aboutsummaryrefslogblamecommitdiffstats
path: root/libavfilter/vf_nnedi.c
blob: b14aa64c0462afda46050d1d2fe5941f2056c975 (plain) (tree)
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049










































































































































































































































































































































































                                                                                                                                                                          
                          



























































































































                                                                                                                                                              
                













                                                             
                                 
                          
                                                            










                                                                                                                             
                










                                                     
                                        






















































                                                                                   









                                                                                  
                             

                                               

                                          
                                                          

                                               
                              
                                   
                             












































































































































































































































































































































































































































                                                                                                                                                     
                                         
                                                                                     
                                       
































































































                                                                                                                 
                              





















                                                
                       

































                                                                                                                       
/*
 * Copyright (C) 2010-2011 Kevin Stone
 * Copyright (C) 2016 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <float.h>

#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"

typedef struct FrameData {
    uint8_t *paddedp[3];
    int padded_stride[3];
    int padded_width[3];
    int padded_height[3];

    uint8_t *dstp[3];
    int dst_stride[3];

    int field[3];

    int32_t *lcount[3];
    float *input;
    float *temp;
} FrameData;

typedef struct NNEDIContext {
    const AVClass *class;

    char *weights_file;

    AVFrame *src;
    AVFrame *second;
    AVFrame *dst;
    int eof;
    int64_t cur_pts;

    AVFloatDSPContext *fdsp;
    int nb_planes;
    int linesize[4];
    int planeheight[4];

    float *weights0;
    float *weights1[2];
    int asize;
    int nns;
    int xdia;
    int ydia;

    // Parameters
    int deint;
    int field;
    int process_plane;
    int nsize;
    int nnsparam;
    int qual;
    int etype;
    int pscrn;
    int fapprox;

    int max_value;

    void (*copy_pad)(const AVFrame *, FrameData *, struct NNEDIContext *, int);
    void (*evalfunc_0)(struct NNEDIContext *, FrameData *);
    void (*evalfunc_1)(struct NNEDIContext *, FrameData *);

    // Functions used in evalfunc_0
    void (*readpixels)(const uint8_t *, const int, float *);
    void (*compute_network0)(struct NNEDIContext *s, const float *, const float *, uint8_t *);
    int32_t (*process_line0)(const uint8_t *, int, uint8_t *, const uint8_t *, const int, const int, const int);

    // Functions used in evalfunc_1
    void (*extract)(const uint8_t *, const int, const int, const int, float *, float *);
    void (*dot_prod)(struct NNEDIContext *, const float *, const float *, float *, const int, const int, const float *);
    void (*expfunc)(float *, const int);
    void (*wae5)(const float *, const int, float *);

    FrameData frame_data;
} NNEDIContext;

#define OFFSET(x) offsetof(NNEDIContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM

static const AVOption nnedi_options[] = {
    {"weights",  "set weights file", OFFSET(weights_file),  AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS },
    {"deint",         "set which frames to deinterlace", OFFSET(deint),         AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
        {"all",        "deinterlace all frames",                       0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "deint" },
        {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "deint" },
    {"field",  "set mode of operation", OFFSET(field),         AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, FLAGS, "field" },
        {"af", "use frame flags, both fields",  0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, FLAGS, "field" },
        {"a",  "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "field" },
        {"t",  "use top field only",            0, AV_OPT_TYPE_CONST, {.i64=0},  0, 0, FLAGS, "field" },
        {"b",  "use bottom field only",         0, AV_OPT_TYPE_CONST, {.i64=1},  0, 0, FLAGS, "field" },
        {"tf", "use both fields, top first",    0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "field" },
        {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "field" },
    {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 7, FLAGS },
    {"nsize",  "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, FLAGS, "nsize" },
        {"s8x6",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nsize" },
        {"s16x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nsize" },
        {"s32x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nsize" },
        {"s48x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nsize" },
        {"s8x4",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nsize" },
        {"s16x4",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, FLAGS, "nsize" },
        {"s32x4",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, FLAGS, "nsize" },
    {"nns",    "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, FLAGS, "nns" },
        {"n16",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nns" },
        {"n32",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nns" },
        {"n64",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nns" },
        {"n128",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nns" },
        {"n256",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nns" },
    {"qual",  "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, FLAGS, "qual" },
        {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "qual" },
        {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "qual" },
    {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "etype" },
        {"a",  "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "etype" },
        {"s",  "weights trained to minimize squared error",  0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "etype" },
    {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "pscrn" },
        {"none",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "pscrn" },
        {"original",  NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "pscrn" },
        {"new",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "pscrn" },
    {"fapprox",       NULL, OFFSET(fapprox),       AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS },
    { NULL }
};

