aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorPaul B Mahol <onemda@gmail.com>2016-01-23 17:15:53 +0100
committerPaul B Mahol <onemda@gmail.com>2016-02-01 13:16:15 +0100
commit79991b2288a92010811b7b72c682aae4afed0668 (patch)
treeeb47adcf0ce563f356a9be9a4439c7a307f7225d
parent75f3e5e082264010020099a06111c5dcfae68c98 (diff)
downloadffmpeg-79991b2288a92010811b7b72c682aae4afed0668.tar.gz
avfilter: add nnedi filter
Port of nnedi3 vapoursynth filter. Signed-off-by: Paul B Mahol <onemda@gmail.com>
-rw-r--r--Changelog1
-rwxr-xr-xconfigure1
-rw-r--r--doc/filters.texi109
-rw-r--r--libavfilter/Makefile1
-rw-r--r--libavfilter/allfilters.c1
-rw-r--r--libavfilter/version.h2
-rw-r--r--libavfilter/vf_nnedi.c1211
7 files changed, 1325 insertions, 1 deletions
diff --git a/Changelog b/Changelog
index 04e044e421..2f2ca3e630 100644
--- a/Changelog
+++ b/Changelog
@@ -63,6 +63,7 @@ version <next>:
- Cineform HD decoder
- new DCA decoder with full support for DTS-HD extensions
- significant performance improvements in Windows Television (WTV) demuxer
+- nnedi deinterlacer
version 2.8:
diff --git a/configure b/configure
index c17224ca7f..c415d5ab76 100755
--- a/configure
+++ b/configure
@@ -2873,6 +2873,7 @@ mpdecimate_filter_deps="gpl"
mpdecimate_filter_select="pixelutils"
mptestsrc_filter_deps="gpl"
negate_filter_deps="lut_filter"
+nnedi_filter_deps="gpl"
ocr_filter_deps="libtesseract"
ocv_filter_deps="libopencv"
owdenoise_filter_deps="gpl"
diff --git a/doc/filters.texi b/doc/filters.texi
index 1169498433..664ebe8ca6 100644
--- a/doc/filters.texi
+++ b/doc/filters.texi
@@ -8490,6 +8490,115 @@ Negate input video.
It accepts an integer in input; if non-zero it negates the
alpha component (if available). The default value in input is 0.
+@section nnedi
+
+Deinterlace video using neural network edge directed interpolation.
+
+This filter accepts the following options:
+
+@table @option
+@item weights
+Mandatory option, without binary file filter can not work.
+Currently file can be found here:
+https://github.com/dubhater/vapoursynth-nnedi3/blob/master/src/nnedi3_weights.bin
+
+@item deint
+Set which frames to deinterlace, by default it is @code{all}.
+Can be @code{all} or @code{interlaced}.
+
+@item field
+Set mode of operation.
+
+Can be one of the following:
+
+@table @samp
+@item af
+Use frame flags, both fields.
+@item a
+Use frame flags, single field.
+@item t
+Use top field only.
+@item b
+Use bottom field only.
+@item ft
+Use both fields, top first.
+@item fb
+Use both fields, bottom first.
+@end table
+
+@item planes
+Set which planes to process, by default filter process all frames.
+
+@item nsize
+Set size of local neighborhood around each pixel, used by the predictor neural
+network.
+
+Can be one of the following:
+
+@table @samp
+@item s8x6
+@item s16x6
+@item s32x6
+@item s48x6
+@item s8x4
+@item s16x4
+@item s32x4
+@end table
+
+@item nns
+Set the number of neurons in predicctor neural network.
+Can be one of the following:
+
+@table @samp
+@item n16
+@item n32
+@item n64
+@item n128
+@item n256
+@end table
+
+@item qual
+Controls the number of different neural network predictions that are blended
+together to compute the final output value. Can be @code{fast}, default or
+@code{slow}.
+
+@item etype
+Set which set of weights to use in the predictor.
+Can be one of the following:
+
+@table @samp
+@item a
+weights trained to minimize absolute error
+@item s
+weights trained to minimize squared error
+@end table
+
+@item pscrn
+Controls whether or not the prescreener neural network is used to decide
+which pixels should be processed by the predictor neural network and which
+can be handled by simple cubic interpolation.
+The prescreener is trained to know whether cubic interpolation will be
+sufficient for a pixel or whether it should be predicted by the predictor nn.
+The computational complexity of the prescreener nn is much less than that of
+the predictor nn. Since most pixels can be handled by cubic interpolation,
+using the prescreener generally results in much faster processing.
+The prescreener is pretty accurate, so the difference between using it and not
+using it is almost always unnoticeable.
+
+Can be one of the following:
+
+@table @samp
+@item none
+@item original
+@item new
+@end table
+
+Default is @code{new}.
+
+@item fapprox
+Set various debugging flags.
