *coeff_ptr = s->xxch_dmix_coeff; + int xch_base = ff_dca_channels[s->audio_mode]; + av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX); + + // Undo embedded core downmix pre-scaling + for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { + if (s->xxch_core_mask & (1U << spkr)) { + s->dcadsp->dmix_scale_inv(s->output_samples[spkr], + scale_inv, nsamples); + } + } + + // Undo downmix + for (ch = xch_base; ch < s->nchannels; ch++) { + int src_spkr = map_prm_ch_to_spkr(s, ch); + if (src_spkr < 0) + return AVERROR(EINVAL); + for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { + if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) { + int coeff = mul16(*coeff_ptr++, scale_inv); + if (coeff) { + s->dcadsp->dmix_sub(s->output_samples[spkr ], + s->output_samples[src_spkr], + coeff, nsamples); + } + } + } + } + } + + if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) { + // Front sum/difference decoding + if ((s->sumdiff_front && s->audio_mode > AMODE_MONO) + || s->audio_mode == AMODE_STEREO_SUMDIFF) { + s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_L], + s->output_samples[DCA_SPEAKER_R], + nsamples); + } + + // Surround sum/difference decoding + if (s->sumdiff_surround && s->audio_mode >= AMODE_2F2R) { + s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_Ls], + s->output_samples[DCA_SPEAKER_Rs], + nsamples); + } + } + + // Downmix primary channel set to stereo + if (s->request_mask != s->ch_mask) { + ff_dca_downmix_to_stereo_fixed(s->dcadsp, + s->output_samples, + s->prim_dmix_coeff, + nsamples, s->ch_mask); + } + + for (i = 0; i < avctx->channels; i++) { + int32_t *samples = s->output_samples[s->ch_remap[i]]; + int32_t *plane = (int32_t *)frame->extended_data[i]; + for (n = 0; n < nsamples; n++) + plane[n] = clip23(samples[n]) * (1 << 8); + } + + return 0; +} + +static int filter_frame_float(DCACoreDecoder *s, AVFrame *frame) +{ + AVCodecContext *avctx = s->avctx; + int x96_nchannels = 0, x96_synth = 0; + int i, n, ch, ret, spkr, nsamples, nchannels; + float *output_samples[DCA_SPEAKER_COUNT] = { NULL }, *ptr; + const float *filter_coeff; + + if (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96)) { + x96_nchannels = s->x96_nchannels; + x96_synth = 1; + } + + avctx->sample_rate = s->sample_rate << x96_synth; + avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; + avctx->bits_per_raw_sample = 0; + + frame->nb_samples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth; + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) + return ret; + + // Build reverse speaker to channel mapping + for (i = 0; i < avctx->channels; i++) + output_samples[s->ch_remap[i]] = (float *)frame->extended_data[i]; + + // Allocate space for extra channels + nchannels = av_popcount(s->ch_mask) - avctx->channels; + if (nchannels > 0) { + av_fast_malloc(&s->output_buffer, &s->output_size, + nsamples * nchannels * sizeof(float)); + if (!s->output_buffer) + return AVERROR(ENOMEM); + + ptr = (float *)s->output_buffer; + for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) { + if (!