AVFILTER_DEFINE_CLASS(nnedi);

static int config_input(AVFilterLink *inlink)
{
    AVFilterContext *ctx = inlink->dst;
    NNEDIContext *s = ctx->priv;
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
    int ret;

    s->nb_planes = av_pix_fmt_count_planes(inlink->format);
    if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
        return ret;

    s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
    s->planeheight[0] = s->planeheight[3] = inlink->h;

    return 0;
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    NNEDIContext *s = ctx->priv;

    outlink->time_base.num = ctx->inputs[0]->time_base.num;
    outlink->time_base.den = ctx->inputs[0]->time_base.den * 2;
    outlink->w             = ctx->inputs[0]->w;
    outlink->h             = ctx->inputs[0]->h;

    if (s->field > 1 || s->field == -2)
        outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate,
                                       (AVRational){2, 1});

    return 0;
}

static int query_formats(AVFilterContext *ctx)
{
    static const enum AVPixelFormat pix_fmts[] = {
        AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
        AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
        AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
        AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
        AV_PIX_FMT_YUVJ411P,
        AV_PIX_FMT_GBRP,
        AV_PIX_FMT_GRAY8,
        AV_PIX_FMT_NONE
    };

    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
    if (!fmts_list)
        return AVERROR(ENOMEM);
    return ff_set_common_formats(ctx, fmts_list);
}

static void copy_pad(const AVFrame *src, FrameData *frame_data, NNEDIContext *s, int fn)
{
    const int off = 1 - fn;
    int plane, y, x;

    for (plane = 0; plane < s->nb_planes; plane++) {
        const uint8_t *srcp = (const uint8_t *)src->data[plane];
        uint8_t *dstp = (uint8_t *)frame_data->paddedp[plane];

        const int src_stride = src->linesize[plane];
        const int dst_stride = frame_data->padded_stride[plane];

        const int src_height = s->planeheight[plane];
        const int dst_height = frame_data->padded_height[plane];

        const int src_width = s->linesize[plane];
        const int dst_width = frame_data->padded_width[plane];

        int c = 4;

        if (!(s->process_plane & (1 << plane)))
            continue;

        // Copy.
        for (y = off; y < src_height; y += 2)
            memcpy(dstp + 32 + (6 + y) * dst_stride,
                   srcp + y * src_stride,
                   src_width * sizeof(uint8_t));

        // And pad.
        dstp += (6 + off) * dst_stride;
        for (y = 6 + off; y < dst_height - 6; y += 2) {
            int c = 2;

            for (x = 0; x < 32; x++)
                dstp[x] = dstp[64 - x];

            for (x = dst_width - 32; x < dst_width; x++, c += 2)
                dstp[x] = dstp[x - c];

            dstp += dst_stride * 2;
        }

        dstp = (uint8_t *)frame_data->paddedp[plane];
        for (y = off; y < 6; y += 2)
            memcpy(dstp + y * dst_stride,
                   dstp + (12 + 2 * off - y) * dst_stride,
                   dst_width * sizeof(uint8_t));

        for (y = dst_height - 6 + off; y < dst_height; y += 2, c += 4)
            memcpy(dstp + y * dst_stride,
                   dstp + (y - c) * dst_stride,
                   dst_width * sizeof(uint8_t));
    }
}

static void elliott(float *data, const int n)
{
    int i;

    for (i = 0; i < n; i++)
        data[i] = data[i] / (1.0f + FFABS(data[i]));
}

static void dot_prod(NNEDIContext *s, const float *data, const float *weights, float *vals, const int n, const int len, const float *scale)
{
    int i;

    for (i = 0; i < n; i++) {
        float sum;

        sum = s->fdsp->scalarproduct_float(data, &weights[i * len], len);

        vals[i] = sum * scale[0] + weights[n * len + i];
    }
}

static void dot_prods(NNEDIContext *s, const float *dataf, const float *weightsf, float *vals, const int n, const int len, const float *scale)
{
    const int16_t *data = (int16_t *)dataf;
    const int16_t *weights = (int16_t *)weightsf;
    const float *wf = (float *)&weights[n * len];
    int i, j;

    for (i = 0; i < n; i++) {
        int sum = 0, off = ((i >> 2) << 3) + (i & 3);
        for (j = 0; j < len; j++)
            sum += data[j] * weights[i * len + j];

        vals[i] = sum * wf[off] * scale[0] + wf[off + 4];
    }
}

static void compute_network0(NNEDIContext *s, const float *input, const float *weights, uint8_t *d)
{
    float t, temp[12], scale = 1.0f;

    dot_prod(s, input, weights, temp, 4, 48, &scale);
    t = temp[0];
    elliott(temp, 4);
    temp[0] = t;
    dot_prod(s, temp, weights + 4 * 49, temp + 4, 4, 4, &scale);
    elliott(temp + 4, 4);
    dot_prod(s, temp, weights + 4 * 49 + 4 * 5, temp + 8, 4, 8, &scale);
    if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9]))
        d[0] = 1;
    else
        d[0] = 0;
}

static void compute_network0_i16(NNEDIContext *s, const float *inputf, const float *weightsf, uint8_t *d)
{
    const float *wf = weightsf + 2 * 48;
    float t, temp[12], scale = 1.0f;

