aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacenc_tns.c
diff options
context:
space:
mode:
authorRostislav Pehlivanov <atomnuker@gmail.com>2015-09-12 13:04:27 +0100
committerRostislav Pehlivanov <atomnuker@gmail.com>2015-09-12 13:04:27 +0100
commita83a8d70681a7093ff4bd8232b8f75fed3d6af48 (patch)
treea28f3bc5df2467018713f86169a622150fdce7a9 /libavcodec/aacenc_tns.c
parent33be39efe31326dc787efc54f5077e4c4b97896c (diff)
downloadffmpeg-a83a8d70681a7093ff4bd8232b8f75fed3d6af48.tar.gz
aacenc_tns: redo coefficient quantization and decision making
This finally (and again) gets rid of basically everything the specifications say about how TNS should be done. The main problem used to be that a single filter was used for all coefficients which despite being explicitly recommended by the specifications usually sounds wrong, therefore it's a corner case in the current TNS implementation. This commit also changes the coefficient bit size, as apparently it's better to use lower precision in case the windows are eight short. This is apparently what fdk_aac uses, looking at the bit stream and makes sense. Also the order when 8 SHORT windows happen is important as 7 was too much and according to PSNR was worse while 5 is just about correct. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec/aacenc_tns.c')
-rw-r--r--libavcodec/aacenc_tns.c60
1 files changed, 34 insertions, 26 deletions
diff --git a/libavcodec/aacenc_tns.c b/libavcodec/aacenc_tns.c
index 637b81385e..da353d65c5 100644
--- a/libavcodec/aacenc_tns.c
+++ b/libavcodec/aacenc_tns.c
@@ -67,20 +67,6 @@ void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
}
}
-static inline void quantize_coefs(double *coef, int *idx, float *lpc, int order)
-{
- int i;
- uint8_t u_coef;
- const float *quant_arr = tns_tmp2_map[TNS_Q_BITS == 4];
- const double iqfac_p = ((1 << (TNS_Q_BITS-1)) - 0.5)/(M_PI/2.0);
- const double iqfac_m = ((1 << (TNS_Q_BITS-1)) + 0.5)/(M_PI/2.0);
- for (i = 0; i < order; i++) {
- idx[i] = ceilf(asin(coef[i])*((coef[i] >= 0) ? iqfac_p : iqfac_m));
- u_coef = (idx[i])&(~(~0<<TNS_Q_BITS));
- lpc[i] = quant_arr[u_coef];
- }
-}
-
/* Apply TNS filter */
void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
{
@@ -122,22 +108,41 @@ void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
}
}
+/*
+ * c_bits - 1 if 4 bit coefficients, 0 if 3 bit coefficients
+ */
+static inline void quantize_coefs(double *coef, int *idx, float *lpc, int order,
+ int c_bits)
+{
+ int i;
+ const float *quant_arr = tns_tmp2_map[c_bits];
+ for (i = 0; i < order; i++) {
+ idx[i] = quant_array_idx((float)coef[i], quant_arr, c_bits ? 16 : 8);
+ lpc[i] = quant_arr[idx[i]];
+ }
+}
+
+/*
+ * 3 bits per coefficient with 8 short windows
+ */
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
{
TemporalNoiseShaping *tns = &sce->tns;
int w, w2, g, count = 0;
const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb);
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
- const int order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
+ const int c_bits = is8 ? TNS_Q_BITS_SHORT == 4 : TNS_Q_BITS == 4;
int sfb_start = av_clip(tns_min_sfb[is8][s->samplerate_index], 0, mmm);
int sfb_end = av_clip(sce->ics.num_swb, 0, mmm);
for (w = 0; w < sce->ics.num_windows; w++) {
- float e_ratio = 0.0f, threshold = 0.0f, spread = 0.0f, en[2] = {0.0, 0.0f};
- double gain = 0.0f, coefs[MAX_LPC_ORDER] = {0};
+ int use_tns;
+ int order = is8 ? 5 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
int coef_start = w*sce->ics.num_swb + sce->ics.swb_offset[sfb_start];
int coef_len = sce->ics.swb_offset[sfb_end] - sce->ics.swb_offset[sfb_start];
+ float e_ratio = 0.0f, threshold = 0.0f, spread = 0.0f, en[2] = {0.0, 0.0f};
+ double gain = 0.0f, coefs[MAX_LPC_ORDER] = {0};
for (g = 0; g < sce->ics.num_swb; g++) {
if (w*16+g < sfb_start || w*16+g > sfb_end)
@@ -149,22 +154,26 @@ void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
else
en[0] += band->energy;
threshold += band->threshold;
- spread += band->spread;
+ spread += band->spread;
}
}
if (coef_len <= 0 || (sfb_end - sfb_start) <= 0)
continue;
- else
- e_ratio = en[0]/en[1];
/* LPC */
gain = ff_lpc_calc_ref_coefs_f(&s->lpc, &sce->coeffs[coef_start],
coef_len, order, coefs);
- if (gain > TNS_GAIN_THRESHOLD_LOW && gain < TNS_GAIN_THRESHOLD_HIGH &&
- (en[0]+en[1]) > TNS_GAIN_THRESHOLD_LOW*threshold &&
- spread < TNS_SPREAD_THRESHOLD && order) {
+ if (!order || gain < TNS_GAIN_THRESHOLD_LOW || gain > TNS_GAIN_THRESHOLD_HIGH)
+ use_tns = 0;
+ else if ((en[0]+en[1]) < TNS_GAIN_THRESHOLD_LOW*threshold || spread < TNS_SPREAD_THRESHOLD)
+ use_tns = 0;
+ else
+ use_tns = 1;
+
+ if (use_tns) {
+ e_ratio = en[0]/en[1];
if (is8 || order < 2 || (e_ratio > TNS_E_RATIO_LOW && e_ratio < TNS_E_RATIO_HIGH)) {
tns->n_filt[w] = 1;
for (g = 0; g < tns->n_filt[w]; g++) {
@@ -172,7 +181,7 @@ void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
tns->direction[w][g] = en[0] < en[1];
tns->order[w][g] = order;
quantize_coefs(coefs, tns->coef_idx[w][g], tns->coef[w][g],
- order);
+ order, c_bits);
}
} else { /* 2 filters due to energy disbalance */
tns->n_filt[w] = 2;
@@ -183,12 +192,11 @@ void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
(sfb_end - sfb_start) - tns->length[w][g-1];
quantize_coefs(&coefs[!g ? 0 : order - tns->order[w][g-1]],
tns->coef_idx[w][g], tns->coef[w][g],
- tns->order[w][g]);
+ tns->order[w][g], c_bits);
}
}
count++;
}
}
-
sce->tns.present = !!count;
}