/*
* VVC inter prediction
*
* Copyright (C) 2022 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/frame.h"
#include "data.h"
#include "inter.h"
#include "mvs.h"
#include "refs.h"
// +1 is enough, + 32 for asm alignment
#define PROF_TEMP_OFFSET (MAX_PB_SIZE + 32)
static const int bcw_w_lut[] = {4, 5, 3, 10, -2};
static void subpic_get_rect(VVCRect *r, const VVCFrame *src_frame, const int subpic_idx, const int is_chroma)
{
const VVCSPS *sps = src_frame->sps;
const VVCPPS *pps = src_frame->pps;
const int hs = sps->hshift[is_chroma];
const int vs = sps->vshift[is_chroma];
r->l = pps->subpic_x[subpic_idx] >> hs;
r->t = pps->subpic_y[subpic_idx] >> vs;
r->r = r->l + (pps->subpic_width[subpic_idx] >> hs);
r->b = r->t + (pps->subpic_height[subpic_idx] >> vs);
}
// clip to subblock and subpicture process in 8.5.6.3.2 Luma sample interpolation filtering process
static void clip_to_subpic(int *x_off, int *y_off, int *pic_width, int *pic_height, const VVCRect *subpic, const VVCRect *sb, const int dmvr_clip)
{
const int l = dmvr_clip ? FFMIN(FFMAX(subpic->l, sb->l), subpic->r - 1) : subpic->l;
const int t = dmvr_clip ? FFMIN(FFMAX(subpic->t, sb->t), subpic->b - 1) : subpic->t;
const int r = dmvr_clip ? FFMAX(FFMIN(subpic->r, sb->r), subpic->l + 1) : subpic->r;
const int b = dmvr_clip ? FFMAX(FFMIN(subpic->b, sb->b), subpic->t + 1) : subpic->b;
*x_off -= l;
*y_off -= t;
*pic_width = r - l;
*pic_height = b - t;
}
static void emulated_edge_no_wrap(const VVCLocalContext *lc, uint8_t *dst,
const uint8_t **src, ptrdiff_t *src_stride,
int x_off, int y_off, const int block_w, const int block_h,
const int extra_before, const int extra_after,
const VVCRect *subpic, const VVCRect *sb, const int dmvr_clip)
{
const VVCFrameContext *fc = lc->fc;
const int extra = extra_before + extra_after;
int pic_width, pic_height;
*src += y_off * *src_stride + (x_off * (1 << fc->ps.sps->pixel_shift));
clip_to_subpic(&x_off, &y_off, &pic_width, &pic_height, subpic, sb, dmvr_clip);
if (dmvr_clip || x_off < extra_before || y_off < extra_before ||
x_off >= pic_width - block_w - extra_after ||
y_off >= pic_height - block_h - extra_after) {
const int ps = fc->ps.sps->pixel_shift;
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << ps;
const int offset = extra_before * *src_stride + (extra_before << ps);
const int buf_offset = extra_before * edge_emu_stride + (extra_before << ps);
fc->vdsp.emulated_edge_mc(dst, *src - offset, edge_emu_stride, *src_stride,
block_w + extra, block_h + extra, x_off - extra_before, y_off - extra_before,
pic_width, pic_height);
*src = dst + buf_offset;
*src_stride = edge_emu_stride;
}
}
static void emulated_half(const VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride,
const uint8_t *src, const ptrdiff_t src_stride, const int ps,
int x_off, int y_off, const int block_w, const int block_h,
const VVCRect *subpic,const VVCRect *half_sb, const int dmvr_clip)
{
const VVCFrameContext *fc = lc->fc;
int pic_width, pic_height;
src += y_off * src_stride + x_off * (1 << ps);
clip_to_subpic(&x_off, &y_off, &pic_width, &pic_height, subpic, half_sb, dmvr_clip);
fc->vdsp.emulated_edge_mc(dst, src, dst_stride, src_stride,