+@end table
+
@section noformat
Force libavfilter not to use any of the specified pixel formats for the
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index b93e5f26ee..e76d18e89d 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -187,6 +187,7 @@ OBJS-$(CONFIG_MCDEINT_FILTER) += vf_mcdeint.o
OBJS-$(CONFIG_MERGEPLANES_FILTER) += vf_mergeplanes.o framesync.o
OBJS-$(CONFIG_MPDECIMATE_FILTER) += vf_mpdecimate.o
OBJS-$(CONFIG_NEGATE_FILTER) += vf_lut.o
+OBJS-$(CONFIG_NNEDI_FILTER) += vf_nnedi.o
OBJS-$(CONFIG_NOFORMAT_FILTER) += vf_format.o
OBJS-$(CONFIG_NOISE_FILTER) += vf_noise.o
OBJS-$(CONFIG_NULL_FILTER) += vf_null.o
diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
index 1d48970300..27d54bcec7 100644
--- a/libavfilter/allfilters.c
+++ b/libavfilter/allfilters.c
@@ -208,6 +208,7 @@ void avfilter_register_all(void)
REGISTER_FILTER(MERGEPLANES, mergeplanes, vf);
REGISTER_FILTER(MPDECIMATE, mpdecimate, vf);
REGISTER_FILTER(NEGATE, negate, vf);
+ REGISTER_FILTER(NNEDI, nnedi, vf);
REGISTER_FILTER(NOFORMAT, noformat, vf);
REGISTER_FILTER(NOISE, noise, vf);
REGISTER_FILTER(NULL, null, vf);
diff --git a/libavfilter/version.h b/libavfilter/version.h
index 71e2cc5511..55ba68b7bd 100644
--- a/libavfilter/version.h
+++ b/libavfilter/version.h
@@ -30,7 +30,7 @@
#include "libavutil/version.h"
#define LIBAVFILTER_VERSION_MAJOR 6
-#define LIBAVFILTER_VERSION_MINOR 27
+#define LIBAVFILTER_VERSION_MINOR 28
#define LIBAVFILTER_VERSION_MICRO 100
#define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \
diff --git a/libavfilter/vf_nnedi.c b/libavfilter/vf_nnedi.c
new file mode 100644
index 0000000000..6880d30663
--- /dev/null
+++ b/libavfilter/vf_nnedi.c
@@ -0,0 +1,1211 @@
+/*
+ * Copyright (C) 2010-2011 Kevin Stone
+ * Copyright (C) 2016 Paul B Mahol
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <float.h>
+
+#include "libavutil/common.h"
+#include "libavutil/float_dsp.h"
+#include "libavutil/imgutils.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+#include "avfilter.h"
+#include "formats.h"
+#include "internal.h"
+#include "video.h"
+
+typedef struct FrameData {
+ uint8_t *paddedp[3];
+ int padded_stride[3];
+ int padded_width[3];
+ int padded_height[3];
+
+ uint8_t *dstp[3];
+ int dst_stride[3];
+
+ int field[3];
+
+ int32_t *lcount[3];
+ float *input;
+ float *temp;
+} FrameData;
+
+typedef struct NNEDIContext {
+ const AVClass *class;
+
+ char *weights_file;
+
+ AVFrame *src;
+ AVFrame *second;
+ AVFrame *dst;
+ int eof;
+ int64_t cur_pts;
+
+ AVFloatDSPContext *fdsp;
+ int nb_planes;
+ int linesize[4];
+ int planeheight[4];
+
+ float *weights0;
+ float *weights1[2];
+ int asize;
+ int nns;
+ int xdia;
+ int ydia;
+
+ // Parameters
+ int deint;
+ int field;
+ int process_plane;
+ int nsize;
+ int nnsparam;
+ int qual;
+ int etype;
+ int pscrn;
+ int fapprox;
+
+ int max_value;
+
+ void (*copy_pad)(const AVFrame *, FrameData *, struct NNEDIContext *, int);
+ void (*evalfunc_0)(struct NNEDIContext *, FrameData *);
+ void (*evalfunc_1)(struct NNEDIContext *, FrameData *);
+
+ // Functions used in evalfunc_0
+ void (*readpixels)(const uint8_t *, const int, float *);
+ void (*compute_network0)(struct NNEDIContext *s, const float *, const float *, uint8_t *);
+ int32_t (*process_line0)(const uint8_t *, int, uint8_t *, const uint8_t *, const int, const int, const int);
+
+ // Functions used in evalfunc_1
+ void (*extract)(const uint8_t *, const int, const int, const int, float *, float *);
+ void (*dot_prod)(struct NNEDIContext *, const float *, const float *, float *, const int, const int, const float *);
+ void (*expfunc)(float *, const int);
+ void (*wae5)(const float *, const int, float *);
+
+ FrameData frame_data;
+} NNEDIContext;
+
+#define OFFSET(x) offsetof(NNEDIContext, x)
+#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
+
+static const AVOption nnedi_options[] = {
+ {"weights", "set weights file", OFFSET(weights_file), AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS },
+ {"deint", "set which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
+ {"all", "deinterlace all frames", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "deint" },
+ {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "deint" },
+ {"field", "set mode of operation", OFFSET(field), AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, FLAGS, "field" },
+ {"af", "use frame flags, both fields", 0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, FLAGS, "field" },
+ {"a", "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "field" },
+ {"t", "use top field only", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "field" },
+ {"b", "use bottom field only", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "field" },
+ {"tf", "use both fields, top first", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "field" },
+ {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "field" },
+ {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 7, FLAGS },
+ {"nsize", "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, FLAGS, "nsize" },
+ {"s8x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nsize" },
+ {"s16x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nsize" },
+ {"s32x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nsize" },
+ {"s48x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nsize" },
+ {"s8x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nsize" },
+ {"s16x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, FLAGS, "nsize" },
+ {"s32x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, FLAGS, "nsize" },
+ {"nns", "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, FLAGS, "nns" },
+ {"n16", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nns" },
+ {"n32", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nns" },
+ {"n64", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nns" },
+ {"n128", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nns" },
+ {"n256", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nns" },
+ {"qual", "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, FLAGS, "qual" },
+ {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "qual" },
+ {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "qual" },
+ {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "etype" },
+ {"a", "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "etype" },
+ {"s", "weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "etype" },
+ {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "pscrn" },
+ {"none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "pscrn" },
+ {"original", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "pscrn" },
+ {"new", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "pscrn" },
+ {"fapprox", NULL, OFFSET(fapprox), AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS },
+ { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(nnedi);
+
+static int config_input(AVFilterLink *inlink)
+{
+ AVFilterContext *ctx = inlink->dst;
+ NNEDIContext *s = ctx->priv;
+ const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
+ int ret;
+
+ s->nb_planes = av_pix_fmt_count_planes(inlink->format);
+ if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
+ return ret;
+
+ s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+ s->planeheight[0] = s->planeheight[3] = inlink->h;
+
+ return 0;
+}
+
+static int config_output(AVFilterLink *outlink)
+{
+ AVFilterContext *ctx = outlink->src;
+ NNEDIContext *s = ctx->priv;
+
+ outlink->time_base.num = ctx->inputs[0]->time_base.num;
+ outlink->time_base.den = ctx->inputs[0]->time_base.den * 2;
+ outlink->w = ctx->inputs[0]->w;
+ outlink->h = ctx->inputs[0]->h;
+
+ if (s->field > 1 || s->field == -2)
+ outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate,
+ (AVRational){2, 1});
+
+ return 0;
+}
+
+static int query_formats(AVFilterContext *ctx)
+{
+ static const enum AVPixelFormat pix_fmts[] = {
+ AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
+ AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
+ AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
+ AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
+ AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
+ AV_PIX_FMT_YUVJ411P,
+ AV_PIX_FMT_GBRP,
+ AV_PIX_FMT_GRAY8,
+ AV_PIX_FMT_NONE
+ };
+
+ AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
+ if (!fmts_list)
+ return AVERROR(ENOMEM);
+ return ff_set_common_formats(ctx, fmts_list);
+}
+
+static void copy_pad(const AVFrame *src, FrameData *frame_data, NNEDIContext *s, int fn)
+{
+ const int off = 1 - fn;
+ int plane, y, x;
+
+ for (plane = 0; plane < s->nb_planes; plane++) {
+ const uint8_t *srcp = (const uint8_t *)src->data[plane];
+ uint8_t *dstp = (uint8_t *)frame_data->paddedp[plane];
+
+ const int src_stride = src->linesize[plane];
+ const int dst_stride = frame_data->padded_stride[plane];
+
+ const int src_height = s->planeheight[plane];
+ const int dst_height = frame_data->padded_height[plane];
+
+ const int src_width = s->linesize[plane];
+ const int dst_width = frame_data->padded_width[plane];
+
+ int c = 4;
+
+ if (!(s->process_plane & (1 << plane)))
+ continue;
+
+ // Copy.
