/*
* Copyright (c) 2016 ReneBrals
* Copyright (c) 2021 Paul B Mahol
*
* This file is part of FFmpeg.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
enum MorphModes {
ERODE,
DILATE,
OPEN,
CLOSE,
GRADIENT,
TOPHAT,
BLACKHAT,
NB_MODES
};
typedef struct IPlane {
uint8_t **img;
int w, h;
int range;
int depth;
int type_size;
void (*max_out_place)(uint8_t *c, const uint8_t *a, const uint8_t *b, int x);
void (*min_out_place)(uint8_t *c, const uint8_t *a, const uint8_t *b, int x);
void (*diff_rin_place)(uint8_t *a, const uint8_t *b, int x);
void (*max_in_place)(uint8_t *a, const uint8_t *b, int x);
void (*min_in_place)(uint8_t *a, const uint8_t *b, int x);
void (*diff_in_place)(uint8_t *a, const uint8_t *b, int x);
} IPlane;
typedef struct LUT {
/* arr is shifted from base_arr by FFMAX(min_r, 0).
* arr != NULL means "lut completely allocated" */
uint8_t ***arr;
uint8_t ***base_arr;
int min_r;
int max_r;
int I;
int X;
int pre_pad_x;
int type_size;
} LUT;
typedef struct chord {
int x;
int y;
int l;
int i;
} chord;
typedef struct chord_set {
chord *C;
int size;
int cap;
int *R;
int Lnum;
int minX;
int maxX;
int minY;
int maxY;
unsigned nb_elements;
} chord_set;
typedef struct MorphoContext {
const AVClass *class;
FFFrameSync fs;
chord_set SE[4];
IPlane SEimg[4];
IPlane g[4], f[4], h[4];
LUT Ty[2][4];
int mode;
int planes;
int structures;
int planewidth[4];
int planeheight[4];
int splanewidth[4];
int splaneheight[4];
int depth;
int type_size;
int nb_planes;
int got_structure[4];
AVFrame *temp;
int64_t *plane_f, *plane_g;
} MorphoContext;
#define OFFSET(x) offsetof(MorphoContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption morpho_options[] = {
{ "mode", "set morphological transform", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_MODES-1, FLAGS, "mode" },
{ "erode", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ERODE}, 0, 0, FLAGS, "mode" },
{ "dilate", NULL, 0, AV_OPT_TYPE_CONST, {.i64=DILATE}, 0, 0, FLAGS, "mode" },
{ "open", NULL, 0, AV_OPT_TYPE_CONST, {.i64=OPEN}, 0, 0, FLAGS, "mode" },
{ "close", NULL, 0, AV_OPT_TYPE_CONST, {.i64=CLOSE}, 0, 0, FLAGS, "mode" },
{ "gradient",NULL, 0, AV_OPT_TYPE_CONST, {.i64=GRADIENT},0, 0, FLAGS, "mode" },
{ "tophat",NULL, 0, AV_OPT_TYPE_CONST, {.i64=TOPHAT}, 0, 0, FLAGS, "mode" },
{ "blackhat",NULL, 0, AV_OPT_TYPE_CONST, {.i64=BLACKHAT},0, 0, FLAGS, "mode" },
{ "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
{ "structure", "when to process structures", OFFSET(structures), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "str" },
{ "first", "process only first structure, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "str" },
{ "all", "process all structure", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "str" },
{ NULL }
};
FRAMESYNC_DEFINE_CLASS(morpho, MorphoContext, fs);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_GBRP9,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
static void min_fun(uint8_t *c, const uint8_t *a, const uint8_t *b, int x)
{
for (int i = 0; i < x; i++)
c[i] = FFMIN(b[i], a[i]);
}
static void mininplace_fun(uint8_t *a, const uint8_t *b, int x)
{