    dot_prods(s, inputf, weightsf, temp, 4, 48, &scale);
    t = temp[0];
    elliott(temp, 4);
    temp[0] = t;
    dot_prod(s, temp, wf + 8, temp + 4, 4, 4, &scale);
    elliott(temp + 4, 4);
    dot_prod(s, temp, wf + 8 + 4 * 5, temp + 8, 4, 8, &scale);
    if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9]))
        d[0] = 1;
    else
        d[0] = 0;
}

static void pixel2float48(const uint8_t *t8, const int pitch, float *p)
{
    const uint8_t *t = (const uint8_t *)t8;
    int y, x;

    for (y = 0; y < 4; y++)
        for (x = 0; x < 12; x++)
            p[y * 12 + x] = t[y * pitch * 2 + x];
}

static void byte2word48(const uint8_t *t, const int pitch, float *pf)
{
    int16_t *p = (int16_t *)pf;
    int y, x;

    for (y = 0; y < 4; y++)
        for (x = 0; x < 12; x++)
            p[y * 12 + x] = t[y * pitch * 2 + x];
}

static int32_t process_line0(const uint8_t *tempu, int width, uint8_t *dstp8, const uint8_t *src3p8, const int src_pitch, const int max_value, const int chroma)
{
    uint8_t *dstp = (uint8_t *)dstp8;
    const uint8_t *src3p = (const uint8_t *)src3p8;
    int minimum = 0;
    int maximum = max_value - 1; // Technically the -1 is only needed for 8 and 16 bit input.
    int count = 0, x;
    for (x = 0; x < width; x++) {
        if (tempu[x]) {
            int tmp = 19 * (src3p[x + src_pitch * 2] + src3p[x + src_pitch * 4]) - 3 * (src3p[x] + src3p[x + src_pitch * 6]);
            tmp /= 32;
            dstp[x] = FFMAX(FFMIN(tmp, maximum), minimum);
        } else {
            dstp[x] = 255;
            count++;
        }
    }
    return count;
}

// new prescreener functions
static void byte2word64(const uint8_t *t, const int pitch, float *p)
{
    int16_t *ps = (int16_t *)p;
    int y, x;

    for (y = 0; y < 4; y++)
        for (x = 0; x < 16; x++)
            ps[y * 16 + x] = t[y * pitch * 2 + x];
}

static void compute_network0new(NNEDIContext *s, const float *datai, const float *weights, uint8_t *d)
{
    int16_t *data = (int16_t *)datai;
    int16_t *ws = (int16_t *)weights;
    float *wf = (float *)&ws[4 * 64];
    float vals[8];
    int mask, i, j;

    for (i = 0; i < 4; i++) {
        int sum = 0;
        float t;

        for (j = 0; j < 64; j++)
            sum += data[j] * ws[(i << 3) + ((j >> 3) << 5) + (j & 7)];
        t = sum * wf[i] + wf[4 + i];
        vals[i] = t / (1.0f + FFABS(t));
    }

    for (i = 0; i < 4; i++) {
        float sum = 0.0f;

        for (j = 0; j < 4; j++)
            sum += vals[j] * wf[8 + i + (j << 2)];
        vals[4 + i] = sum + wf[8 + 16 + i];
    }

    mask = 0;
    for (i = 0; i < 4; i++) {
        if (vals[4 + i] > 0.0f)
            mask |= (0x1 << (i << 3));
    }

    ((int *)d)[0] = mask;
}

static void evalfunc_0(NNEDIContext *s, FrameData *frame_data)
{
    float *input = frame_data->input;
    const float *weights0 = s->weights0;
    float *temp = frame_data->temp;
    uint8_t *tempu = (uint8_t *)temp;
    int plane, x, y;

    // And now the actual work.
    for (plane = 0; plane < s->nb_planes; plane++) {
        const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane];
        const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t);

        const int width = frame_data->padded_width[plane];
        const int height = frame_data->padded_height[plane];

        uint8_t *dstp = (uint8_t *)frame_data->dstp[plane];
        const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t);
        const uint8_t *src3p;
        int ystart, ystop;
        int32_t *lcount;

        if (!(s->process_plane & (1 << plane)))
            continue;

        for (y = 1 - frame_data->field[plane]; y < height - 12; y += 2) {
            memcpy(dstp + y * dst_stride,
                   srcp + 32 + (6 + y) * src_stride,
                   (width - 64) * sizeof(uint8_t));