+ for (y = off; y < src_height; y += 2)
+ memcpy(dstp + 32 + (6 + y) * dst_stride,
+ srcp + y * src_stride,
+ src_width * sizeof(uint8_t));
+
+ // And pad.
+ dstp += (6 + off) * dst_stride;
+ for (y = 6 + off; y < dst_height - 6; y += 2) {
+ int c = 2;
+
+ for (x = 0; x < 32; x++)
+ dstp[x] = dstp[64 - x];
+
+ for (x = dst_width - 32; x < dst_width; x++, c += 2)
+ dstp[x] = dstp[x - c];
+
+ dstp += dst_stride * 2;
+ }
+
+ dstp = (uint8_t *)frame_data->paddedp[plane];
+ for (y = off; y < 6; y += 2)
+ memcpy(dstp + y * dst_stride,
+ dstp + (12 + 2 * off - y) * dst_stride,
+ dst_width * sizeof(uint8_t));
+
+ for (y = dst_height - 6 + off; y < dst_height; y += 2, c += 4)
+ memcpy(dstp + y * dst_stride,
+ dstp + (y - c) * dst_stride,
+ dst_width * sizeof(uint8_t));
+ }
+}
+
+static void elliott(float *data, const int n)
+{
+ int i;
+
+ for (i = 0; i < n; i++)
+ data[i] = data[i] / (1.0f + FFABS(data[i]));
+}
+
+static void dot_prod(NNEDIContext *s, const float *data, const float *weights, float *vals, const int n, const int len, const float *scale)
+{
+ int i;
+
+ for (i = 0; i < n; i++) {
+ float sum;
+
+ sum = s->fdsp->scalarproduct_float(data, &weights[i * len], len);
+
+ vals[i] = sum * scale[0] + weights[n * len + i];
+ }
+}
+
+static void dot_prods(NNEDIContext *s, const float *dataf, const float *weightsf, float *vals, const int n, const int len, const float *scale)
+{
+ const int16_t *data = (int16_t *)dataf;
+ const int16_t *weights = (int16_t *)weightsf;
+ const float *wf = (float *)&weights[n * len];
+ int i, j;
+
+ for (i = 0; i < n; i++) {
+ int sum = 0, off = ((i >> 2) << 3) + (i & 3);
+ for (j = 0; j < len; j++)
+ sum += data[j] * weights[i * len + j];
+
+ vals[i] = sum * wf[off] * scale[0] + wf[off + 4];
+ }
+}
+
+static void compute_network0(NNEDIContext *s, const float *input, const float *weights, uint8_t *d)
+{
+ float t, temp[12], scale = 1.0f;
+
+ dot_prod(s, input, weights, temp, 4, 48, &scale);
+ t = temp[0];
+ elliott(temp, 4);
+ temp[0] = t;
+ dot_prod(s, temp, weights + 4 * 49, temp + 4, 4, 4, &scale);
+ elliott(temp + 4, 4);
+ dot_prod(s, temp, weights + 4 * 49 + 4 * 5, temp + 8, 4, 8, &scale);
+ if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9]))
+ d[0] = 1;
+ else
+ d[0] = 0;
+}
+
+static void compute_network0_i16(NNEDIContext *s, const float *inputf, const float *weightsf, uint8_t *d)
+{
+ const float *wf = weightsf + 2 * 48;
+ float t, temp[12], scale = 1.0f;
+
+ dot_prods(s, inputf, weightsf, temp, 4, 48, &scale);
+ t = temp[0];
+ elliott(temp, 4);
+ temp[0] = t;
+ dot_prod(s, temp, wf + 8, temp + 4, 4, 4, &scale);
+ elliott(temp + 4, 4);
+ dot_prod(s, temp, wf + 8 + 4 * 5, temp + 8, 4, 8, &scale);
+ if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9]))
+ d[0] = 1;
+ else
+ d[0] = 0;
+}
+
+static void pixel2float48(const uint8_t *t8, const int pitch, float *p)
+{
+ const uint8_t *t = (const uint8_t *)t8;
+ int y, x;
+
+ for (y = 0; y < 4; y++)
+ for (x = 0; x < 12; x++)
+ p[y * 12 + x] = t[y * pitch * 2 + x];
+}
+
+static void byte2word48(const uint8_t *t, const int pitch, float *pf)
+{
+ int16_t *p = (int16_t *)pf;
+ int y, x;
+
+ for (y = 0; y < 4; y++)
+ for (x = 0; x < 12; x++)
+ p[y * 12 + x] = t[y * pitch * 2 + x];
+}
+
+static int32_t process_line0(const uint8_t *tempu, int width, uint8_t *dstp8, const uint8_t *src3p8, const int src_pitch, const int max_value, const int chroma)
+{
+ uint8_t *dstp = (uint8_t *)dstp8;
+ const uint8_t *src3p = (const uint8_t *)src3p8;
+ int minimum = 0;
+ int maximum = max_value - 1; // Technically the -1 is only needed for 8 and 16 bit input.