for (int i = 0; i < x; i++)
a[i] = FFMIN(a[i], b[i]);
}
static void max_fun(uint8_t *c, const uint8_t *a, const uint8_t *b, int x)
{
for (int i = 0; i < x; i++)
c[i] = FFMAX(a[i], b[i]);
}
static void maxinplace_fun(uint8_t *a, const uint8_t *b, int x)
{
for (int i = 0; i < x; i++)
a[i] = FFMAX(a[i], b[i]);
}
static void diff_fun(uint8_t *a, const uint8_t *b, int x)
{
for (int i = 0; i < x; i++)
a[i] = FFMAX(b[i] - a[i], 0);
}
static void diffinplace_fun(uint8_t *a, const uint8_t *b, int x)
{
for (int i = 0; i < x; i++)
a[i] = FFMAX(a[i] - b[i], 0);
}
static void min16_fun(uint8_t *cc, const uint8_t *aa, const uint8_t *bb, int x)
{
const uint16_t *a = (const uint16_t *)aa;
const uint16_t *b = (const uint16_t *)bb;
uint16_t *c = (uint16_t *)cc;
for (int i = 0; i < x; i++)
c[i] = FFMIN(b[i], a[i]);
}
static void mininplace16_fun(uint8_t *aa, const uint8_t *bb, int x)
{
uint16_t *a = (uint16_t *)aa;
const uint16_t *b = (const uint16_t *)bb;
for (int i = 0; i < x; i++)
a[i] = FFMIN(a[i], b[i]);
}
static void diff16_fun(uint8_t *aa, const uint8_t *bb, int x)
{
const uint16_t *b = (const uint16_t *)bb;
uint16_t *a = (uint16_t *)aa;
for (int i = 0; i < x; i++)
a[i] = FFMAX(b[i] - a[i], 0);
}
static void diffinplace16_fun(uint8_t *aa, const uint8_t *bb, int x)
{
uint16_t *a = (uint16_t *)aa;
const uint16_t *b = (const uint16_t *)bb;
for (int i = 0; i < x; i++)
a[i] = FFMAX(a[i] - b[i], 0);
}
static void max16_fun(uint8_t *cc, const uint8_t *aa, const uint8_t *bb, int x)
{
const uint16_t *a = (const uint16_t *)aa;
const uint16_t *b = (const uint16_t *)bb;
uint16_t *c = (uint16_t *)cc;
for (int i = 0; i < x; i++)
c[i] = FFMAX(a[i], b[i]);
}
static void maxinplace16_fun(uint8_t *aa, const uint8_t *bb, int x)
{
uint16_t *a = (uint16_t *)aa;
const uint16_t *b = (const uint16_t *)bb;
for (int i = 0; i < x; i++)
a[i] = FFMAX(a[i], b[i]);
}
static int alloc_lut(LUT *Ty, chord_set *SE, int type_size, int mode)
{
const int min = FFMAX(Ty->min_r, 0);
const int max = min + (Ty->max_r - Ty->min_r);
int pre_pad_x = 0;
if (SE->minX < 0)
pre_pad_x = 0 - SE->minX;
Ty->pre_pad_x = pre_pad_x;
Ty->type_size = type_size;
Ty->base_arr = av_calloc(max + 1, sizeof(*Ty->base_arr));
if (!Ty->base_arr)
return AVERROR(ENOMEM);
for (int r = min; r <= max; r++) {
uint8_t **arr = Ty->base_arr[r] = av_calloc(Ty->I, sizeof(uint8_t *));
if (!Ty->base_arr[r])
return AVERROR(ENOMEM);
for (int i = 0; i < Ty->I; i++) {
arr[i] = av_calloc(Ty->X + pre_pad_x, type_size);
if (!arr[i])
return AVERROR(ENOMEM);
if (mode == ERODE)
memset(arr[i], UINT8_MAX, pre_pad_x * type_size);
/* Shifting the X index such that negative indices correspond to
* the pre-padding.
*/
arr[i] = &(arr[i][pre_pad_x * type_size]);
}
}
Ty->arr = &(Ty->base_arr[min - Ty->min_r]);
return 0;
}
static void free_lut(LUT *table)
{
const int min = FFMAX(table->min_r, 0);
const int max = min + (table->max_r - table->min_r);
if (!table->base_arr)
return;
for (int r = min; r <= max; r++) {
if (!table->base_arr[r])
break;
for (int i = 0; i < table->I; i++) {
if (!table->base_arr[r][i])
break;
// The X index was also shifted, for padding purposes.