block_w, block_h, x_off, y_off, pic_width, pic_height);
}
static void sb_set_lr(VVCRect *sb, const int l, const int r)
{
sb->l = l;
sb->r = r;
}
static void sb_wrap(VVCRect *sb, const int wrap)
{
sb_set_lr(sb, sb->l + wrap, sb->r + wrap);
}
static void emulated_edge(const VVCLocalContext *lc, uint8_t *dst,
const uint8_t **src, ptrdiff_t *src_stride, const VVCFrame *src_frame,
int x_sb, int y_sb, int x_off, int y_off, int block_w, int block_h, const int wrap_enabled,
const int is_chroma, const int extra_before, const int extra_after)
{
const VVCSPS *sps = src_frame->sps;
const VVCPPS *pps = src_frame->pps;
const int ps = sps->pixel_shift;
const int subpic_idx = lc->sc->sh.r->curr_subpic_idx;
const int extra = extra_before + extra_after;
const int dmvr_clip = x_sb != x_off || y_sb != y_off;
const int dmvr_left = FFMAX(x_off, x_sb) - extra_before;
const int dmvr_right = FFMIN(x_off, x_sb) + block_w + extra_after;
const int left = x_off - extra_before;
const int top = y_off - extra_before;
const int pic_width = pps->width >> sps->hshift[is_chroma];
const int wrap = pps->ref_wraparound_offset << (sps->min_cb_log2_size_y - sps->hshift[is_chroma]);
const ptrdiff_t dst_stride = EDGE_EMU_BUFFER_STRIDE << ps;
VVCRect sb = { x_sb - extra_before, y_sb - extra_before, x_sb + block_w + extra_after, y_sb + block_h + extra_after };
VVCRect subpic;
subpic_get_rect(&subpic, src_frame, subpic_idx, is_chroma);
if (!wrap_enabled || (dmvr_left >= 0 && dmvr_right <= pic_width)) {
emulated_edge_no_wrap(lc, dst, src, src_stride,
x_off, y_off, block_w, block_h, extra_before, extra_after, &subpic, &sb, dmvr_clip);
return;
}
if (dmvr_right <= 0) {
sb_wrap(&sb, wrap);
emulated_edge_no_wrap(lc, dst, src, src_stride,
x_off + wrap, y_off, block_w, block_h, extra_before, extra_after, &subpic, &sb, dmvr_clip);
return;
}
if (dmvr_left >= pic_width) {
sb_wrap(&sb, -wrap);
emulated_edge_no_wrap(lc, dst, src, src_stride,
x_off - wrap, y_off, block_w, block_h, extra_before, extra_after, &subpic, &sb, dmvr_clip);
return;
}
block_w += extra;
block_h += extra;
// half block are wrapped
if (dmvr_left < 0 ) {
const int w = -left;
VVCRect half_sb = { sb.l + wrap, sb.t, 0 + wrap, sb.b };
emulated_half(lc, dst, dst_stride, *src, *src_stride, ps,
left + wrap, top, w, block_h, &subpic, &half_sb, dmvr_clip);
sb_set_lr(&half_sb, 0, sb.r);
emulated_half(lc, dst + (w << ps), dst_stride, *src, *src_stride, ps,
0, top, block_w - w, block_h, &subpic, &half_sb, dmvr_clip);
} else {
const int w = pic_width - left;
VVCRect half_sb = { sb.l, sb.t, pic_width, sb.b };
emulated_half(lc, dst, dst_stride, *src, *src_stride, ps,
left, top, w, block_h, &subpic, &half_sb, dmvr_clip);
sb_set_lr(&half_sb, pic_width - wrap, sb.r - wrap);
emulated_half(lc, dst + (w << ps), dst_stride, *src, *src_stride, ps,
pic_width - wrap , top, block_w - w, block_h, &subpic, &half_sb, dmvr_clip);
}
*src = dst + extra_before * dst_stride + (extra_before << ps);
*src_stride = dst_stride;
}
#define MC_EMULATED_EDGE(dst, src, src_stride, x_off, y_off) \
emulated_edge(lc, dst, src, src_stride, ref, x_off, y_off, x_off, y_off, block_w, block_h, wrap_enabled, is_chroma, \