+ int count = 0, x;
+ for (x = 0; x < width; x++) {
+ if (tempu[x]) {
+ int tmp = 19 * (src3p[x + src_pitch * 2] + src3p[x + src_pitch * 4]) - 3 * (src3p[x] + src3p[x + src_pitch * 6]);
+ tmp /= 32;
+ dstp[x] = FFMAX(FFMIN(tmp, maximum), minimum);
+ } else {
+ memset(dstp + x, 255, sizeof(uint8_t));
+ count++;
+ }
+ }
+ return count;
+}
+
+// new prescreener functions
+static void byte2word64(const uint8_t *t, const int pitch, float *p)
+{
+ int16_t *ps = (int16_t *)p;
+ int y, x;
+
+ for (y = 0; y < 4; y++)
+ for (x = 0; x < 16; x++)
+ ps[y * 16 + x] = t[y * pitch * 2 + x];
+}
+
+static void compute_network0new(NNEDIContext *s, const float *datai, const float *weights, uint8_t *d)
+{
+ int16_t *data = (int16_t *)datai;
+ int16_t *ws = (int16_t *)weights;
+ float *wf = (float *)&ws[4 * 64];
+ float vals[8];
+ int mask, i, j;
+
+ for (i = 0; i < 4; i++) {
+ int sum = 0;
+ float t;
+
+ for (j = 0; j < 64; j++)
+ sum += data[j] * ws[(i << 3) + ((j >> 3) << 5) + (j & 7)];
+ t = sum * wf[i] + wf[4 + i];
+ vals[i] = t / (1.0f + FFABS(t));
+ }
+
+ for (i = 0; i < 4; i++) {
+ float sum = 0.0f;
+
+ for (j = 0; j < 4; j++)
+ sum += vals[j] * wf[8 + i + (j << 2)];
+ vals[4 + i] = sum + wf[8 + 16 + i];
+ }
+
+ mask = 0;
+ for (i = 0; i < 4; i++) {
+ if (vals[4 + i] > 0.0f)
+ mask |= (0x1 << (i << 3));
+ }
+
+ ((int *)d)[0] = mask;
+}
+
+static void evalfunc_0(NNEDIContext *s, FrameData *frame_data)
+{
+ float *input = frame_data->input;
+ const float *weights0 = s->weights0;
+ float *temp = frame_data->temp;
+ uint8_t *tempu = (uint8_t *)temp;
+ int plane, x, y;
+
+ // And now the actual work.
+ for (plane = 0; plane < s->nb_planes; plane++) {
+ const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane];
+ const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t);
+
+ const int width = frame_data->padded_width[plane];
+ const int height = frame_data->padded_height[plane];
+
+ uint8_t *dstp = (uint8_t *)frame_data->dstp[plane];
+ const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t);
+ const uint8_t *src3p;
+ int ystart, ystop;
+ int32_t *lcount;
+
+ if (!(s->process_plane & (1 << plane)))
+ continue;
+
+ for (y = 1 - frame_data->field[plane]; y < height - 12; y += 2) {
+ memcpy(dstp + y * dst_stride,
+ srcp + 32 + (6 + y) * src_stride,
+ (width - 64) * sizeof(uint8_t));
+
+ }
+
+ ystart = 6 + frame_data->field[plane];
+ ystop = height - 6;
+ srcp += ystart * src_stride;
+ dstp += (ystart - 6) * dst_stride - 32;
+ src3p = srcp - src_stride * 3;
+ lcount = frame_data->lcount[plane] - 6;
+
+ if (s->pscrn == 1) { // original
+ for (y = ystart; y < ystop; y += 2) {
+ for (x = 32; x < width - 32; x++) {
+ s->readpixels((const uint8_t *)(src3p + x - 5), src_stride, input);
+ s->compute_network0(s, input, weights0, tempu+x);
+ }
+ lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane);
+ src3p += src_stride * 2;
+ dstp += dst_stride * 2;
+ }
+ } else if (s->pscrn > 1) { // new
+ for (y = ystart; y < ystop; y += 2) {
+ for (x = 32; x < width - 32; x += 4) {
+ s->readpixels((const uint8_t *)(src3p + x - 6), src_stride, input);
+ s->compute_network0(s, input, weights0, tempu + x);
+ }
+ lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane);
+ src3p += src_stride * 2;
+ dstp += dst_stride * 2;
+ }
+ } else { // no prescreening
+ for (y = ystart; y < ystop; y += 2) {
+ memset(dstp + 32, 255, (width - 64) * sizeof(uint8_t));
+ lcount[y] += width - 64;
+ dstp += dst_stride * 2;
+ }
+ }
+ }
+}
+
+static void extract_m8(const uint8_t *srcp8, const int stride, const int xdia, const int ydia, float *mstd, float *input)
+{
+ // uint8_t or uint16_t or float
+ const uint8_t *srcp = (const uint8_t *)srcp8;
+
+ // int32_t or int64_t or double
+ int64_t sum = 0, sumsq = 0;
+ int y, x;
+
+ for (y = 0; y < ydia; y++) {
+ const uint8_t *srcpT = srcp + y * stride * 2;
+
+ for (x = 0; x < xdia; x++) {
+ sum += srcpT[x];
+ sumsq += (uint32_t)srcpT[x] * (uint32_t)srcpT[x];
+ input[x] = srcpT[x];
+ }
+ input += xdia;
+ }
+ const float scale = 1.0f / (xdia * ydia);
+ mstd[0] = sum * scale;
+ const double tmp = (double)sumsq * scale - (double)mstd[0] * mstd[0];
+ mstd[3] = 0.0f;
+ if (tmp <= FLT_EPSILON)
+ mstd[1] = mstd[2] = 0.0f;
+ else {
+ mstd[1] = sqrt(tmp);
+ mstd[2] = 1.0f / mstd[1];
+ }
+}
+
+static void extract_m8_i16(const uint8_t *srcp, const int stride, const int xdia, const int ydia, float *mstd, float *inputf)
+{
+ int16_t *input = (int16_t *)inputf;
+ int sum = 0, sumsq = 0;
+ int y, x;
+
+ for (y = 0; y < ydia; y++) {
+ const uint8_t *srcpT = srcp + y * stride * 2;
+ for (x = 0; x < xdia; x++) {
+ sum += srcpT[x];
+ sumsq += srcpT[x] * srcpT[x];
+ input[x] = srcpT[x];
+ }