av_free(table->base_arr[r][i] - table->pre_pad_x * table->type_size);
}
av_freep(&table->base_arr[r]);
}
av_freep(&table->base_arr);
table->arr = NULL;
}
static int alloc_lut_if_necessary(LUT *Ty, IPlane *f, chord_set *SE,
int y, int num, enum MorphModes mode)
{
if (!Ty->arr || Ty->I != SE->Lnum ||
Ty->X != f->w ||
SE->minX < 0 && -SE->minX > Ty->pre_pad_x ||
Ty->min_r != SE->minY ||
Ty->max_r != SE->maxY + num - 1) {
int ret;
free_lut(Ty);
Ty->I = SE->Lnum;
Ty->X = f->w;
Ty->min_r = SE->minY;
Ty->max_r = SE->maxY + num - 1;
ret = alloc_lut(Ty, SE, f->type_size, mode);
if (ret < 0)
return ret;
}
return 0;
}
static void circular_swap(LUT *Ty)
{
/*
* Swap the pointers to r-indices in a circle. This is useful because
* Ty(r,i,x) = Ty-1(r+1,i,x) for r < ymax.
*/
if (Ty->max_r - Ty->min_r > 0) {
uint8_t **Ty0 = Ty->arr[Ty->min_r];
for (int r = Ty->min_r; r < Ty->max_r; r++)
Ty->arr[r] = Ty->arr[r + 1];
Ty->arr[Ty->max_r] = Ty0;
}
}
static void compute_min_row(IPlane *f, LUT *Ty, chord_set *SE, int r, int y)
{
if (y + r >= 0 && y + r < f->h) {
memcpy(Ty->arr[r][0], f->img[y + r], Ty->X * Ty->type_size);
} else {
memset(Ty->arr[r][0], UINT8_MAX, Ty->X * Ty->type_size);
}
for (int i = 1; i < SE->Lnum; i++) {
int d = SE->R[i] - SE->R[i - 1];
f->min_out_place(Ty->arr[r][i] - Ty->pre_pad_x * f->type_size,
Ty->arr[r][i - 1] - Ty->pre_pad_x * f->type_size,
Ty->arr[r][i - 1] + (d - Ty->pre_pad_x) * f->type_size,
Ty->X + Ty->pre_pad_x - d);
memcpy(Ty->arr[r][i] + (Ty->X - d) * f->type_size,
Ty->arr[r][i - 1] + (Ty->X - d) * f->type_size,
d * f->type_size);
}
}
static void update_min_lut(IPlane *f, LUT *Ty, chord_set *SE, int y, int tid, int num)
{
for (int i = 0; i < num; i++)
circular_swap(Ty);
compute_min_row(f, Ty, SE, Ty->max_r - tid, y);
}
static int compute_min_lut(LUT *Ty, IPlane *f, chord_set *SE, int y, int num)
{
int ret = alloc_lut_if_necessary(Ty, f, SE, y, num, ERODE);
if (ret < 0)
return ret;
for (int r = Ty->min_r; r <= Ty->max_r; r++)
compute_min_row(f, Ty, SE, r, y);
return 0;
}
static void compute_max_row(IPlane *f, LUT *Ty, chord_set *SE, int r, int y)
{
if (y + r >= 0 && y + r < f->h) {
memcpy(Ty->arr[r][0], f->img[y + r], Ty->X * Ty->type_size);
} else {
memset(Ty->arr[r][0], 0, Ty->X * Ty->type_size);
}
for (int i = 1; i < SE->Lnum; i++) {
int d = SE->R[i] - SE->R[i - 1];
f->max_out_place(Ty->arr[r][i] - Ty->pre_pad_x * f->type_size,
Ty->arr[r][i - 1] - Ty->pre_pad_x * f->type_size,
Ty->arr[r][i - 1] + (d - Ty->pre_pad_x) * f->type_size,
Ty->X + Ty->pre_pad_x - d);
memcpy(Ty->arr[r][i] + (Ty->X - d) * f->type_size,
Ty->arr[r][i - 1] + (Ty->X - d) * f->type_size,
d * f->type_size);
}
}
static void update_max_lut(IPlane *f, LUT *Ty, chord_set *SE, int y, int tid, int num)
{
for (int i = 0; i < num; i++)
circular_swap(Ty);
compute_max_row(f, Ty, SE, Ty->max_r - tid, y);
}
static int compute_max_lut(LUT *Ty, IPlane *f, chord_set *SE, int y, int num)
{
int ret = alloc_lut_if_necessary(Ty, f, SE, y, num, DILATE);
if (ret < 0)
return ret;
for (int r = Ty->min_r; r <= Ty->max_r; r++)
compute_max_row(f, Ty, SE, r, y);
return 0;
}
