aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorWenbin Chen <wenbin.chen@intel.com>2023-11-21 10:20:17 +0800
committerGuo Yejun <yejun.guo@intel.com>2023-11-26 20:15:55 +0800
commitcaa5d123a710e11686458ff563a99a0fabc4f55c (patch)
tree37a55a765bff6bca2d1eef509dd903dfddb1e321
parent2020ef9770d6bdf4ed2d8a32595d0e70afd2db8f (diff)
downloadffmpeg-caa5d123a710e11686458ff563a99a0fabc4f55c.tar.gz
libavfilter/vf_dnn_detect: Add model_type option.
There are many kinds of detection DNN model and they have different preprocess and postprocess methods. To support more models, "model_type" option is added to help to choose preprocess and postprocess function. Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>
-rw-r--r--libavfilter/vf_dnn_detect.c42
1 files changed, 35 insertions, 7 deletions
diff --git a/libavfilter/vf_dnn_detect.c b/libavfilter/vf_dnn_detect.c
index b5dae42c65..9db90ee4cf 100644
--- a/libavfilter/vf_dnn_detect.c
+++ b/libavfilter/vf_dnn_detect.c
@@ -31,6 +31,10 @@
#include "libavutil/avstring.h"
#include "libavutil/detection_bbox.h"
+typedef enum {
+ DDMT_SSD
+} DNNDetectionModelType;
+
typedef struct DnnDetectContext {
const AVClass *class;
DnnContext dnnctx;
@@ -38,6 +42,7 @@ typedef struct DnnDetectContext {
char *labels_filename;
char **labels;
int label_count;
+ DNNDetectionModelType model_type;
} DnnDetectContext;
#define OFFSET(x) offsetof(DnnDetectContext, dnnctx.x)
@@ -54,12 +59,14 @@ static const AVOption dnn_detect_options[] = {
DNN_COMMON_OPTIONS
{ "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS},
{ "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
+ { "model_type", "DNN detection model type", OFFSET2(model_type), AV_OPT_TYPE_INT, { .i64 = DDMT_SSD }, INT_MIN, INT_MAX, FLAGS, "model_type" },
+ { "ssd", "output shape [1, 1, N, 7]", 0, AV_OPT_TYPE_CONST, { .i64 = DDMT_SSD }, 0, 0, FLAGS, "model_type" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dnn_detect);
-static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
+static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;
float conf_threshold = ctx->confidence;
@@ -67,14 +74,12 @@ static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterCont
int detect_size = output->width;
float *detections = output->data;
int nb_bboxes = 0;
- AVFrameSideData *sd;
- AVDetectionBBox *bbox;
AVDetectionBBoxHeader *header;
+ AVDetectionBBox *bbox;
- sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
- if (sd) {
- av_log(filter_ctx, AV_LOG_ERROR, "already have bounding boxes in side data.\n");
- return -1;
+ if (output->width != 7) {
+ av_log(filter_ctx, AV_LOG_ERROR, "Model output shape doesn't match ssd requirement.\n");
+ return AVERROR(EINVAL);
}
for (int i = 0; i < proposal_count; ++i) {
@@ -135,6 +140,29 @@ static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterCont
return 0;
}
+static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
+{
+ AVFrameSideData *sd;
+ DnnDetectContext *ctx = filter_ctx->priv;
+ int ret = 0;
+
+ sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
+ if (sd) {
+ av_log(filter_ctx, AV_LOG_ERROR, "already have bounding boxes in side data.\n");
+ return -1;
+ }
+
+ switch (ctx->model_type) {
+ case DDMT_SSD:
+ ret = dnn_detect_post_proc_ssd(frame, output, filter_ctx);
+ if (ret < 0)
+ return ret;
+ break;
+ }
+
+ return 0;
+}
+
static int dnn_detect_post_proc_tf(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
{
DnnDetectContext *ctx = filter_ctx->priv;