+ input += xdia;
+ }
+ const float scale = 1.0f / (float)(xdia * ydia);
+ mstd[0] = sum * scale;
+ mstd[1] = sumsq * scale - mstd[0] * mstd[0];
+ mstd[3] = 0.0f;
+ if (mstd[1] <= FLT_EPSILON)
+ mstd[1] = mstd[2] = 0.0f;
+ else {
+ mstd[1] = sqrt(mstd[1]);
+ mstd[2] = 1.0f / mstd[1];
+ }
+}
+
+
+static const float exp_lo = -80.0f;
+static const float exp_hi = +80.0f;
+
+static void e2_m16(float *s, const int n)
+{
+ int i;
+
+ for (i = 0; i < n; i++)
+ s[i] = exp(av_clipf(s[i], exp_lo, exp_hi));
+}
+
+const float min_weight_sum = 1e-10f;
+
+static void weighted_avg_elliott_mul5_m16(const float *w, const int n, float *mstd)
+{
+ float vsum = 0.0f, wsum = 0.0f;
+ int i;
+
+ for (i = 0; i < n; i++) {
+ vsum += w[i] * (w[n + i] / (1.0f + FFABS(w[n + i])));
+ wsum += w[i];
+ }
+ if (wsum > min_weight_sum)
+ mstd[3] += ((5.0f * vsum) / wsum) * mstd[1] + mstd[0];
+ else
+ mstd[3] += mstd[0];
+}
+
+
+static void evalfunc_1(NNEDIContext *s, FrameData *frame_data)
+{
+ float *input = frame_data->input;
+ float *temp = frame_data->temp;
+ float **weights1 = s->weights1;
+ const int qual = s->qual;
+ const int asize = s->asize;
+ const int nns = s->nns;
+ const int xdia = s->xdia;
+ const int xdiad2m1 = (xdia / 2) - 1;
+ const int ydia = s->ydia;
+ const float scale = 1.0f / (float)qual;
+ int plane, y, x, i;
+
+ for (plane = 0; plane < s->nb_planes; plane++) {
+ if (!(s->process_plane & (1 << plane)))
+ continue;
+
+ const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane];
+ const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t);
+
+ const int width = frame_data->padded_width[plane];
+ const int height = frame_data->padded_height[plane];
+
+ uint8_t *dstp = (uint8_t *)frame_data->dstp[plane];
+ const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t);
+
+ const int ystart = frame_data->field[plane];
+ const int ystop = height - 12;
+
+ srcp += (ystart + 6) * src_stride;
+ dstp += ystart * dst_stride - 32;
+ const uint8_t *srcpp = srcp - (ydia - 1) * src_stride - xdiad2m1;
+
+ for (y = ystart; y < ystop; y += 2) {
+ for (x = 32; x < width - 32; x++) {
+ uint32_t pixel = 0;
+ memcpy(&pixel, dstp + x, sizeof(uint8_t));
+
+ uint32_t all_ones = 0;
+ memset(&all_ones, 255, sizeof(uint8_t));
+
+ if (pixel != all_ones)
+ continue;
+
+ float mstd[4];
+ s->extract((const uint8_t *)(srcpp + x), src_stride, xdia, ydia, mstd, input);
+ for (i = 0; i < qual; i++) {
+ s->dot_prod(s, input, weights1[i], temp, nns * 2, asize, mstd + 2);
+ s->expfunc(temp, nns);
+ s->wae5(temp, nns, mstd);
+ }
+
+ dstp[x] = FFMIN(FFMAX((int)(mstd[3] * scale + 0.5f), 0), s->max_value);
+ }
+ srcpp += src_stride * 2;
+ dstp += dst_stride * 2;
+ }
+ }
+}
+
+#define NUM_NSIZE 7
+#define NUM_NNS 5
+
+static int roundds(const double f)
+{
+ if (f - floor(f) >= 0.5)
+ return FFMIN((int)ceil(f), 32767);
+ return FFMAX((int)floor(f), -32768);
+}
+
+static void select_functions(NNEDIContext *s)
+{
+ s->copy_pad = copy_pad;
+ s->evalfunc_0 = evalfunc_0;
+ s->evalfunc_1 = evalfunc_1;
+
+ // evalfunc_0
+ s->process_line0 = process_line0;
+
+ if (s->pscrn < 2) { // original prescreener
+ if (s->fapprox & 1) { // int16 dot products
+ s->readpixels = byte2word48;
+ s->compute_network0 = compute_network0_i16;
+ } else {
+ s->readpixels = pixel2float48;
+ s->compute_network0 = compute_network0;
+ }
+ } else { // new prescreener
+ // only int16 dot products
+ s->readpixels = byte2word64;
+ s->compute_network0 = compute_network0new;
+ }
+
+ // evalfunc_1
+ s->wae5 = weighted_avg_elliott_mul5_m16;
+
+ if (s->fapprox & 2) { // use int16 dot products
+ s->extract = extract_m8_i16;
+ s->dot_prod = dot_prods;
+ } else { // use float dot products
+ s->extract = extract_m8;
+ s->dot_prod = dot_prod;
+ }
+
+ s->expfunc = e2_m16;
+}
+
+static int modnpf(const int m, const int n)
+{
+ if ((m % n) == 0)
+ return m;
+ return m + n - (m % n);
+}
+
+static int get_frame(AVFilterContext *ctx, int is_second)
+{
+ NNEDIContext *s = ctx->priv;
+ AVFilterLink *outlink = ctx->outputs[0];
+ AVFrame *src = s->src;
+ FrameData *frame_data;
+ int effective_field = s->field;
+ size_t temp_size;
+ int field_n;
+ int plane;
+
+ if (effective_field > 1)
+ effective_field -= 2;
+ else if (effective_field < 0)
+ effective_field += 2;
+
+ if (s->field < 0 && src->interlaced_frame && src->top_field_first == 0)
+ effective_field = 0;
+ else if (s->field < 0 && src->interlaced_frame && src->top_field_first == 1)
+ effective_field = 1;
+ else
+ effective_field = !effective_field;
+
+ if (s->field > 1 || s->field == -2) {
+ if (is_second) {
+ field_n = (effective_field == 0);
+ } else {
+ field_n = (effective_field == 1);
+ }
+ } else {