static void line_dilate(IPlane *g, LUT *Ty, chord_set *SE, int y, int tid)
{
memset(g->img[y], 0, g->w * g->type_size);
for (int c = 0; c < SE->size; c++) {
g->max_in_place(g->img[y],
Ty->arr[SE->C[c].y + tid][SE->C[c].i] + SE->C[c].x * Ty->type_size,
av_clip(g->w - SE->C[c].x, 0, g->w));
}
}
static void line_erode(IPlane *g, LUT *Ty, chord_set *SE, int y, int tid)
{
memset(g->img[y], UINT8_MAX, g->w * g->type_size);
for (int c = 0; c < SE->size; c++) {
g->min_in_place(g->img[y],
Ty->arr[SE->C[c].y + tid][SE->C[c].i] + SE->C[c].x * Ty->type_size,
av_clip(g->w - SE->C[c].x, 0, g->w));
}
}
static int dilate(IPlane *g, IPlane *f, chord_set *SE, LUT *Ty)
{
int ret = compute_max_lut(Ty, f, SE, 0, 1);
if (ret < 0)
return ret;
line_dilate(g, Ty, SE, 0, 0);
for (int y = 1; y < f->h; y++) {
update_max_lut(f, Ty, SE, y, 0, 1);
line_dilate(g, Ty, SE, y, 0);
}
return 0;
}
static int erode(IPlane *g, IPlane *f, chord_set *SE, LUT *Ty)
{
int ret = compute_min_lut(Ty, f, SE, 0, 1);
if (ret < 0)
return ret;
line_erode(g, Ty, SE, 0, 0);
for (int y = 1; y < f->h; y++) {
update_min_lut(f, Ty, SE, y, 0, 1);
line_erode(g, Ty, SE, y, 0);
}
return 0;
}
static void difference(IPlane *g, IPlane *f)
{
for (int y = 0; y < f->h; y++)
f->diff_in_place(g->img[y], f->img[y], f->w);
}
static void difference2(IPlane *g, IPlane *f)
{
for (int y = 0; y < f->h; y++)
f->diff_rin_place(g->img[y], f->img[y], f->w);
}
static int insert_chord_set(chord_set *chords, chord c)
{
// Checking if chord fits in dynamic array, resize if not.
if (chords->size == chords->cap) {
chords->C = av_realloc_f(chords->C, chords->cap * 2, sizeof(chord));
if (!chords->C)
return AVERROR(ENOMEM);
chords->cap *= 2;
}
// Add the chord to the dynamic array.
chords->C[chords->size].x = c.x;
chords->C[chords->size].y = c.y;
chords->C[chords->size++].l = c.l;
// Update minimum/maximum x/y offsets of the chord set.
chords->minX = FFMIN(chords->minX, c.x);
chords->maxX = FFMAX(chords->maxX, c.x);
chords->minY = FFMIN(chords->minY, c.y);
chords->maxY = FFMAX(chords->maxY, c.y);
return 0;
}
static void free_chord_set(chord_set *SE)
{
av_freep(&SE->C);
SE->size = 0;
SE->cap = 0;
av_freep(&SE->R);
SE->Lnum = 0;
}
static int init_chordset(chord_set *chords)
{
chords->nb_elements = 0;
chords->size = 0;
chords->C = av_calloc(1, sizeof(chord));
if (!chords->C)
return AVERROR(ENOMEM);
chords->cap = 1;
chords->minX = INT16_MAX;
chords->maxX = INT16_MIN;
chords->minY = INT16_MAX;
chords->maxY = INT16_MIN;
return 0;
}
static int comp_chord_length(const void *p, const void *q)
{
chord a, b;
a = *((chord *)p);
b = *((chord *)q);
return (a.l > b.l) - (a.l < b.l);
}
static int comp_chord(const void *p, const void *q)
{
chord a, b;
a = *((chord *)p);
b = *((chord *)q);
return (a.y > b.y) - (a.y < b.y);
}
static int build_chord_set(IPlane *SE, chord_set *chords)
{
const int mid = 1 << (SE->depth - 1);
int chord_length_index;
int chord_start, val, ret;
int centerX, centerY;
int r_cap = 1;
chord c;
ret = init_chordset(chords);
if (ret < 0)
return ret;
/*
* In erosion/dilation, the center of the IPlane has S.E. offset (0,0).
