/*
* Copyright (c) 2012 Nicolas George
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* @ingroup lavu_avbprint
* AVBPrint public header
*/
#ifndef AVUTIL_BPRINT_H
#define AVUTIL_BPRINT_H
#include <stdarg.h>
#include "attributes.h"
#include "avstring.h"
/**
* @defgroup lavu_avbprint AVBPrint
* @ingroup lavu_data
*
* A buffer to print data progressively
* @{
*/
/**
* Define a structure with extra padding to a fixed size
* This helps ensuring binary compatibility with future versions.
*/
#define FF_PAD_STRUCTURE(name, size, ...) \
struct ff_pad_helper_##name { __VA_ARGS__ }; \
typedef struct name { \
__VA_ARGS__ \
char reserved_padding[size - sizeof(struct ff_pad_helper_##name)]; \
} name;
/**
* Buffer to print data progressively
*
* The string buffer grows as necessary and is always 0-terminated.
* The content of the string is never accessed, and thus is
* encoding-agnostic and can even hold binary data.
*
* Small buffers are kept in the structure itself, and thus require no
* memory allocation at all (unless the contents of the buffer is needed
* after the structure goes out of scope). This is almost as lightweight as
* declaring a local `char buf[512]`.
*
* The length of the string can go beyond the allocated size: the buffer is
* then truncated, but the functions still keep account of the actual total
* length.
*
* In other words, AVBPrint.len can be greater than AVBPrint.size and records
* the total length of what would have been to the buffer if there had been
* enough memory.
*
* Append operations do not need to be tested for failure: if a memory
* allocation fails, data stop being appended to the buffer, but the length
* is still updated. This situation can be tested with
* av_bprint_is_complete().
*
* The AVBPrint.size_max field determines several possible behaviours:
* - `size_max = -1` (= `UINT_MAX`) or any large value will let the buffer be
* reallocated as necessary, with an amortized linear cost.
* - `size_max = 0` prevents writing anything to the buffer: only the total
* length is computed. The write operations can then possibly be repeated in
* a buffer with exactly the necessary size
* (using `size_init = size_max = len + 1`).
* - `size_max = 1` is automatically replaced by the exact size available in the
* structure itself, thus ensuring no dynamic memory allocation. The
* internal buffer is large enough to hold a reasonable paragraph of text,
* such as the current paragraph.
*/
FF_PAD_STRUCTURE(AVBPrint, 1024,
char *str; /**< string so far */
unsigned len; /**< length so far */
unsigned size; /**< allocated memory */
unsigned size_max; /**< maximum allocated memory */
char reserved_internal_buffer[1];
)
/**
* @name Max size special values
* Convenience macros for special values for av_bprint_init() size_max
* parameter.
* @{
*/
/**
* Buffer will be reallocated as necessary, with an amortized linear cost.
*/
#define AV_BPRINT_SIZE_UNLIMITED ((unsigned)-1)
/**
* Use the exact size available in the AVBPrint structure itself.
*
* Thus ensuring no dynamic memory allocation. The internal buffer is large
* enough to hold a reasonable paragraph of text, such as the current paragraph.
*/
#define AV_BPRINT_SIZE_AUTOMATIC 1
/**
* Do not write anything to the buffer, only calculate the total length.
*
* The write operations can then possibly be repeated in a buffer with
* exactly the necessary size (using `size_init = size_max = AVBPrint.len + 1`).
*/
#define AV_BPRINT_SIZE_COUNT_ONLY 0
/** @} */
/**
* Init a print buffer.
*
* @param buf buffer to init
* @param size_init initial size (including the final 0)
* @param size_max maximum size;
* - `0` means do not write anything, just count the length
* - `1` is replaced by the maximum value for automatic storage
* any large value means that the internal buffer will be
* reallocated as needed up to that limit
* - `-1` is converted to `UINT_MAX`, the largest limit possible.
* Check also `AV_BPRINT_SIZE_*` macros.
*/
void av_bprint_init(AVBPrint *buf, unsigned size_init, unsigned size_max);
/**
* Init a print buffer using a pre-existing buffer.
*
* The buffer will not be reallocated.
* In case size equals zero, the AVBPrint will be initialized to use
* the internal buffer as if using AV_BPRINT_SIZE_COUNT_ONLY with
* av_bprint_init().
*
* @param buf buffer structure to init
* @param buffer byte buffer to use for the string data
* @param size size of buffer
*/
void av_bprint_init_for_buffer(AVBPrint *buf, char *buffer, unsigned size);
/**
* Append a formatted string to a print buffer.
*/
void av_bprintf(AVBPrint *buf, const char *fmt, ...) av_printf_format(2, 3);
/**
* Append a formatted string to a print buffer.
*/
void av_vbprintf(AVBPrint *buf, const char *fmt, va_list vl_arg);
/**
* Append char c n times to a print buffer.
*/
void av_bprint_chars(AVBPrint *buf, char c, unsigned n);
/**
* Append data to a print buffer.
*
* param buf bprint buffer to use
* param data pointer to data
* param size size of data
*/
void av_bprint_append_data(AVBPrint *buf, const char *data, unsigned size);
struct tm;
/**
* Append a formatted date and time to a print buffer.
*
* param buf bprint buffer to use
* param fmt date and time format string, see strftime()
* param tm broken-down time structure to translate
*
* @note due to poor design of the standard strftime function, it may
* produce poor results if the format string expands to a very long text and
* the bprint buffer is near the limit stated by the size_max option.
*/
void av_bprint_strftime(AVBPrint *buf, const char *fmt, const struct tm *tm);
/**
* Allocate bytes in the buffer for external use.
*
* @param[in] buf buffer structure
* @param[in] size required size
* @param[out] mem pointer to the memory area
* @param[out] actual_size size of the memory area after allocation;
* can be larger or smaller than size
*/
void av_bprint_get_buffer(AVBPrint *buf, unsigned size,
unsigned char **mem, unsigned *actual_size);
/**
* Reset the string to "" but keep internal allocated data.
*/
void av_bprint_clear(AVBPrint *buf);
/**
* Test if the print buffer is complete (not truncated).
*
* It may have been truncated due to a memory allocation failure
* or the size_max limit (compare size and size_max if necessary).
*/
static inline int av_bprint_is_complete(const AVBPrint *buf)
{
return buf->len < buf->size;
}
/**
* Finalize a print buffer.
*
* The print buffer can no longer be used afterwards,
* but the len and size fields are still valid.
*
* @arg[out] ret_str if not NULL, used to return a permanent copy of the
* buffer contents, or NULL if memory allocation fails;
* if NULL, the buffer is discarded and freed
* @return 0 for success or error code (probably AVERROR(ENOMEM))
*/
int av_bprint_finalize(AVBPrint *buf, char **ret_str);
/**
* Escape the content in src and append it to dstbuf.
*
* @param dstbuf already inited destination bprint buffer
* @param src string containing the text to escape
* @param special_chars string containing the special characters which
* need to be escaped, can be NULL
* @param mode escape mode to employ, see AV_ESCAPE_MODE_* macros.
* Any unknown value for mode will be considered equivalent to
* AV_ESCAPE_MODE_BACKSLASH, but this behaviour can change without
* notice.
* @param flags flags which control how to escape, see AV_ESCAPE_FLAG_* macros
*/
void av_bprint_escape(AVBPrint *dstbuf, const char *src, const char *special_chars,
enum AVEscapeMode mode, int flags);
/** @} */
#endif /* AVUTIL_BPRINT_H */