        }

        ystart = 6 + frame_data->field[plane];
        ystop = height - 6;
        srcp += ystart * src_stride;
        dstp += (ystart - 6) * dst_stride - 32;
        src3p = srcp - src_stride * 3;
        lcount = frame_data->lcount[plane] - 6;

        if (s->pscrn == 1) { // original
            for (y = ystart; y < ystop; y += 2) {
                for (x = 32; x < width - 32; x++) {
                    s->readpixels((const uint8_t *)(src3p + x - 5), src_stride, input);
                    s->compute_network0(s, input, weights0, tempu+x);
                }
                lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane);
                src3p += src_stride * 2;
                dstp += dst_stride * 2;
            }
        } else if (s->pscrn > 1) { // new
            for (y = ystart; y < ystop; y += 2) {
                for (x = 32; x < width - 32; x += 4) {
                    s->readpixels((const uint8_t *)(src3p + x - 6), src_stride, input);
                    s->compute_network0(s, input, weights0, tempu + x);
                }
                lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane);
                src3p += src_stride * 2;
                dstp += dst_stride * 2;
            }
        } else { // no prescreening
            for (y = ystart; y < ystop; y += 2) {
                memset(dstp + 32, 255, (width - 64) * sizeof(uint8_t));
                lcount[y] += width - 64;
                dstp += dst_stride * 2;
            }
        }
    }
}

static void extract_m8(const uint8_t *srcp8, const int stride, const int xdia, const int ydia, float *mstd, float *input)
{
    // uint8_t or uint16_t or float
    const uint8_t *srcp = (const uint8_t *)srcp8;
    float scale;
    double tmp;

    // int32_t or int64_t or double
    int64_t sum = 0, sumsq = 0;
    int y, x;

    for (y = 0; y < ydia; y++) {
        const uint8_t *srcpT = srcp + y * stride * 2;

        for (x = 0; x < xdia; x++) {
            sum += srcpT[x];
            sumsq += (uint32_t)srcpT[x] * (uint32_t)srcpT[x];
            input[x] = srcpT[x];
        }
        input += xdia;
    }
    scale = 1.0f / (xdia * ydia);
    mstd[0] = sum * scale;
    tmp = (double)sumsq * scale - (double)mstd[0] * mstd[0];
    mstd[3] = 0.0f;
    if (tmp <= FLT_EPSILON)
        mstd[1] = mstd[2] = 0.0f;
    else {
        mstd[1] = sqrt(tmp);
        mstd[2] = 1.0f / mstd[1];
    }
}

static void extract_m8_i16(const uint8_t *srcp, const int stride, const int xdia, const int ydia, float *mstd, float *inputf)
{
    int16_t *input = (int16_t *)inputf;
    float scale;
    int sum = 0, sumsq = 0;
    int y, x;

    for (y = 0; y < ydia; y++) {
        const uint8_t *srcpT = srcp + y * stride * 2;
        for (x = 0; x < xdia; x++) {
            sum += srcpT[x];
            sumsq += srcpT[x] * srcpT[x];
            input[x] = srcpT[x];
        }
        input += xdia;
    }
    scale = 1.0f / (float)(xdia * ydia);
    mstd[0] = sum * scale;
    mstd[1] = sumsq * scale - mstd[0] * mstd[0];
    mstd[3] = 0.0f;
    if (mstd[1] <= FLT_EPSILON)
        mstd[1] = mstd[2] = 0.0f;
    else {
        mstd[1] = sqrt(mstd[1]);
        mstd[2] = 1.0f / mstd[1];
    }
}


static const float exp_lo = -80.0f;
static const float exp_hi = +80.0f;

static void e2_m16(float *s, const int n)
{
    int i;

    for (i = 0; i < n; i++)
        s[i] = exp(av_clipf(s[i], exp_lo, exp_hi));
}

const float min_weight_sum = 1e-10f;

static void weighted_avg_elliott_mul5_m16(const float *w, const int n, float *mstd)
{
    float vsum = 0.0f, wsum = 0.0f;
    int i;

    for (i = 0; i < n; i++) {
        vsum += w[i] * (w[n + i] / (1.0f + FFABS(w[n + i])));
        wsum += w[i];
    }
    if (wsum > min_weight_sum)
        mstd[3] += ((5.0f * vsum) / wsum) * mstd[1] + mstd[0];
    else
        mstd[3] += mstd[0];
}


static void evalfunc_1(NNEDIContext *s, FrameData *frame_data)
{
    float *input = frame_data->input;
    float *temp = frame_data->temp;
    float **weights1 = s->weights1;
    const int qual = s->qual;
    const int asize = s->asize;
    const int nns = s->nns;
    const int xdia = s->xdia;
    const int xdiad2m1 = (xdia / 2) - 1;
    const int ydia = s->ydia;
    const float scale = 1.0f / (float)qual;
    int plane, y, x, i;

    for (plane = 0; plane < s->nb_planes; plane++) {
        const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane];
        const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t);

        const int width = frame_data->padded_width[plane];
        const int height = frame_data->padded_height[plane];

        uint8_t *dstp = (uint8_t *)frame_data->dstp[plane];
        const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t);

        const int ystart = frame_data->field[plane];
        const int ystop = height - 12;
        const uint8_t *srcpp;

        if (!(s->process_plane & (1 << plane)))
            continue;

        srcp += (ystart + 6) * src_stride;
        dstp += ystart * dst_stride - 32;
        srcpp = srcp - (ydia - 1) * src_stride - xdiad2m1;