+ field_n = effective_field;
+ }
+
+ s->dst = ff_get_video_buffer(outlink, outlink->w, outlink->h);
+ if (!s->dst)
+ return AVERROR(ENOMEM);
+ av_frame_copy_props(s->dst, src);
+ s->dst->interlaced_frame = 0;
+
+ frame_data = &s->frame_data;
+
+ for (plane = 0; plane < s->nb_planes; plane++) {
+ int dst_height = s->planeheight[plane];
+ int dst_width = s->linesize[plane];
+
+ const int min_alignment = 16;
+ const int min_pad = 10;
+
+ if (!(s->process_plane & (1 << plane))) {
+ av_image_copy_plane(s->dst->data[plane], s->dst->linesize[plane],
+ src->data[plane], src->linesize[plane],
+ s->linesize[plane],
+ s->planeheight[plane]);
+ continue;
+ }
+
+ frame_data->padded_width[plane] = dst_width + 64;
+ frame_data->padded_height[plane] = dst_height + 12;
+ frame_data->padded_stride[plane] = modnpf(frame_data->padded_width[plane] + min_pad, min_alignment); // TODO: maybe min_pad is in pixels too?
+ if (!frame_data->paddedp[plane]) {
+ frame_data->paddedp[plane] = av_malloc_array(frame_data->padded_stride[plane], frame_data->padded_height[plane]);
+ if (!frame_data->paddedp[plane])
+ return AVERROR(ENOMEM);
+ }
+
+ frame_data->dstp[plane] = s->dst->data[plane];
+ frame_data->dst_stride[plane] = s->dst->linesize[plane];
+
+ if (!frame_data->lcount[plane]) {
+ frame_data->lcount[plane] = av_calloc(dst_height, sizeof(int32_t) * 16);
+ if (!frame_data->lcount[plane])
+ return AVERROR(ENOMEM);
+ } else {
+ memset(frame_data->lcount[plane], 0, dst_height * sizeof(int32_t) * 16);
+ }
+
+ frame_data->field[plane] = field_n;
+ }
+
+ if (!frame_data->input) {
+ frame_data->input = av_malloc(512 * sizeof(float));
+ if (!frame_data->input)
+ return AVERROR(ENOMEM);
+ }
+ // evalfunc_0 requires at least padded_width[0] bytes.
+ // evalfunc_1 requires at least 512 floats.
+ if (!frame_data->temp) {
+ temp_size = FFMAX(frame_data->padded_width[0], 512 * sizeof(float));
+ frame_data->temp = av_malloc(temp_size);
+ if (!frame_data->temp)
+ return AVERROR(ENOMEM);
+ }
+
+ // Copy src to a padded "frame" in frame_data and mirror the edges.
+ s->copy_pad(src, frame_data, s, field_n);
+
+ // Handles prescreening and the cubic interpolation.
+ s->evalfunc_0(s, frame_data);
+
+ // The rest.
+ s->evalfunc_1(s, frame_data);
+
+ return 0;
+}
+
+static int filter_frame(AVFilterLink *inlink, AVFrame *src)
+{
+ AVFilterContext *ctx = inlink->dst;
+ AVFilterLink *outlink = ctx->outputs[0];
+ NNEDIContext *s = ctx->priv;
+ int ret;
+
+ if ((s->field > 1 ||
+ s->field == -2) && !s->second) {
+ goto second;
+ } else if (s->field > 1 ||
+ s->field == -2) {
+ AVFrame *dst;
+
+ s->src = s->second;
+ ret = get_frame(ctx, 1);
+ if (ret < 0) {
+ av_frame_free(&s->dst);
+ av_frame_free(&s->src);
+ av_frame_free(&s->second);
+ return ret;
+ }
+ dst = s->dst;
+
+ if (src->pts != AV_NOPTS_VALUE &&
+ dst->pts != AV_NOPTS_VALUE)
+ dst->pts += src->pts;
+ else
+ dst->pts = AV_NOPTS_VALUE;
+
+ ret = ff_filter_frame(outlink, dst);
+ if (ret < 0)
+ return ret;
+ if (s->eof)
+ return 0;
+ s->cur_pts = s->second->pts;
+ av_frame_free(&s->second);
+second:
+ if ((s->deint && src->interlaced_frame &&
+ !ctx->is_disabled) ||
+ (!s->deint && !ctx->is_disabled)) {
+ s->second = src;
+ }
+ }
+
+ if ((s->deint && !src->interlaced_frame) || ctx->is_disabled) {
+ AVFrame *dst = av_frame_clone(src);
+ if (!dst) {
+ av_frame_free(&src);
+ av_frame_free(&s->second);
+ return AVERROR(ENOMEM);
+ }
+
+ if (s->field > 1 || s->field == -2) {
+ av_frame_free(&s->second);
+ if ((s->deint && src->interlaced_frame) ||
+ (!s->deint))
+ s->second = src;
+ } else {
+ av_frame_free(&src);
+ }
+ if (dst->pts != AV_NOPTS_VALUE)
+ dst->pts *= 2;
+ return ff_filter_frame(outlink, dst);
+ }
+
+ s->src = src;
+ ret = get_frame(ctx, 0);
+ if (ret < 0) {
+ av_frame_free(&s->dst);
+ av_frame_free(&s->src);
+ av_frame_free(&s->second);
+ return ret;
+ }
+
+ if (src->pts != AV_NOPTS_VALUE)
+ s->dst->pts = src->pts * 2;
+ if (s->field <= 1 && s->field > -2) {
+ av_frame_free(&src);
+ s->src = NULL;
+ }
+
+ return ff_filter_frame(outlink, s->dst);
+}
+
+static int request_frame(AVFilterLink *link)
+{
+ AVFilterContext *ctx = link->src;
+ NNEDIContext *s = ctx->priv;
+ int ret;
+
+ if (s->eof)
+ return AVERROR_EOF;
+
+ ret = ff_request_frame(ctx->inputs[0]);
+
+ if (ret == AVERROR_EOF && s->second) {
+ AVFrame *next = av_frame_clone(s->second);
+
+ if (!next)
+ return AVERROR(ENOMEM);
+
+ next->pts = s->second->pts * 2 - s->cur_pts;
+ s->eof = 1;
+
+ filter_frame(ctx->inputs[0], next);
+ } else if (ret < 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+static av_cold int init(AVFilterContext *ctx)
+{
+ NNEDIContext *s = ctx->priv;
+ FILE *weights_file = NULL;