is_chroma ? CHROMA_EXTRA_BEFORE : LUMA_EXTRA_BEFORE, is_chroma ? CHROMA_EXTRA_AFTER : LUMA_EXTRA_AFTER)
#define MC_EMULATED_EDGE_DMVR(dst, src, src_stride, x_sb, y_sb, x_off, y_off) \
emulated_edge(lc, dst, src, src_stride, ref, x_sb, y_sb, x_off, y_off, block_w, block_h, wrap_enabled, is_chroma, \
is_chroma ? CHROMA_EXTRA_BEFORE : LUMA_EXTRA_BEFORE, is_chroma ? CHROMA_EXTRA_AFTER : LUMA_EXTRA_AFTER)
#define MC_EMULATED_EDGE_BILINEAR(dst, src, src_stride, x_off, y_off) \
emulated_edge(lc, dst, src, src_stride, ref, x_off, y_off, x_off, y_off, pred_w, pred_h, wrap_enabled, 0, \
BILINEAR_EXTRA_BEFORE, BILINEAR_EXTRA_AFTER)
// part of 8.5.6.6 Weighted sample prediction process
static int derive_weight_uni(int *denom, int *wx, int *ox,
const VVCLocalContext *lc, const MvField *mvf, const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const VVCPPS *pps = fc->ps.pps;
const VVCSH *sh = &lc->sc->sh;
const int weight_flag = (IS_P(sh->r) && pps->r->pps_weighted_pred_flag) ||
(IS_B(sh->r) && pps->r->pps_weighted_bipred_flag);
if (weight_flag) {
const int lx = mvf->pred_flag - PF_L0;
const PredWeightTable *w = pps->r->pps_wp_info_in_ph_flag ? &fc->ps.ph.pwt : &sh->pwt;
*denom = w->log2_denom[c_idx > 0];
*wx = w->weight[lx][c_idx][mvf->ref_idx[lx]];
*ox = w->offset[lx][c_idx][mvf->ref_idx[lx]];
}
return weight_flag;
}
// part of 8.5.6.6 Weighted sample prediction process
static int derive_weight(int *denom, int *w0, int *w1, int *o0, int *o1,
const VVCLocalContext *lc, const MvField *mvf, const int c_idx, const int dmvr_flag)
{
const VVCFrameContext *fc = lc->fc;
const VVCPPS *pps = fc->ps.pps;
const VVCSH *sh = &lc->sc->sh;
const int bcw_idx = mvf->bcw_idx;
const int weight_flag = (IS_P(sh->r) && pps->r->pps_weighted_pred_flag) ||
(IS_B(sh->r) && pps->r->pps_weighted_bipred_flag && !dmvr_flag);
if ((!weight_flag && !bcw_idx) || (bcw_idx && lc->cu->ciip_flag))
return 0;
if (bcw_idx) {
*denom = 2;
*w1 = bcw_w_lut[bcw_idx];
*w0 = 8 - *w1;
*o0 = *o1 = 0;
} else {
const VVCPPS *pps = fc->ps.pps;
const PredWeightTable *w = pps->r->pps_wp_info_in_ph_flag ? &fc->ps.ph.pwt : &sh->pwt;
*denom = w->log2_denom[c_idx > 0];
*w0 = w->weight[L0][c_idx][mvf->ref_idx[L0]];
*w1 = w->weight[L1][c_idx][mvf->ref_idx[L1]];
*o0 = w->offset[L0][c_idx][mvf->ref_idx[L0]];
*o1 = w->offset[L1][c_idx][mvf->ref_idx[L1]];
}
return 1;
}
#define INTER_FILTER(t, frac) (is_chroma ? ff_vvc_inter_chroma_filters[t][frac] : ff_vvc_inter_luma_filters[t][frac])
static void mc(VVCLocalContext *lc, int16_t *dst, const VVCFrame *ref, const Mv *mv,
int x_off, int y_off, const int block_w, const int block_h, const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
const uint8_t *src = ref->frame->data[c_idx];
ptrdiff_t src_stride = ref->frame->linesize[c_idx];
const int is_chroma = !!c_idx;
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int idx = av_log2(block_w) - 1;
const intptr_t mx = av_zero_extend(mv->x, 4 + hs) << (is_chroma - hs);
const intptr_t my = av_zero_extend(mv->y, 4 + vs) << (is_chroma - vs);
const int hpel_if_idx = (is_chroma || pu->merge_gpm_flag) ? 0 : pu->mi.hpel_if_idx;
const int8_t *hf = INTER_FILTER(hpel_if_idx, mx);
const int8_t *vf = INTER_FILTER(hpel_if_idx, my);