        for (y = ystart; y < ystop; y += 2) {
            for (x = 32; x < width - 32; x++) {
                float mstd[4];

                if (dstp[x] != 255)
                    continue;

                s->extract((const uint8_t *)(srcpp + x), src_stride, xdia, ydia, mstd, input);
                for (i = 0; i < qual; i++) {
                    s->dot_prod(s, input, weights1[i], temp, nns * 2, asize, mstd + 2);
                    s->expfunc(temp, nns);
                    s->wae5(temp, nns, mstd);
                }

                dstp[x] = FFMIN(FFMAX((int)(mstd[3] * scale + 0.5f), 0), s->max_value);
            }
            srcpp += src_stride * 2;
            dstp += dst_stride * 2;
        }
    }
}

#define NUM_NSIZE 7
#define NUM_NNS 5

static int roundds(const double f)
{
    if (f - floor(f) >= 0.5)
        return FFMIN((int)ceil(f), 32767);
    return FFMAX((int)floor(f), -32768);
}

static void select_functions(NNEDIContext *s)
{
    s->copy_pad = copy_pad;
    s->evalfunc_0 = evalfunc_0;
    s->evalfunc_1 = evalfunc_1;

    // evalfunc_0
    s->process_line0 = process_line0;

    if (s->pscrn < 2) { // original prescreener
        if (s->fapprox & 1) { // int16 dot products
            s->readpixels = byte2word48;
            s->compute_network0 = compute_network0_i16;
        } else {
            s->readpixels = pixel2float48;
            s->compute_network0 = compute_network0;
        }
    } else { // new prescreener
        // only int16 dot products
        s->readpixels = byte2word64;
        s->compute_network0 = compute_network0new;
    }

    // evalfunc_1
    s->wae5 = weighted_avg_elliott_mul5_m16;

    if (s->fapprox & 2) { // use int16 dot products
        s->extract = extract_m8_i16;
        s->dot_prod = dot_prods;
    } else { // use float dot products
        s->extract = extract_m8;
        s->dot_prod = dot_prod;
    }

    s->expfunc = e2_m16;
}

static int modnpf(const int m, const int n)
{
    if ((m % n) == 0)
        return m;
    return m + n - (m % n);
}

static int get_frame(AVFilterContext *ctx, int is_second)
{
    NNEDIContext *s = ctx->priv;
    AVFilterLink *outlink = ctx->outputs[0];
    AVFrame *src = s->src;
    FrameData *frame_data;
    int effective_field = s->field;
    size_t temp_size;
    int field_n;
    int plane;

    if (effective_field > 1)
        effective_field -= 2;
    else if (effective_field < 0)
        effective_field += 2;

    if (s->field < 0 && src->interlaced_frame && src->top_field_first == 0)
        effective_field = 0;
    else if (s->field < 0 && src->interlaced_frame && src->top_field_first == 1)
        effective_field = 1;
    else
        effective_field = !effective_field;

    if (s->field > 1 || s->field == -2) {
        if (is_second) {
            field_n = (effective_field == 0);
        } else {
            field_n = (effective_field == 1);
        }
    } else {
        field_n = effective_field;
    }

    s->dst = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!s->dst)
        return AVERROR(ENOMEM);
    av_frame_copy_props(s->dst, src);
    s->dst->interlaced_frame = 0;

    frame_data = &s->frame_data;

    for (plane = 0; plane < s->nb_planes; plane++) {
        int dst_height = s->planeheight[plane];
        int dst_width = s->linesize[plane];

        const int min_alignment = 16;
        const int min_pad = 10;

        if (!(s->process_plane & (1 << plane))) {
            av_image_copy_plane(s->dst->data[plane], s->dst->linesize[plane],
                                src->data[plane], src->linesize[plane],
                                s->linesize[plane],
                                s->planeheight[plane]);
            continue;
        }

        frame_data->padded_width[plane]  = dst_width + 64;
        frame_data->padded_height[plane] = dst_height + 12;
        frame_data->padded_stride[plane] = modnpf(frame_data->padded_width[plane] + min_pad, min_alignment); // TODO: maybe min_pad is in pixels too?
        if (!frame_data->paddedp[plane]) {
            frame_data->paddedp[plane] = av_malloc_array(frame_data->padded_stride[plane], frame_data->padded_height[plane]);
            if (!frame_data->paddedp[plane])
                return AVERROR(ENOMEM);
        }

        frame_data->dstp[plane] = s->dst->data[plane];
        frame_data->dst_stride[plane] = s->dst->linesize[plane];

        if (!frame_data->lcount[plane]) {
            frame_data->lcount[plane] = av_calloc(dst_height, sizeof(int32_t) * 16);
            if (!frame_data->lcount[plane])
                return AVERROR(ENOMEM);
        } else {
            memset(frame_data->lcount[plane], 0, dst_height * sizeof(int32_t) * 16);
        }

        frame_data->field[plane] = field_n;
    }

    if (!frame_data->input) {
        frame_data->input = av_malloc(512 * sizeof(float));
        if (!frame_data->input)
            return AVERROR(ENOMEM);
    }
    // evalfunc_0 requires at least padded_width[0] bytes.
    // evalfunc_1 requires at least 512 floats.
    if (!frame_data->temp) {
        temp_size = FFMAX(frame_data->padded_width[0], 512 * sizeof(float));
        frame_data->temp = av_malloc(temp_size);
        if (!frame_data->temp)
            return AVERROR(ENOMEM);
    }