* Otherwise, the resulting IPlane would be shifted to the top-left.
*/
centerX = (SE->w - 1) / 2;
centerY = (SE->h - 1) / 2;
/*
* Computing the set of chords C.
*/
for (int y = 0; y < SE->h; y++) {
int x;
chord_start = -1;
for (x = 0; x < SE->w; x++) {
if (SE->type_size == 1) {
chords->nb_elements += (SE->img[y][x] >= mid);
//A chord is a run of non-zero pixels.
if (SE->img[y][x] >= mid && chord_start == -1) {
// Chord starts.
chord_start = x;
} else if (SE->img[y][x] < mid && chord_start != -1) {
// Chord ends before end of line.
c.x = chord_start - centerX;
c.y = y - centerY;
c.l = x - chord_start;
ret = insert_chord_set(chords, c);
if (ret < 0)
return AVERROR(ENOMEM);
chord_start = -1;
}
} else {
chords->nb_elements += (AV_RN16(&SE->img[y][x * 2]) >= mid);
//A chord is a run of non-zero pixels.
if (AV_RN16(&SE->img[y][x * 2]) >= mid && chord_start == -1) {
// Chord starts.
chord_start = x;
} else if (AV_RN16(&SE->img[y][x * 2]) < mid && chord_start != -1) {
// Chord ends before end of line.
c.x = chord_start - centerX;
c.y = y - centerY;
c.l = x - chord_start;
ret = insert_chord_set(chords, c);
if (ret < 0)
return AVERROR(ENOMEM);
chord_start = -1;
}
}
}
if (chord_start != -1) {
// Chord ends at end of line.
c.x = chord_start - centerX;
c.y = y - centerY;
c.l = x - chord_start;
ret = insert_chord_set(chords, c);
if (ret < 0)
return AVERROR(ENOMEM);
}
}
/*
* Computing the array of chord lengths R(i).
* This is needed because the lookup table will contain a row for each
* length index i.
*/
qsort(chords->C, chords->size, sizeof(chord), comp_chord_length);
chords->R = av_calloc(1, sizeof(*chords->R));
if (!chords->R)
return AVERROR(ENOMEM);
chords->Lnum = 0;
val = 0;
r_cap = 1;
if (chords->size > 0) {
val = 1;
if (chords->Lnum >= r_cap) {
chords->R = av_realloc_f(chords->R, r_cap * 2, sizeof(*chords->R));
if (!chords->R)
return AVERROR(ENOMEM);
r_cap *= 2;
}
chords->R[chords->Lnum++] = 1;
val = 1;
}
for (int i = 0; i < chords->size; i++) {
if (val != chords->C[i].l) {
while (2 * val < chords->C[i].l && val != 0) {
if (chords->Lnum >= r_cap) {
chords->R = av_realloc_f(chords->R, r_cap * 2, sizeof(*chords->R));
if (!chords->R)
return AVERROR(ENOMEM);
r_cap *= 2;
}
chords->R[chords->Lnum++] = 2 * val;
val *= 2;
}
val = chords->C[i].l;
if (chords->Lnum >= r_cap) {
chords->R = av_realloc_f(chords->R, r_cap * 2, sizeof(*chords->R));
if (!chords->R)
return AVERROR(ENOMEM);
r_cap *= 2;
}
chords->R[chords->Lnum++] = val;
}
}
/*
* Setting the length indices of chords.
* These are needed so that the algorithm can, for each chord,
* access the lookup table at the correct length in constant time.
*/
chord_length_index = 0;
for (int i = 0; i < chords->size; i++) {
while (chords->R[chord_length_index] < chords->C[i].l)
chord_length_index++;
chords->C[i].i = chord_length_index;
}
/*
* Chords are sorted on Y. This way, when a row of the lookup table or IPlane
* is cached, the next chord offset has a better chance of being on the
* same cache line.
