/**
* Copyright (c) 2016 Davinder Singh (DSM_) <ds.mudhar<@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "motion_estimation.h"
#include "libavcodec/mathops.h"
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/motion_vector.h"
#include "avfilter.h"
#include "internal.h"
#include "video.h"
typedef struct MEContext {
const AVClass *class;
AVMotionEstContext me_ctx;
int method; ///< motion estimation method
int mb_size; ///< macroblock size
int search_param; ///< search parameter
int b_width, b_height, b_count;
int log2_mb_size;
AVFrame *prev, *cur, *next;
int (*mv_table[3])[2][2]; ///< motion vectors of current & prev 2 frames
} MEContext;
#define OFFSET(x) offsetof(MEContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define CONST(name, help, val, u) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, .unit = u }
static const AVOption mestimate_options[] = {
{ "method", "motion estimation method", OFFSET(method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_ESA}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, .unit = "method" },
CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "method"),
CONST("tss", "three step search", AV_ME_METHOD_TSS, "method"),
CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "method"),
CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "method"),
CONST("fss", "four step search", AV_ME_METHOD_FSS, "method"),
CONST("ds", "diamond search", AV_ME_METHOD_DS, "method"),
CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "method"),
CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "method"),
CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "method"),
{ "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 8, INT_MAX, FLAGS },
{ "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 7}, 4, INT_MAX, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(mestimate);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
static int config_input(AVFilterLink *inlink)
{
MEContext *s = inlink->dst->priv;
int i;
s->log2_mb_size = av_ceil_log2_c(s->mb_size);
s->mb_size = 1 << s->log2_mb_size;
s->b_width = inlink->w >> s->log2_mb_size;
s->b_height = inlink->h >> s->log2_mb_size;
s->b_count = s->b_width * s->b_height;
if (s->b_count == 0)
return AVERROR(EINVAL);
for (i = 0; i < 3; i++) {
s->mv_table[i] = av_calloc(s->b_count, sizeof(*s->mv_table[0]));
if (!s->mv_table[i])
return AVERROR(ENOMEM);
}
ff_me_init_context(&s->me_ctx, s->mb_size, s->search_param, inlink->w, inlink->h, 0, (s->b_width - 1) << s->log2_mb_size, 0, (s->b_height - 1) << s->log2_mb_size);
return 0;
}
static void add_mv_data(AVMotionVector *mv, int mb_size,
int x, int y, int x_mv, int y_mv, int dir)
{
mv->w = mb_size;
mv->h = mb_size;
mv->dst_x = x + (mb_size >> 1);
mv->dst_y = y + (mb_size >> 1);
mv->src_x = x_mv + (mb_size >> 1);
mv->src_y = y_mv + (mb_size >> 1);
mv->source = dir ? 1 : -1;
mv->flags = 0;
}
#define SEARCH_MV(method)\
do {\
for (mb_y = 0; mb_y < s->b_height; mb_y++)\
for (mb_x = 0; mb_x < s->b_width; mb_x++) {\
const int x_mb = mb_x << s->log2_mb_size;\
const int y_mb = mb_y << s->log2_mb_size;\
int mv[2] = {x_mb, y_mb};\
ff_me_search_##method(me_ctx, x_mb, y_mb, mv);\
add_mv_data(((AVMotionVector *) sd->data) + mv_count++, me_ctx->mb_size, x_mb, y_mb, mv[0], mv[1], dir);\
}\
} while (0)
#define ADD_PRED(preds, px, py)\
do {\
preds.mvs[preds.nb][0] = px;\
preds.mvs[preds.nb][1] = py;\
preds.nb++;\
} while(0)
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
MEContext *s = ctx->priv;
AVMotionEstContext *me_ctx = &s->me_ctx;
AVFrameSideData *sd;
AVFrame *out;
int mb_x, mb_y, dir;
int32_t mv_count = 0;
int ret;
if (frame->pts == AV_NOPTS_VALUE) {
ret = ff_filter_frame(ctx->outputs[0], frame);
return ret;
}
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = frame;
s->mv_table[2] = memcpy(s->mv_table[2], s->mv_table[1], sizeof(*s->mv_table[1]) * s->b_count);
s->mv_table[1] = memcpy(s->mv_table[1], s->mv_table[0], sizeof(*s->mv_table[0]) * s->b_count);
if (!s->cur) {
s->cur = av_frame_clone(frame);
if (!s->cur)
return AVERROR(ENOMEM);
}
if (!s->prev)
return 0;
out = av_frame_clone(s->cur);
if (!out)
return AVERROR(ENOMEM);
sd = av_frame_new_side_data(out, AV_FRAME_DATA_MOTION_VECTORS, 2 * s->b_count * sizeof(AVMotionVector));
if (!sd) {
av_frame_free(&out);
return AVERROR(ENOMEM);
}
me_ctx->data_cur = s->cur->data[0];
me_ctx->linesize = s->cur->linesize[0];
for (dir = 0; dir < 2; dir++) {