    // Copy src to a padded "frame" in frame_data and mirror the edges.
    s->copy_pad(src, frame_data, s, field_n);

    // Handles prescreening and the cubic interpolation.
    s->evalfunc_0(s, frame_data);

    // The rest.
    s->evalfunc_1(s, frame_data);

    return 0;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *src)
{
    AVFilterContext *ctx = inlink->dst;
    AVFilterLink *outlink = ctx->outputs[0];
    NNEDIContext *s = ctx->priv;
    int ret;

    if ((s->field > 1 ||
         s->field == -2) && !s->second) {
        goto second;
    } else if (s->field > 1 ||
               s->field == -2) {
        AVFrame *dst;

        s->src = s->second;
        ret = get_frame(ctx, 1);
        if (ret < 0) {
            av_frame_free(&s->dst);
            av_frame_free(&s->src);
            av_frame_free(&s->second);
            return ret;
        }
        dst = s->dst;

        if (src->pts != AV_NOPTS_VALUE &&
            dst->pts != AV_NOPTS_VALUE)
            dst->pts += src->pts;
        else
            dst->pts = AV_NOPTS_VALUE;

        ret = ff_filter_frame(outlink, dst);
        if (ret < 0)
            return ret;
        if (s->eof)
            return 0;
        s->cur_pts = s->second->pts;
        av_frame_free(&s->second);
second:
        if ((s->deint && src->interlaced_frame &&
             !ctx->is_disabled) ||
            (!s->deint && !ctx->is_disabled)) {
            s->second = src;
        }
    }

    if ((s->deint && !src->interlaced_frame) || ctx->is_disabled) {
        AVFrame *dst = av_frame_clone(src);
        if (!dst) {
            av_frame_free(&src);
            av_frame_free(&s->second);
            return AVERROR(ENOMEM);
        }

        if (s->field > 1 || s->field == -2) {
            av_frame_free(&s->second);
            if ((s->deint && src->interlaced_frame) ||
                (!s->deint))
                s->second = src;
        } else {
            av_frame_free(&src);
        }
        if (dst->pts != AV_NOPTS_VALUE)
            dst->pts *= 2;
        return ff_filter_frame(outlink, dst);
    }

    s->src = src;
    ret = get_frame(ctx, 0);
    if (ret < 0) {
        av_frame_free(&s->dst);
        av_frame_free(&s->src);
        av_frame_free(&s->second);
        return ret;
    }

    if (src->pts != AV_NOPTS_VALUE)
        s->dst->pts = src->pts * 2;
    if (s->field <= 1 && s->field > -2) {
        av_frame_free(&src);
        s->src = NULL;
    }

    return ff_filter_frame(outlink, s->dst);
}

static int request_frame(AVFilterLink *link)
{
    AVFilterContext *ctx = link->src;
    NNEDIContext *s = ctx->priv;
    int ret;

    if (s->eof)
        return AVERROR_EOF;

    ret  = ff_request_frame(ctx->inputs[0]);

    if (ret == AVERROR_EOF && s->second) {
        AVFrame *next = av_frame_clone(s->second);

        if (!next)
            return AVERROR(ENOMEM);

        next->pts = s->second->pts * 2 - s->cur_pts;
        s->eof = 1;

        filter_frame(ctx->inputs[0], next);
    } else if (ret < 0) {
        return ret;
    }

    return 0;
}

static av_cold int init(AVFilterContext *ctx)
{
    NNEDIContext *s = ctx->priv;
    FILE *weights_file = NULL;
    int64_t expected_size = 13574928;
    int64_t weights_size;
    float *bdata;
    size_t bytes_read;
    const int xdia_table[NUM_NSIZE] = { 8, 16, 32, 48, 8, 16, 32 };
    const int ydia_table[NUM_NSIZE] = { 6, 6, 6, 6, 4, 4, 4 };
    const int nns_table[NUM_NNS] = { 16, 32, 64, 128, 256 };
    const int dims0 = 49 * 4 + 5 * 4 + 9 * 4;
    const int dims0new = 4 * 65 + 4 * 5;
    const int dims1 = nns_table[s->nnsparam] * 2 * (xdia_table[s->nsize] * ydia_table[s->nsize] + 1);
    int dims1tsize = 0;
    int dims1offset = 0;
    int ret = 0, i, j, k;

    weights_file = fopen(s->weights_file, "rb");
    if (!weights_file) {
        av_log(ctx, AV_LOG_ERROR, "No weights file provided, aborting!\n");
        return AVERROR(EINVAL);
    }