(s->ch_mask & (1U << spkr))) + continue; + if (output_samples[spkr]) + continue; + output_samples[spkr] = ptr; + ptr += nsamples; + } + } + + // Handle change of filtering mode + set_filter_mode(s, x96_synth); + + // Select filter + if (x96_synth) + filter_coeff = ff_dca_fir_64bands; + else if (s->filter_perfect) + filter_coeff = ff_dca_fir_32bands_perfect; + else + filter_coeff = ff_dca_fir_32bands_nonperfect; + + // Filter primary channels + for (ch = 0; ch < s->nchannels; ch++) { + // Map this primary channel to speaker + spkr = map_prm_ch_to_spkr(s, ch); + if (spkr < 0) + return AVERROR(EINVAL); + + // Filter bank reconstruction + s->dcadsp->sub_qmf_float[x96_synth]( + &s->synth, + &s->imdct[x96_synth], + output_samples[spkr], + s->subband_samples[ch], + ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL, + s->dcadsp_data[ch].u.flt.hist1, + &s->dcadsp_data[ch].offset, + s->dcadsp_data[ch].u.flt.hist2, + filter_coeff, + s->npcmblocks, + 1.0f / (1 << (17 - x96_synth))); + } + + // Filter LFE channel + if (s->lfe_present) { + int dec_select = (s->lfe_present == LFE_FLAG_128); + float *samples = output_samples[DCA_SPEAKER_LFE1]; + int nlfesamples = s->npcmblocks >> (dec_select + 1); + + // Offset intermediate buffer for X96 + if (x96_synth) + samples += nsamples / 2; + + // Select filter + if (dec_select) + filter_coeff = ff_dca_lfe_fir_128; + else + filter_coeff = ff_dca_lfe_fir_64; + + // Interpolate LFE channel + s->dcadsp->lfe_fir_float[dec_select]( + samples, s->lfe_samples + DCA_LFE_HISTORY, + filter_coeff, s->npcmblocks); + + if (x96_synth) { + // Filter 96 kHz oversampled LFE PCM to attenuate high frequency + // (47.6 - 48.0 kHz) components of interpolation image + s->dcadsp->lfe_x96_float(output_samples[DCA_SPEAKER_LFE1], + samples, &s->output_history_lfe_float, + nsamples / 2); + } + + // Update LFE history + for (n = DCA_LFE_HISTORY - 1; n >= 0; n--) + s->lfe_samples[n] = s->lfe_samples[nlfesamples + n]; + } + + // Undo embedded XCH downmix + if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH) + && s->audio_mode >= AMODE_2F2R) { + s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Ls], + output_samples[DCA_SPEAKER_Cs], + -M_SQRT1_2, nsamples); + s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Rs], + output_samples[DCA_SPEAKER_Cs], + -M_SQRT1_2, nsamples); + } + + // Undo embedded XXCH downmix + if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) + && s->xxch_dmix_embedded) { + float scale_inv = s->xxch_dmix_scale_inv * (1.0f / (1 << 16)); + int *coeff_ptr = s->xxch_dmix_coeff; + int xch_base = ff_dca_channels[s->audio_mode]; + av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX); + + // Undo downmix + for (ch = xch_base; ch < s->nchannels; ch++) { + int src_spkr = map_prm_ch_to_spkr(s, ch); + if (src_spkr < 0) + return AVERROR(EINVAL); + for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { + if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) { + int coeff = *coeff_ptr++; + if (coeff) { + s->float_dsp->vector_fmac_scalar(output_samples[ spkr], + output_samples[src_spkr], + coeff * (-1.0f / (1 << 15)), + nsamples); + } + } + } + } + + // Undo embedded core downmix pre-scaling + for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { + if (s->xxch_core_mask & (1U << spkr)) { + s->float_dsp->vector_fmul_scalar(output_samples[spkr], + output_samples[spkr], + scale_inv, nsamples); + } + } + } + + if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) { + // Front sum/difference decoding + if ((s->sumdiff_front && s->audio_mode > AMODE_MONO) + || s->audio_mode == AMODE_STEREO_SUMDIFF) { + s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_L], + output_samples[DCA_SPEAKER_R], + nsamples); + } + + // Surround sum/difference decoding + if (s->sumdiff_surround && s->audio_mode >= AMODE_2F2R) { + s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_Ls], + output_samples[DCA_SPEAKER_Rs], + nsamples); + } + } + + // Downmix primary channel set to stereo + if (s->request_mask != s->ch_mask) { + ff_dca_downmix_to_stereo_float(s->float_dsp, output_samples, + s->prim_dmix_coeff, + nsamples, s->ch_mask); + } + + return 0; +} + +int ff_dca_core_filter_frame(DCACoreDecoder *s, AVFrame *frame) +{ + AVCodecContext *avctx = s->avctx; + DCAContext *dca = avctx->priv_data; + DCAExssAsset *asset = &dca->exss.assets[0]; + enum AVMatrixEncoding matrix_encoding; + int ret; + + // Handle downmixing to stereo request + if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO + && s->audio_mode > AMODE_MONO && s->prim_dmix_embedded + && (s->prim_dmix_type == DCA_DMIX_TYPE_LoRo || + s->prim_dmix_type == DCA_DMIX_TYPE_LtRt)) + s->request_mask = DCA_SPEAKER_LAYOUT_STEREO; + else + s->request_mask = s->ch_mask; + if (!ff_dca_set_channel_layout(avctx, s->ch_remap, s->request_mask)) + return AVERROR(EINVAL); + + // Force fixed point mode when falling back from XLL + if ((avctx->flags & AV_CODEC_FLAG_BITEXACT) || ((dca->packet & DCA_PACKET_EXSS) + && (asset->extension_mask & DCA_EXSS_XLL))) + ret = filter_frame_fixed(s, frame); + else + ret = filter_frame_float(s, frame); + if (ret < 0) + return ret; + + // Set profile, bit rate, etc + if (s->ext_audio_mask & DCA_EXSS_MASK) + avctx->profile = FF_PROFILE_DTS_HD_HRA; + else if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH)) + avctx->profile = FF_PROFILE_DTS_ES; + else if (s->ext_audio_mask & DCA_CSS_X96) + avctx->profile = FF_PROFILE_DTS_96_24; + else + avctx->profile = FF_PROFILE_DTS; + + if (s->bit_rate > 3 && !(s->ext_audio_mask & DCA_EXSS_MASK)) + avctx->bit_rate = s->bit_rate; + else + avctx->bit_rate = 0; + + if (s->audio_mode == AMODE_STEREO_TOTAL || (s->request_mask != s->ch_mask && + s->prim_dmix_type == DCA_DMIX_TYPE_LtRt)) + matrix_encoding = AV_MATRIX_ENCODING_DOLBY; + else + matrix_encoding = AV_MATRIX_ENCODING_NONE; + if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0) + return ret; + + return 0; +} + +av_cold void ff_dca_core_flush(DCACoreDecoder *s) +{ + if (s->subband_buffer) { + erase_adpcm_history(s); + memset(s->lfe_samples, 0, DCA_LFE_HISTORY * sizeof(int32_t)); + } + + if (s->x96_subband_buffer) + erase_x96_adpcm_history(s); + + erase_dsp_history(s); +} + +av_cold int ff_dca_core_init(DCACoreDecoder *s) +{ + dca_init_vlcs(); + + if (!(s->float_dsp = avpriv_float_dsp_alloc(0))) + return -1; + if (!(s->fixed_dsp = avpriv_alloc_fixed_dsp(0))) + return -1; + + ff_dcadct_init(&s->dcadct); + if (ff_mdct_init(&s->imdct[0], 6, 1, 1.0) < 0) + return -1; + if (ff_mdct_init(&s->imdct[1], 7, 1, 1.0) < 0) + return -1; + ff_synth_filter_init(&s->synth); + + s->x96_rand = 1; + return 0; +} + +av_cold void ff_dca_core_close(DCACoreDecoder *s) +{ + av_freep(&s->float_dsp); + av_freep(&s->fixed_dsp); + + ff_mdct_end(&s->imdct[0]); + ff_mdct_end(&s->imdct[1]); + + av_freep(&s->subband_buffer); + s->subband_size = 0; + + av_freep(&s->x96_subband_buffer); + s->x96_subband_size = 0; + + av_freep(&s->output_buffer); + s->output_size = 0; +} |