me_ctx->data_ref = (dir ? s->next : s->prev)->data[0];
if (s->method == AV_ME_METHOD_DS)
SEARCH_MV(ds);
else if (s->method == AV_ME_METHOD_ESA)
SEARCH_MV(esa);
else if (s->method == AV_ME_METHOD_FSS)
SEARCH_MV(fss);
else if (s->method == AV_ME_METHOD_NTSS)
SEARCH_MV(ntss);
else if (s->method == AV_ME_METHOD_TDLS)
SEARCH_MV(tdls);
else if (s->method == AV_ME_METHOD_TSS)
SEARCH_MV(tss);
else if (s->method == AV_ME_METHOD_HEXBS)
SEARCH_MV(hexbs);
else if (s->method == AV_ME_METHOD_UMH) {
for (mb_y = 0; mb_y < s->b_height; mb_y++)
for (mb_x = 0; mb_x < s->b_width; mb_x++) {
const int mb_i = mb_x + mb_y * s->b_width;
const int x_mb = mb_x << s->log2_mb_size;
const int y_mb = mb_y << s->log2_mb_size;
int mv[2] = {x_mb, y_mb};
AVMotionEstPredictor *preds = me_ctx->preds;
preds[0].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - 1][dir][0], s->mv_table[0][mb_i - 1][dir][1]);
if (mb_y > 0) {
//top mb in current frame
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width][dir][0], s->mv_table[0][mb_i - s->b_width][dir][1]);
//top-right mb in current frame
if (mb_x + 1 < s->b_width)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width + 1][dir][0], s->mv_table[0][mb_i - s->b_width + 1][dir][1]);
//top-left mb in current frame
else if (mb_x > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width - 1][dir][0], s->mv_table[0][mb_i - s->b_width - 1][dir][1]);
}
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
ff_me_search_umh(me_ctx, x_mb, y_mb, mv);
s->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
s->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
add_mv_data(((AVMotionVector *) sd->data) + mv_count++, me_ctx->mb_size, x_mb, y_mb, mv[0], mv[1], dir);
}
} else if (s->method == AV_ME_METHOD_EPZS) {
for (mb_y = 0; mb_y < s->b_height; mb_y++)
for (mb_x = 0; mb_x < s->b_width; mb_x++) {
const int mb_i = mb_x + mb_y * s->b_width;
const int x_mb = mb_x << s->log2_mb_size;
const int y_mb = mb_y << s->log2_mb_size;
int mv[2] = {x_mb, y_mb};
AVMotionEstPredictor *preds = me_ctx->preds;
preds[0].nb = 0;
preds[1].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - 1][dir][0], s->mv_table[0][mb_i - 1][dir][1]);
//top mb in current frame
if (mb_y > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width][dir][0], s->mv_table[0][mb_i - s->b_width][dir][1]);
//top-right mb in current frame
if (mb_y > 0 && mb_x + 1 < s->b_width)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width + 1][dir][0], s->mv_table[0][mb_i - s->b_width + 1][dir][1]);
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
//collocated mb in prev frame
ADD_PRED(preds[0], s->mv_table[1][mb_i][dir][0], s->mv_table[1][mb_i][dir][1]);
//accelerator motion vector of collocated block in prev frame
ADD_PRED(preds[1], s->mv_table[1][mb_i][dir][0] + (s->mv_table[1][mb_i][dir][0] - s->mv_table[2][mb_i][dir][0]),
s->mv_table[1][mb_i][dir][1] + (s->mv_table[1][mb_i][dir][1] - s->mv_table[2][mb_i][dir][1]));
//left mb in prev frame
if (mb_x > 0)
ADD_PRED(preds[1], s->mv_table[1][mb_i - 1][dir][0], s->mv_table[1][mb_i - 1][dir][1]);
//top mb in prev frame
if (mb_y > 0)
ADD_PRED(preds[1], s->mv_table[1][mb_i - s->b_width][dir][0], s->mv_table[1][mb_i - s->b_width][dir][1]);
//right mb in prev frame
if (mb_x + 1 < s->b_width)
ADD_PRED(preds[1], s->mv_table[1][mb_i + 1][dir][0], s->mv_table[1][mb_i + 1][dir][1]);
//bottom mb in prev frame
if (mb_y + 1 < s->b_height)
ADD_PRED(preds[1], s->mv_table[1][mb_i + s->b_width][dir][0], s->mv_table[1][mb_i + s->b_width][dir][1]);
ff_me_search_epzs(me_ctx, x_mb, y_mb, mv);
s->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
s->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
add_mv_data(((AVMotionVector *) sd->data) + mv_count++, s->mb_size, x_mb, y_mb, mv[0], mv[1], dir);
}
}
}
return ff_filter_frame(ctx->outputs[0], out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
MEContext *s = ctx->priv;
int i;
av_frame_free(&s->prev);
av_frame_free(&s->cur);
av_frame_free(&s->next);
for (i = 0; i < 3; i++)
av_freep(&s->mv_table[i]);
}
static const AVFilterPad mestimate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
const AVFilter ff_vf_mestimate = {
.name = "mestimate",
.description = NULL_IF_CONFIG_SMALL("Generate motion vectors."),
.priv_size = sizeof(MEContext),
.priv_class = &mestimate_class,
.uninit = uninit,
.flags = AVFILTER_FLAG_METADATA_ONLY,
FILTER_INPUTS(mestimate_inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_PIXFMTS_ARRAY(pix_fmts),
};