const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag;
x_off += mv->x >> (4 + hs);
y_off += mv->y >> (4 + vs);
MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, x_off, y_off);
fc->vvcdsp.inter.put[is_chroma][idx][!!my][!!mx](dst, src, src_stride, block_h, hf, vf, block_w);
}
static void mc_uni(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride,
const VVCFrame *ref, const MvField *mvf, int x_off, int y_off, const int block_w, const int block_h,
const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
const uint8_t *src = ref->frame->data[c_idx];
ptrdiff_t src_stride = ref->frame->linesize[c_idx];
const int lx = mvf->pred_flag - PF_L0;
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int idx = av_log2(block_w) - 1;
const Mv *mv = &mvf->mv[lx];
const int is_chroma = !!c_idx;
const intptr_t mx = av_zero_extend(mv->x, 4 + hs) << (is_chroma - hs);
const intptr_t my = av_zero_extend(mv->y, 4 + vs) << (is_chroma - vs);
const int hpel_if_idx = is_chroma ? 0 : pu->mi.hpel_if_idx;
const int8_t *hf = INTER_FILTER(hpel_if_idx, mx);
const int8_t *vf = INTER_FILTER(hpel_if_idx, my);
const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag;
int denom, wx, ox;
x_off += mv->x >> (4 + hs);
y_off += mv->y >> (4 + vs);
MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, x_off, y_off);
if (derive_weight_uni(&denom, &wx, &ox, lc, mvf, c_idx)) {
fc->vvcdsp.inter.put_uni_w[is_chroma][idx][!!my][!!mx](dst, dst_stride, src, src_stride,
block_h, denom, wx, ox, hf, vf, block_w);
} else {
fc->vvcdsp.inter.put_uni[is_chroma][idx][!!my][!!mx](dst, dst_stride, src, src_stride,
block_h, hf, vf, block_w);
}
}
static void mc_bi(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride,
const VVCFrame *ref0, const VVCFrame *ref1, const MvField *mvf, const MvField *orig_mv,
const int x_off, const int y_off, const int block_w, const int block_h, const int c_idx,
const int sb_bdof_flag)
{
const VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int idx = av_log2(block_w) - 1;
const VVCFrame *refs[] = { ref0, ref1 };
int16_t *tmp[] = { lc->tmp + sb_bdof_flag * PROF_TEMP_OFFSET, lc->tmp1 + sb_bdof_flag * PROF_TEMP_OFFSET };
int denom, w0, w1, o0, o1;
const int weight_flag = derive_weight(&denom, &w0, &w1, &o0, &o1, lc, mvf, c_idx, pu->dmvr_flag);
const int is_chroma = !!c_idx;
const int hpel_if_idx = is_chroma ? 0 : pu->mi.hpel_if_idx;
for (int i = L0; i <= L1; i++) {
const Mv *mv = mvf->mv + i;
const int mx = av_zero_extend(mv->x, 4 + hs) << (is_chroma - hs);
const int my = av_zero_extend(mv->y, 4 + vs) << (is_chroma - vs);
const int ox = x_off + (mv->x >> (4 + hs));
const int oy = y_off + (mv->y >> (4 + vs));
const VVCFrame *ref = refs[i];
ptrdiff_t src_stride = ref->frame->linesize[c_idx];
const uint8_t *src = ref->frame->data[c_idx];
const int8_t *hf = INTER_FILTER(hpel_if_idx, mx);
const int8_t *vf = INTER_FILTER(hpel_if_idx, my);
const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag;
if (pu->dmvr_flag) {
const int x_sb = x_off + (orig_mv->mv[i].x >> (4 + hs));
const int y_sb = y_off + (orig_mv->mv[i].y >> (4 + vs));
MC_EMULATED_EDGE_DMVR(lc->edge_emu_buffer, &src, &src_stride, x_sb, y_sb, ox, oy);
} else {
MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, ox, oy);
}
fc->vvcdsp.inter.put[is_chroma][idx][!!my][!!mx](tmp[i], src, src_stride, block_h, hf, vf, block_w);
if (sb_bdof_flag)
fc->vvcdsp.inter.bdof_fetch_samples(tmp[i], src, src_stride, mx, my, block_w, block_h);
}
if (sb_bdof_flag)
fc->vvcdsp.inter.apply_bdof(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h);
else if (weight_flag)
fc->vvcdsp.inter.w_avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h, denom, w0, w1, o0, o1);
else
fc->vvcdsp.inter.avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h);
}
static const int8_t* inter_filter_scaled(const int scale, const int is_chroma, const int is_affine)
{
#define SCALE_THRESHOLD_1 20480
#define SCALE_THRESHOLD_2 28672
const int i = (scale > SCALE_THRESHOLD_2) + (scale > SCALE_THRESHOLD_1);
if (!is_chroma) {
if (!is_affine)
return &ff_vvc_inter_luma_filters[i + !!i][0][0]; //hpel 1 is not needed for scaled
return &ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE + i][0][0];
}
return &ff_vvc_inter_chroma_filters[i][0][0];
}
#define INTER_FILTER_SCALED(scale) inter_filter_scaled(scale, is_chroma, is_affine)
#define SCALED_CHROMA_ADDIN(scale, collocated_flag) (is_chroma ? (collocated_flag ? 0 : 8 * (scale - (1 << 14))) : 0)
#define SCALED_REF_SB(off, scaling_off, ref_mv, scale, add, shift) ((((off - (scaling_off << shift)) << (4 + shift)) + ref_mv) * scale + add)
#define SCALED_REF(ref_sb, offset, shift) (FFSIGN(ref_sb) * ((FFABS(ref_sb) + (128 << is_chroma)) >> (8 + is_chroma)) + (offset << (10 - shift)) + (32 >> is_chroma))
#define SCALED_STEP(scale) ((scale + 8) >> 4)
static void scaled_ref_pos_and_step(const VVCLocalContext *lc, const VVCRefPic *refp, const Mv *mv, const int x_off, const int y_off, const int c_idx,
int *x, int *y, int *dx, int *dy)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int is_chroma = !!c_idx;
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
const int left_offset = fc->ref->scaling_win.left_offset;
const int top_offset = fc->ref->scaling_win.top_offset;
const int addx = SCALED_CHROMA_ADDIN(refp->scale[0], sps->r->sps_chroma_horizontal_collocated_flag);
const int addy = SCALED_CHROMA_ADDIN(refp->scale[1], sps->r->sps_chroma_vertical_collocated_flag);
const int refx_sb = SCALED_REF_SB(x_off, left_offset, mv->x, refp->scale[0], addx, hs);
const int refy_sb = SCALED_REF_SB(y_off, top_offset, mv->y, refp->scale[1], addy, vs);
*x = SCALED_REF(refx_sb, left_offset, hs);
*y = SCALED_REF(refy_sb, top_offset, vs);
*dx = SCALED_STEP(refp->scale[0]);
*dy = SCALED_STEP(refp->scale[1]);
}
static void emulated_edge_scaled(VVCLocalContext *lc, const uint8_t **src, ptrdiff_t *src_stride, int *src_height,
const VVCFrame *ref, const int x, const int y, const int dx, const int dy, const int w, const int h, const int is_chroma)
{
const int x_off = SCALED_INT(x);
const int y_off = SCALED_INT(y);
const int x_end = SCALED_INT(x + w * dx);
const int y_end = SCALED_INT(y + h * dy);
const int x_last = SCALED_INT(x + (w - 1) * dx);
const int y_last = SCALED_INT(y + (h - 1) * dy);
const int block_w = x_end - x_off + (x_end == x_last);
const int block_h = *src_height = y_end - y_off + (y_end == y_last);