    if (fseek(weights_file, 0, SEEK_END)) {
        av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the end of weights file.\n");
        fclose(weights_file);
        return AVERROR(EINVAL);
    }

    weights_size = ftell(weights_file);

    if (weights_size == -1) {
        fclose(weights_file);
        av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n");
        return AVERROR(EINVAL);
    } else if (weights_size != expected_size) {
        fclose(weights_file);
        av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n");
        return AVERROR(EINVAL);
    }

    if (fseek(weights_file, 0, SEEK_SET)) {
        fclose(weights_file);
        av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the start of weights file.\n");
        return AVERROR(EINVAL);
    }

    bdata = (float *)av_malloc(expected_size);
    if (!bdata) {
        fclose(weights_file);
        return AVERROR(ENOMEM);
    }

    bytes_read = fread(bdata, 1, expected_size, weights_file);

    if (bytes_read != (size_t)expected_size) {
        fclose(weights_file);
        ret = AVERROR_INVALIDDATA;
        av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n");
        goto fail;
    }

    fclose(weights_file);

    for (j = 0; j < NUM_NNS; j++) {
        for (i = 0; i < NUM_NSIZE; i++) {
            if (i == s->nsize && j == s->nnsparam)
                dims1offset = dims1tsize;
            dims1tsize += nns_table[j] * 2 * (xdia_table[i] * ydia_table[i] + 1) * 2;
        }
    }

    s->weights0 = av_malloc_array(FFMAX(dims0, dims0new), sizeof(float));
    if (!s->weights0) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    for (i = 0; i < 2; i++) {
        s->weights1[i] = av_malloc_array(dims1, sizeof(float));
        if (!s->weights1[i]) {
            ret = AVERROR(ENOMEM);
            goto fail;
        }
    }

    // Adjust prescreener weights
    if (s->pscrn >= 2) {// using new prescreener
        const float *bdw;
        int16_t *ws;
        float *wf;
        double mean[4] = { 0.0, 0.0, 0.0, 0.0 };
        int *offt = av_calloc(4 * 64, sizeof(int));

        if (!offt) {
            ret = AVERROR(ENOMEM);
            goto fail;
        }

        for (j = 0; j < 4; j++)
            for (k = 0; k < 64; k++)
                offt[j * 64 + k] = ((k >> 3) << 5) + ((j & 3) << 3) + (k & 7);

        bdw = bdata + dims0 + dims0new * (s->pscrn - 2);
        ws = (int16_t *)s->weights0;
        wf = (float *)&ws[4 * 64];
        // Calculate mean weight of each first layer neuron
        for (j = 0; j < 4; j++) {
            double cmean = 0.0;
            for (k = 0; k < 64; k++)
                cmean += bdw[offt[j * 64 + k]];
            mean[j] = cmean / 64.0;
        }
        // Factor mean removal and 1.0/127.5 scaling
        // into first layer weights. scale to int16 range
        for (j = 0; j < 4; j++) {
            double scale, mval = 0.0;

            for (k = 0; k < 64; k++)
                mval = FFMAX(mval, FFABS((bdw[offt[j * 64 + k]] - mean[j]) / 127.5));
            scale = 32767.0 / mval;
            for (k = 0; k < 64; k++)
                ws[offt[j * 64 + k]] = roundds(((bdw[offt[j * 64 + k]] - mean[j]) / 127.5) * scale);
            wf[j] = (float)(mval / 32767.0);
        }
        memcpy(wf + 4, bdw + 4 * 64, (dims0new - 4 * 64) * sizeof(float));
        av_free(offt);
    } else { // using old prescreener
        double mean[4] = { 0.0, 0.0, 0.0, 0.0 };
        // Calculate mean weight of each first layer neuron
        for (j = 0; j < 4; j++) {
            double cmean = 0.0;
            for (k = 0; k < 48; k++)
                cmean += bdata[j * 48 + k];
            mean[j] = cmean / 48.0;
        }
        if (s->fapprox & 1) {// use int16 dot products in first layer
            int16_t *ws = (int16_t *)s->weights0;
            float *wf = (float *)&ws[4 * 48];
            // Factor mean removal and 1.0/127.5 scaling
            // into first layer weights. scale to int16 range
            for (j = 0; j < 4; j++) {
                double scale, mval = 0.0;
                for (k = 0; k < 48; k++)
                    mval = FFMAX(mval, FFABS((bdata[j * 48 + k] - mean[j]) / 127.5));
                scale = 32767.0 / mval;
                for (k = 0; k < 48; k++)
                    ws[j * 48 + k] = roundds(((bdata[j * 48 + k] - mean[j]) / 127.5) * scale);
                wf[j] = (float)(mval / 32767.0);
            }
            memcpy(wf + 4, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float));
        } else {// use float dot products in first layer
            double half = (1 << 8) - 1;

            half /= 2;