+ int64_t expected_size = 13574928;
+ int64_t weights_size;
+ float *bdata;
+ size_t bytes_read;
+ const int xdia_table[NUM_NSIZE] = { 8, 16, 32, 48, 8, 16, 32 };
+ const int ydia_table[NUM_NSIZE] = { 6, 6, 6, 6, 4, 4, 4 };
+ const int nns_table[NUM_NNS] = { 16, 32, 64, 128, 256 };
+ const int dims0 = 49 * 4 + 5 * 4 + 9 * 4;
+ const int dims0new = 4 * 65 + 4 * 5;
+ const int dims1 = nns_table[s->nnsparam] * 2 * (xdia_table[s->nsize] * ydia_table[s->nsize] + 1);
+ int dims1tsize = 0;
+ int dims1offset = 0;
+ int ret = 0, i, j, k;
+
+ weights_file = fopen(s->weights_file, "rb");
+ if (!weights_file) {
+ av_log(ctx, AV_LOG_ERROR, "No weights file provided, aborting!\n");
+ return AVERROR(EINVAL);
+ }
+
+ if (fseek(weights_file, 0, SEEK_END)) {
+ av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the end of weights file.\n");
+ fclose(weights_file);
+ return AVERROR(EINVAL);
+ }
+
+ weights_size = ftell(weights_file);
+
+ if (weights_size == -1) {
+ fclose(weights_file);
+ av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n");
+ return AVERROR(EINVAL);
+ } else if (weights_size != expected_size) {
+ fclose(weights_file);
+ av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n");
+ return AVERROR(EINVAL);
+ }
+
+ if (fseek(weights_file, 0, SEEK_SET)) {
+ fclose(weights_file);
+ av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the start of weights file.\n");
+ return AVERROR(EINVAL);
+ }
+
+ bdata = (float *)av_malloc(expected_size);
+ if (!bdata) {
+ fclose(weights_file);
+ return AVERROR(ENOMEM);
+ }
+
+ bytes_read = fread(bdata, 1, expected_size, weights_file);
+
+ if (bytes_read != (size_t)expected_size) {
+ fclose(weights_file);
+ ret = AVERROR_INVALIDDATA;
+ av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n");
+ goto fail;
+ }
+
+ fclose(weights_file);
+
+ for (j = 0; j < NUM_NNS; j++) {
+ for (i = 0; i < NUM_NSIZE; i++) {
+ if (i == s->nsize && j == s->nnsparam)
+ dims1offset = dims1tsize;
+ dims1tsize += nns_table[j] * 2 * (xdia_table[i] * ydia_table[i] + 1) * 2;
+ }
+ }
+
+ s->weights0 = av_malloc_array(FFMAX(dims0, dims0new), sizeof(float));
+ if (!s->weights0) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ for (i = 0; i < 2; i++) {
+ s->weights1[i] = av_malloc_array(dims1, sizeof(float));
+ if (!s->weights1[i]) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ // Adjust prescreener weights
+ if (s->pscrn >= 2) {// using new prescreener
+ const float *bdw;
+ int16_t *ws;
+ float *wf;
+ double mean[4] = { 0.0, 0.0, 0.0, 0.0 };
+ int *offt = av_calloc(4 * 64, sizeof(int));
+
+ if (!offt) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ for (j = 0; j < 4; j++)
+ for (k = 0; k < 64; k++)
+ offt[j * 64 + k] = ((k >> 3) << 5) + ((j & 3) << 3) + (k & 7);
+
+ bdw = bdata + dims0 + dims0new * (s->pscrn - 2);
+ ws = (int16_t *)s->weights0;
+ wf = (float *)&ws[4 * 64];
+ // Calculate mean weight of each first layer neuron
+ for (j = 0; j < 4; j++) {
+ double cmean = 0.0;
+ for (k = 0; k < 64; k++)
+ cmean += bdw[offt[j * 64 + k]];
+ mean[j] = cmean / 64.0;
+ }
+ // Factor mean removal and 1.0/127.5 scaling
+ // into first layer weights. scale to int16 range
+ for (j = 0; j < 4; j++) {
+ double scale, mval = 0.0;
+
+ for (k = 0; k < 64; k++)
+ mval = FFMAX(mval, FFABS((bdw[offt[j * 64 + k]] - mean[j]) / 127.5));
+ scale = 32767.0 / mval;
+ for (k = 0; k < 64; k++)
+ ws[offt[j * 64 + k]] = roundds(((bdw[offt[j * 64 + k]] - mean[j]) / 127.5) * scale);
+ wf[j] = (float)(mval / 32767.0);
+ }
+ memcpy(wf + 4, bdw + 4 * 64, (dims0new - 4 * 64) * sizeof(float));
+ av_free(offt);
+ } else { // using old prescreener
+ double mean[4] = { 0.0, 0.0, 0.0, 0.0 };
+ // Calculate mean weight of each first layer neuron
+ for (j = 0; j < 4; j++) {
+ double cmean = 0.0;
+ for (k = 0; k < 48; k++)
+ cmean += bdata[j * 48 + k];
+ mean[j] = cmean / 48.0;
+ }
+ if (s->fapprox & 1) {// use int16 dot products in first layer
+ int16_t *ws = (int16_t *)s->weights0;
+ float *wf = (float *)&ws[4 * 48];
+ // Factor mean removal and 1.0/127.5 scaling
+ // into first layer weights. scale to int16 range
+ for (j = 0; j < 4; j++) {
+ double mval = 0.0;
+ for (k = 0; k < 48; k++)
+ mval = FFMAX(mval, FFABS((bdata[j * 48 + k] - mean[j]) / 127.5));
+ const double scale = 32767.0 / mval;
+ for (k = 0; k < 48; k++)
+ ws[j * 48 + k] = roundds(((bdata[j * 48 + k] - mean[j]) / 127.5) * scale);
+ wf[j] = (float)(mval / 32767.0);
+ }
+ memcpy(wf + 4, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float));
+ } else {// use float dot products in first layer
+ double half = (1 << 8) - 1;
+
+ half /= 2;
+
+ // Factor mean removal and 1.0/half scaling
+ // into first layer weights.