const int wrap_enabled = 0;
MC_EMULATED_EDGE(lc->edge_emu_buffer, src, src_stride, x_off, y_off);
}
static void mc_scaled(VVCLocalContext *lc, int16_t *dst, const VVCRefPic *refp, const Mv *mv,
int x_off, int y_off, const int block_w, const int block_h, const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
const uint8_t *src = refp->ref->frame->data[c_idx];
ptrdiff_t src_stride = refp->ref->frame->linesize[c_idx];
const int is_affine = pu->inter_affine_flag;
const int is_chroma = !!c_idx;
const int idx = av_log2(block_w) - 1;
const int8_t *hf = INTER_FILTER_SCALED(refp->scale[0]);
const int8_t *vf = INTER_FILTER_SCALED(refp->scale[1]);
int x, y, dx, dy, src_height;
scaled_ref_pos_and_step(lc, refp, mv, x_off, y_off, c_idx, &x, &y, &dx, &dy);
emulated_edge_scaled(lc, &src, &src_stride, &src_height, refp->ref, x, y, dx, dy, block_w, block_h, is_chroma);
fc->vvcdsp.inter.put_scaled[is_chroma][idx](dst, src, src_stride, src_height, x, y, dx, dy, block_h, hf, vf, block_w);
}
static void mc_uni_scaled(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride, const VVCRefPic *refp,
const MvField *mvf, const int x_off, const int y_off, const int block_w, const int block_h, const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
const uint8_t *src = refp->ref->frame->data[c_idx];
ptrdiff_t src_stride = refp->ref->frame->linesize[c_idx];
const int lx = mvf->pred_flag - PF_L0;
const Mv *mv = &mvf->mv[lx];
const int is_affine = pu->inter_affine_flag;
const int is_chroma = !!c_idx;
const int idx = av_log2(block_w) - 1;
const int8_t *hf = INTER_FILTER_SCALED(refp->scale[0]);
const int8_t *vf = INTER_FILTER_SCALED(refp->scale[1]);
int denom, wx, ox, x, y, dx, dy, src_height;
scaled_ref_pos_and_step(lc, refp, mv, x_off, y_off, c_idx, &x, &y, &dx, &dy);
emulated_edge_scaled(lc, &src, &src_stride, &src_height, refp->ref, x, y, dx, dy, block_w, block_h, is_chroma);
if (derive_weight_uni(&denom, &wx, &ox, lc, mvf, c_idx)) {
fc->vvcdsp.inter.put_uni_w_scaled[is_chroma][idx](dst, dst_stride, src, src_stride, src_height,
x, y, dx, dy, block_h, denom, wx, ox, hf, vf, block_w);
} else {
fc->vvcdsp.inter.put_uni_scaled[is_chroma][idx](dst, dst_stride, src, src_stride, src_height,
x, y, dx, dy, block_h, hf, vf, block_w);
}
}
static void mc_bi_scaled(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride,
const VVCRefPic *refp0, const VVCRefPic *refp1, const MvField *mvf,
const int x_off, const int y_off, const int block_w, const int block_h, const int c_idx)
{
int denom, w0, w1, o0, o1;
const VVCFrameContext *fc = lc->fc;
const int weight_flag = derive_weight(&denom, &w0, &w1, &o0, &o1, lc, mvf, c_idx, lc->cu->pu.dmvr_flag);
const VVCRefPic *refps[] = { refp0, refp1 };
int16_t *tmp[] = { lc->tmp, lc->tmp1 };
for (int i = L0; i <= L1; i++) {
const Mv *mv = mvf->mv + i;
const VVCRefPic *refp = refps[i];
if (refp->is_scaled)
mc_scaled(lc, tmp[i], refp, mv, x_off, y_off, block_w, block_h, c_idx);
else
mc(lc, tmp[i], refp->ref, mv, x_off, y_off, block_w, block_h, c_idx);
}
if (weight_flag)
fc->vvcdsp.inter.w_avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h, denom, w0, w1, o0, o1);
else
