diff options
author | Paul B Mahol <onemda@gmail.com> | 2018-12-22 16:19:21 +0100 |
---|---|---|
committer | Paul B Mahol <onemda@gmail.com> | 2018-12-22 16:19:21 +0100 |
commit | 7ea4b928a2649ea03c0ef0d3f519d302391da410 (patch) | |
tree | 94266e83683ae24efb9bdc16aa760965139320f5 | |
parent | d62cb29716a555728ab2679d2fe1a867addd8287 (diff) | |
download | ffmpeg-7ea4b928a2649ea03c0ef0d3f519d302391da410.tar.gz |
avfilter/af_sofalizer: fix non-power of 2 IR length filtering in time domain
-rw-r--r-- | libavfilter/af_sofalizer.c | 45 |
1 files changed, 25 insertions, 20 deletions
diff --git a/libavfilter/af_sofalizer.c b/libavfilter/af_sofalizer.c index 6b189cffea..3557b28709 100644 --- a/libavfilter/af_sofalizer.c +++ b/libavfilter/af_sofalizer.c @@ -43,7 +43,8 @@ typedef struct MySofa { /* contains data of one SOFA file */ struct MYSOFA_EASY *easy; - int n_samples; /* length of one impulse response (IR) */ + int ir_samples; /* length of one impulse response (IR) */ + int n_samples; /* ir_samples to next power of 2 */ float *lir, *rir; /* IRs (time-domain) */ int max_delay; } MySofa; @@ -126,7 +127,8 @@ static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) if (mysofa->DataSamplingRate.elements != 1) return AVERROR(EINVAL); *samplingrate = mysofa->DataSamplingRate.values[0]; - s->sofa.n_samples = mysofa->N; + s->sofa.ir_samples = mysofa->N; + s->sofa.n_samples = 1 << (32 - ff_clz(s->sofa.ir_samples)); license = mysofa_getAttribute(mysofa->attributes, (char *)"License"); if (license) av_log(ctx, AV_LOG_INFO, "SOFA license: %s\n", license); @@ -291,7 +293,8 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n int *n_clippings = &td->n_clippings[jobnr]; float *ringbuffer = td->ringbuffer[jobnr]; float *temp_src = td->temp_src[jobnr]; - const int n_samples = s->sofa.n_samples; /* length of one IR */ + const int ir_samples = s->sofa.ir_samples; /* length of one IR */ + const int n_samples = s->sofa.n_samples; const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */ float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */ const int in_channels = s->n_conv; /* number of input channels */ @@ -327,7 +330,7 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n /* LFE is an input channel but requires no convolution */ /* apply gain to LFE signal and add to output buffer */ *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe; - temp_ir += FFALIGN(n_samples, 32); + temp_ir += n_samples; continue; } @@ -346,8 +349,8 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n } /* multiply signal and IR, and add up the results */ - dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples); - temp_ir += FFALIGN(n_samples, 32); + dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_samples, 32)); + temp_ir += n_samples; } /* clippings counter */ @@ -563,6 +566,7 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int { struct SOFAlizerContext *s = ctx->priv; int n_samples; + int ir_samples; int n_conv = s->n_conv; /* no. channels to convolve */ int n_fft; float delay_l; /* broadband delay for each IR */ @@ -588,9 +592,10 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int } n_samples = s->sofa.n_samples; + ir_samples = s->sofa.ir_samples; - s->data_ir[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); - s->data_ir[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); + s->data_ir[0] = av_calloc(n_samples, sizeof(float) * s->n_conv); + s->data_ir[1] = av_calloc(n_samples, sizeof(float) * s->n_conv); s->delay[0] = av_calloc(s->n_conv, sizeof(int)); s->delay[1] = av_calloc(s->n_conv, sizeof(int)); @@ -600,16 +605,16 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int } /* get temporary IR for L and R channel */ - data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_l)); - data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_r)); + data_ir_l = av_calloc(n_conv * n_samples, sizeof(*data_ir_l)); + data_ir_r = av_calloc(n_conv * n_samples, sizeof(*data_ir_r)); if (!data_ir_r || !data_ir_l) { ret = AVERROR(ENOMEM); goto fail; } if (s->type == TIME_DOMAIN) { - s->temp_src[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); - s->temp_src[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); + s->temp_src[0] = av_calloc(n_samples, sizeof(float)); + s->temp_src[1] = av_calloc(n_samples, sizeof(float)); if (!s->temp_src[0] || !s->temp_src[1]) { ret = AVERROR(ENOMEM); goto fail; @@ -644,8 +649,8 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int /* get id of IR closest to desired position */ mysofa_getfilter_float(s->sofa.easy, coordinates[0], coordinates[1], coordinates[2], - data_ir_l + FFALIGN(n_samples, 32) * i, - data_ir_r + FFALIGN(n_samples, 32) * i, + data_ir_l + n_samples * i, + data_ir_r + n_samples * i, &delay_l, &delay_r); s->delay[0][i] = delay_l * sample_rate; @@ -656,7 +661,7 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int /* get size of ringbuffer (longest IR plus max. delay) */ /* then choose next power of 2 for performance optimization */ - n_current = s->sofa.n_samples + s->sofa.max_delay; + n_current = n_samples + s->sofa.max_delay; /* length of longest IR plus max. delay */ n_max = FFMAX(n_max, n_current); @@ -721,24 +726,24 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int for (i = 0; i < s->n_conv; i++) { float *lir, *rir; - offset = i * FFALIGN(n_samples, 32); /* no. samples already written */ + offset = i * n_samples; /* no. samples already written */ lir = data_ir_l + offset; rir = data_ir_r + offset; if (s->type == TIME_DOMAIN) { - for (j = 0; j < n_samples; j++) { + for (j = 0; j < ir_samples; j++) { /* load reversed IRs of the specified source position * sample-by-sample for left and right ear; and apply gain */ - s->data_ir[0][offset + j] = lir[n_samples - 1 - j] * gain_lin; - s->data_ir[1][offset + j] = rir[n_samples - 1 - j] * gain_lin; + s->data_ir[0][offset + j] = lir[ir_samples - 1 - j] * gain_lin; + s->data_ir[1][offset + j] = rir[ir_samples - 1 - j] * gain_lin; } } else { memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); offset = i * n_fft; /* no. samples already written */ - for (j = 0; j < n_samples; j++) { + for (j = 0; j < ir_samples; j++) { /* load non-reversed IRs of the specified source position * sample-by-sample and apply gain, * L channel is loaded to real part, R channel to imag part, |