            // Factor mean removal and 1.0/half scaling
            // into first layer weights.
            for (j = 0; j < 4; j++)
                for (k = 0; k < 48; k++)
                    s->weights0[j * 48 + k] = (float)((bdata[j * 48 + k] - mean[j]) / half);
            memcpy(s->weights0 + 4 * 48, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float));
        }
    }

    // Adjust prediction weights
    for (i = 0; i < 2; i++) {
        const float *bdataT = bdata + dims0 + dims0new * 3 + dims1tsize * s->etype + dims1offset + i * dims1;
        const int nnst = nns_table[s->nnsparam];
        const int asize = xdia_table[s->nsize] * ydia_table[s->nsize];
        const int boff = nnst * 2 * asize;
        double *mean = (double *)av_calloc(asize + 1 + nnst * 2, sizeof(double));

        if (!mean) {
            ret = AVERROR(ENOMEM);
            goto fail;
        }

        // Calculate mean weight of each neuron (ignore bias)
        for (j = 0; j < nnst * 2; j++) {
            double cmean = 0.0;
            for (k = 0; k < asize; k++)
                cmean += bdataT[j * asize + k];
            mean[asize + 1 + j] = cmean / (double)asize;
        }
        // Calculate mean softmax neuron
        for (j = 0; j < nnst; j++) {
            for (k = 0; k < asize; k++)
                mean[k] += bdataT[j * asize + k] - mean[asize + 1 + j];
            mean[asize] += bdataT[boff + j];
        }
        for (j = 0; j < asize + 1; j++)
            mean[j] /= (double)(nnst);

        if (s->fapprox & 2) { // use int16 dot products
            int16_t *ws = (int16_t *)s->weights1[i];
            float *wf = (float *)&ws[nnst * 2 * asize];
            // Factor mean removal into weights, remove global offset from
            // softmax neurons, and scale weights to int16 range.
            for (j = 0; j < nnst; j++) { // softmax neurons
                double scale, mval = 0.0;
                for (k = 0; k < asize; k++)
                    mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]));
                scale = 32767.0 / mval;
                for (k = 0; k < asize; k++)
                    ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]) * scale);
                wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0);
                wf[(j >> 2) * 8 + (j & 3) + 4] = (float)(bdataT[boff + j] - mean[asize]);
            }
            for (j = nnst; j < nnst * 2; j++) { // elliott neurons
                double scale, mval = 0.0;
                for (k = 0; k < asize; k++)
                    mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j]));
                scale = 32767.0 / mval;
                for (k = 0; k < asize; k++)
                    ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j]) * scale);
                wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0);
                wf[(j >> 2) * 8 + (j & 3) + 4] = bdataT[boff + j];
            }
        } else { // use float dot products
            // Factor mean removal into weights, and remove global
            // offset from softmax neurons.
            for (j = 0; j < nnst * 2; j++) {
                for (k = 0; k < asize; k++) {
                    const double q = j < nnst ? mean[k] : 0.0;
                    s->weights1[i][j * asize + k] = (float)(bdataT[j * asize + k] - mean[asize + 1 + j] - q);
                }
                s->weights1[i][boff + j] = (float)(bdataT[boff + j] - (j < nnst ? mean[asize] : 0.0));
            }
        }
        av_free(mean);
    }

    s->nns = nns_table[s->nnsparam];
    s->xdia = xdia_table[s->nsize];
    s->ydia = ydia_table[s->nsize];
    s->asize = xdia_table[s->nsize] * ydia_table[s->nsize];

    s->max_value = 65535 >> 8;

    select_functions(s);

    s->fdsp = avpriv_float_dsp_alloc(0);
    if (!s->fdsp)
        ret = AVERROR(ENOMEM);

fail:
    av_free(bdata);
    return ret;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    NNEDIContext *s = ctx->priv;
    int i;

    av_freep(&s->weights0);

    for (i = 0; i < 2; i++)
        av_freep(&s->weights1[i]);

    for (i = 0; i < s->nb_planes; i++) {
        av_freep(&s->frame_data.paddedp[i]);
        av_freep(&s->frame_data.lcount[i]);
    }

    av_freep(&s->frame_data.input);
    av_freep(&s->frame_data.temp);
    av_freep(&s->fdsp);
    av_frame_free(&s->second);
}

static const AVFilterPad inputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_VIDEO,
        .filter_frame  = filter_frame,
        .config_props  = config_input,
    },
    { NULL }
};

static const AVFilterPad outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_VIDEO,
        .config_props  = config_output,
        .request_frame = request_frame,
    },
    { NULL }
};

AVFilter ff_vf_nnedi = {
    .name          = "nnedi",
    .description   = NULL_IF_CONFIG_SMALL("Apply neural network edge directed interpolation intra-only deinterlacer."),
    .priv_size     = sizeof(NNEDIContext),
    .priv_class    = &nnedi_class,
    .init          = init,
    .uninit        = uninit,
    .query_formats = query_formats,
    .inputs        = inputs,
    .outputs       = outputs,
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};