+ for (j = 0; j < 4; j++)
+ for (k = 0; k < 48; k++)
+ s->weights0[j * 48 + k] = (float)((bdata[j * 48 + k] - mean[j]) / half);
+ memcpy(s->weights0 + 4 * 48, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float));
+ }
+ }
+
+ // Adjust prediction weights
+ for (i = 0; i < 2; i++) {
+ const float *bdataT = bdata + dims0 + dims0new * 3 + dims1tsize * s->etype + dims1offset + i * dims1;
+ const int nnst = nns_table[s->nnsparam];
+ const int asize = xdia_table[s->nsize] * ydia_table[s->nsize];
+ const int boff = nnst * 2 * asize;
+ double *mean = (double *)av_calloc(asize + 1 + nnst * 2, sizeof(double));
+
+ if (!mean) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ // Calculate mean weight of each neuron (ignore bias)
+ for (j = 0; j < nnst * 2; j++) {
+ double cmean = 0.0;
+ for (k = 0; k < asize; k++)
+ cmean += bdataT[j * asize + k];
+ mean[asize + 1 + j] = cmean / (double)asize;
+ }
+ // Calculate mean softmax neuron
+ for (j = 0; j < nnst; j++) {
+ for (k = 0; k < asize; k++)
+ mean[k] += bdataT[j * asize + k] - mean[asize + 1 + j];
+ mean[asize] += bdataT[boff + j];
+ }
+ for (j = 0; j < asize + 1; j++)
+ mean[j] /= (double)(nnst);
+
+ if (s->fapprox & 2) { // use int16 dot products
+ int16_t *ws = (int16_t *)s->weights1[i];
+ float *wf = (float *)&ws[nnst * 2 * asize];
+ // Factor mean removal into weights, remove global offset from
+ // softmax neurons, and scale weights to int16 range.
+ for (j = 0; j < nnst; j++) { // softmax neurons
+ double scale, mval = 0.0;
+ for (k = 0; k < asize; k++)
+ mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]));
+ scale = 32767.0 / mval;
+ for (k = 0; k < asize; k++)
+ ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]) * scale);
+ wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0);
+ wf[(j >> 2) * 8 + (j & 3) + 4] = (float)(bdataT[boff + j] - mean[asize]);
+ }
+ for (j = nnst; j < nnst * 2; j++) { // elliott neurons
+ double scale, mval = 0.0;
+ for (k = 0; k < asize; k++)
+ mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j]));
+ scale = 32767.0 / mval;
+ for (k = 0; k < asize; k++)
+ ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j]) * scale);
+ wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0);
+ wf[(j >> 2) * 8 + (j & 3) + 4] = bdataT[boff + j];
+ }
+ } else { // use float dot products
+ // Factor mean removal into weights, and remove global
+ // offset from softmax neurons.
+ for (j = 0; j < nnst * 2; j++) {
+ for (k = 0; k < asize; k++) {
+ const double q = j < nnst ? mean[k] : 0.0;
+ s->weights1[i][j * asize + k] = (float)(bdataT[j * asize + k] - mean[asize + 1 + j] - q);
+ }
+ s->weights1[i][boff + j] = (float)(bdataT[boff + j] - (j < nnst ? mean[asize] : 0.0));
+ }
+ }
+ av_free(mean);
+ }
+
+ s->nns = nns_table[s->nnsparam];
+ s->xdia = xdia_table[s->nsize];
+ s->ydia = ydia_table[s->nsize];
+ s->asize = xdia_table[s->nsize] * ydia_table[s->nsize];
+
+ s->max_value = 65535 >> 8;
+
+ select_functions(s);
+
+ s->fdsp = avpriv_float_dsp_alloc(0);
+ if (!s->fdsp)
+ return AVERROR(ENOMEM);
+
+fail:
+ av_free(bdata);
+ return ret;
+}
+
+static av_cold void uninit(AVFilterContext *ctx)
+{
+ NNEDIContext *s = ctx->priv;
+ int i;
+
+ av_freep(&s->weights0);
+
+ for (i = 0; i < 2; i++)
+ av_freep(&s->weights1[i]);
+
+ for (i = 0; i < s->nb_planes; i++) {
+ av_freep(&s->frame_data.paddedp[i]);
+ av_freep(&s->frame_data.lcount[i]);
+ }
+
+ av_freep(&s->frame_data.input);
+ av_freep(&s->frame_data.temp);
+ av_frame_free(&s->second);
+}
+
+static const AVFilterPad inputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .filter_frame = filter_frame,
+ .config_props = config_input,
+ },
+ { NULL }
+};
+
+static const AVFilterPad outputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = config_output,
+ .request_frame = request_frame,
+ },
+ { NULL }
+};
+
+AVFilter ff_vf_nnedi = {
+ .name = "nnedi",
+ .description = NULL_IF_CONFIG_SMALL("Apply neural network edge directed interpolation intra-only deinterlacer."),
+ .priv_size = sizeof(NNEDIContext),
+ .priv_class = &nnedi_class,
+ .init = init,
+ .uninit = uninit,
+ .query_formats = query_formats,
+ .inputs = inputs,
+ .outputs = outputs,
+ .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
+};