*/
qsort(chords->C, chords->size, sizeof(chord), comp_chord);
return 0;
}
static void free_iplane(IPlane *imp)
{
av_freep(&imp->img);
}
static int read_iplane(IPlane *imp, const uint8_t *dst, int dst_linesize,
int w, int h, int R, int type_size, int depth)
{
if (!imp->img)
imp->img = av_calloc(h, sizeof(*imp->img));
if (!imp->img)
return AVERROR(ENOMEM);
imp->w = w;
imp->h = h;
imp->range = R;
imp->depth = depth;
imp->type_size = type_size;
imp->max_out_place = type_size == 1 ? max_fun : max16_fun;
imp->min_out_place = type_size == 1 ? min_fun : min16_fun;
imp->diff_rin_place = type_size == 1 ? diff_fun : diff16_fun;
imp->max_in_place = type_size == 1 ? maxinplace_fun : maxinplace16_fun;
imp->min_in_place = type_size == 1 ? mininplace_fun : mininplace16_fun;
imp->diff_in_place = type_size == 1 ? diffinplace_fun : diffinplace16_fun;
for (int y = 0; y < h; y++)
imp->img[y] = (uint8_t *)dst + y * dst_linesize;
return 0;
}
static int config_input(AVFilterLink *inlink)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
MorphoContext *s = inlink->dst->priv;
s->depth = desc->comp[0].depth;
s->type_size = (s->depth + 7) / 8;
s->nb_planes = desc->nb_components;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
return 0;
}
static int config_input_structure(AVFilterLink *inlink)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
AVFilterContext *ctx = inlink->dst;
MorphoContext *s = inlink->dst->priv;
av_assert0(ctx->inputs[0]->format == ctx->inputs[1]->format);
s->splanewidth[1] = s->splanewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->splanewidth[0] = s->splanewidth[3] = inlink->w;
s->splaneheight[1] = s->splaneheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->splaneheight[0] = s->splaneheight[3] = inlink->h;
return 0;
}
static int activate(AVFilterContext *ctx)
{
MorphoContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static int do_morpho(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
AVFilterLink *outlink = ctx->outputs[0];
MorphoContext *s = ctx->priv;
AVFrame *in = NULL, *structurepic = NULL;
AVFrame *out;
int ret;
ret = ff_framesync_dualinput_get(fs, &in, &structurepic);
if (ret < 0)
return ret;
if (!structurepic)
return ff_filter_frame(outlink, in);
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
for (int p = 0; p < s->nb_planes; p++) {
const uint8_t *src = in->data[p];
int src_linesize = in->linesize[p];
const uint8_t *ssrc = structurepic->data[p];
const int ssrc_linesize = structurepic->linesize[p];
uint8_t *dst = out->data[p];
int dst_linesize = out->linesize[p];
const int swidth = s->splanewidth[p];
const int sheight = s->splaneheight[p];
const int width = s->planewidth[p];
const int height = s->planeheight[p];
const int depth = s->depth;
int type_size = s->type_size;
if (ctx->is_disabled || !(s->planes & (1 << p))) {
copy:
av_image_copy_plane(out->data[p] + 0 * out->linesize[p],
out->linesize[p],
in->data[p] + 0 * in->linesize[p],
in->linesize[p],
width * ((s->depth + 7) / 8),
height);
continue;
}
if (!s->got_structure[p] || s->structures) {
free_chord_set(&s->SE[p]);
ret = read_iplane(&s->SEimg[p], ssrc, ssrc_linesize, swidth, sheight, 1, type_size, depth);
if (ret < 0)
goto fail;
ret = build_chord_set(&s->SEimg[p], &s->SE[p]);
if (ret < 0)
goto fail;
s->got_structure[p] = 1;
}
if (s->SE[p].minX == INT16_MAX ||
s->SE[p].minY == INT16_MAX ||
s->SE[p].maxX == INT16_MIN ||
s->SE[p].maxY == INT16_MIN)
goto copy;
ret = read_iplane(&s->f[p], src, src_linesize, width, height, 1, type_size, depth);
if (ret < 0)
goto fail;
ret = read_iplane(&s->g[p], dst, dst_linesize, s->f[p].w, s->f[p].h, s->f[p].range, type_size, depth);
if (ret < 0)
goto fail;
switch (s->mode) {
case ERODE:
ret = erode(&s->g[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
break;
case DILATE:
ret = dilate(&s->g[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
break;
case OPEN:
ret = read_iplane(&s->h[p], s->temp->data[p], s->temp->linesize[p], width, height, 1, type_size, depth);
if (ret < 0)
break;
ret = erode(&s->h[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
if (ret < 0)
break;
ret = dilate(&s->g[p], &s->h[p], &s->SE[p], &s->Ty[1][p]);
break;
case CLOSE:
ret = read_iplane(&s->h[p], s->temp->data[p], s->temp->linesize[p], width, height, 1, type_size, depth);
if (ret < 0)
break;
ret = dilate(&s->h[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
if (ret < 0)
break;
ret = erode(&s->g[p], &s->h[p], &s->SE[p], &s->Ty[1][p]);
break;
case GRADIENT:
ret = read_iplane(&s->h[p], s->temp->data[p], s->temp->linesize[p], width, height, 1, type_size, depth);
if (ret < 0)
break;
ret = dilate(&s->g[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
if (ret < 0)
break;
ret = erode(&s->h[p], &s->f[p], &s->SE[p], &s->Ty[1][p]);
if (ret < 0)
break;
difference(&s->g[p], &s->h[p]);
break;
case TOPHAT:
ret = read_iplane(&s->h[p], s->temp->data[p], s->temp->linesize[p], width, height, 1, type_size, depth);
if (ret < 0)
break;
ret = erode(&s->h[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
if (ret < 0)
break;
ret = dilate(&s->g[p], &s->h[p], &s->SE[p], &s->Ty[1][p]);
if (ret < 0)
break;
difference2(&s->g[p], &s->f[p]);
break;
case BLACKHAT:
ret = read_iplane(&s->h[p], s->temp->data[p], s->temp->linesize[p], width, height, 1, type_size, depth);
if (ret < 0)
break;
ret = dilate(&s->h[p], &s->f[p], &s->SE[p], &s->Ty[0][p]);
if (ret < 0)
break;
ret = erode(&s->g[p], &s->h[p], &s->SE[p], &s->Ty[1][p]);
if (ret < 0)
break;
difference(&s->g[p], &s->f[p]);
break;
default:
av_assert0(0);
}
if (ret < 0)
goto fail;
}
av_frame_free(&in);
out->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base);
return ff_filter_frame(outlink, out);
fail:
av_frame_free(&out);
av_frame_free(&in);
return ret;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
MorphoContext *s = ctx->priv;
AVFilterLink *mainlink = ctx->inputs[0];
int ret;
s->fs.on_event = do_morpho;
ret = ff_framesync_init_dualinput(&s->fs, ctx);
if (ret < 0)
return ret;
outlink->w = mainlink->w;
outlink->h = mainlink->h;
outlink->time_base = mainlink->time_base;
outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
outlink->frame_rate = mainlink->frame_rate;
if ((ret = ff_framesync_configure(&s->fs)) < 0)
return ret;
outlink->time_base = s->fs.time_base;
s->temp = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!s->temp)
return AVERROR(ENOMEM);
s->plane_f = av_calloc(outlink->w * outlink->h, sizeof(*s->plane_f));
s->plane_g = av_calloc(outlink->w * outlink->h, sizeof(*s->plane_g));
if (!s->plane_f || !s->plane_g)
return AVERROR(ENOMEM);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
MorphoContext *s = ctx->priv;
for (int p = 0; p < 4; p++) {
free_iplane(&s->SEimg[p]);
free_iplane(&s->f[p]);
free_iplane(&s->g[p]);
free_iplane(&s->h[p]);
free_chord_set(&s->SE[p]);
free_lut(&s->Ty[0][p]);
free_lut(&s->Ty[1][p]);
}
ff_framesync_uninit(&s->fs);
av_frame_free(&s->temp);
av_freep(&s->plane_f);
av_freep(&s->plane_g);
}
static const AVFilterPad morpho_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
},
{
.name = "structure",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_structure,
},
};
static const AVFilterPad morpho_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_morpho = {
.name = "morpho",
.description = NULL_IF_CONFIG_SMALL("Apply Morphological filter."),
.preinit = morpho_framesync_preinit,
.priv_size = sizeof(MorphoContext),
.priv_class = &morpho_class,
.activate = activate,
.uninit = uninit,
FILTER_INPUTS(morpho_inputs),
FILTER_OUTPUTS(morpho_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
.process_command = ff_filter_process_command,
};