fc->vvcdsp.inter.avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h);
}
static void luma_prof_uni(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride,
const VVCFrame *ref, const MvField *mvf, int x_off, int y_off, const int block_w, const int block_h,
const int cb_prof_flag, const int16_t *diff_mv_x, const int16_t *diff_mv_y)
{
const VVCFrameContext *fc = lc->fc;
const uint8_t *src = ref->frame->data[LUMA];
ptrdiff_t src_stride = ref->frame->linesize[LUMA];
uint16_t *prof_tmp = lc->tmp + PROF_TEMP_OFFSET;
const int idx = av_log2(block_w) - 1;
const int lx = mvf->pred_flag - PF_L0;
const Mv *mv = mvf->mv + lx;
const int mx = mv->x & 0xf;
const int my = mv->y & 0xf;
const int8_t *hf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][mx];
const int8_t *vf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][my];
int denom, wx, ox;
const int weight_flag = derive_weight_uni(&denom, &wx, &ox, lc, mvf, LUMA);
const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag;
const int is_chroma = 0;
x_off += mv->x >> 4;
y_off += mv->y >> 4;
MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, x_off, y_off);
if (cb_prof_flag) {
fc->vvcdsp.inter.put[LUMA][idx][!!my][!!mx](prof_tmp, src, src_stride, AFFINE_MIN_BLOCK_SIZE, hf, vf, AFFINE_MIN_BLOCK_SIZE);
fc->vvcdsp.inter.fetch_samples(prof_tmp, src, src_stride, mx, my);
if (!weight_flag)
fc->vvcdsp.inter.apply_prof_uni(dst, dst_stride, prof_tmp, diff_mv_x, diff_mv_y);
else
fc->vvcdsp.inter.apply_prof_uni_w(dst, dst_stride, prof_tmp, diff_mv_x, diff_mv_y, denom, wx, ox);
} else {
if (!weight_flag)
fc->vvcdsp.inter.put_uni[LUMA][idx][!!my][!!mx](dst, dst_stride, src, src_stride, block_h, hf, vf, block_w);
else
fc->vvcdsp.inter.put_uni_w[LUMA][idx][!!my][!!mx](dst, dst_stride, src, src_stride, block_h, denom, wx, ox, hf, vf, block_w);
}
}
static void luma_prof(VVCLocalContext *lc, int16_t *dst, const VVCFrame *ref,
const Mv *mv , const int x_off, const int y_off, const int block_w, const int block_h, const int lx)
{
const VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
const int mx = mv->x & 0xf;
const int my = mv->y & 0xf;
const int ox = x_off + (mv->x >> 4);
const int oy = y_off + (mv->y >> 4);
const int idx = av_log2(block_w) - 1;
const int is_chroma = 0;
uint16_t *prof_tmp = lc->tmp2 + PROF_TEMP_OFFSET;
ptrdiff_t src_stride = ref->frame->linesize[LUMA];
const uint8_t *src = ref->frame->data[LUMA];
const int8_t *hf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][mx];
const int8_t *vf = ff_vvc_inter_luma_filters[VVC_INTER_LUMA_FILTER_TYPE_AFFINE][my];
const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag;
MC_EMULATED_EDGE(lc->edge_emu_buffer, &src, &src_stride, ox, oy);
if (!pu->cb_prof_flag[lx]) {
fc->vvcdsp.inter.put[LUMA][idx][!!my][!!mx](dst, src, src_stride, block_h, hf, vf, block_w);
} else {
fc->vvcdsp.inter.put[LUMA][idx][!!my][!!mx](prof_tmp, src, src_stride, AFFINE_MIN_BLOCK_SIZE, hf, vf, AFFINE_MIN_BLOCK_SIZE);
fc->vvcdsp.inter.fetch_samples(prof_tmp, src, src_stride, mx, my);
fc->vvcdsp.inter.apply_prof(dst, prof_tmp, pu->diff_mv_x[lx], pu->diff_mv_y[lx]);
}
}
static void luma_prof_bi(VVCLocalContext *lc, uint8_t *dst, const ptrdiff_t dst_stride,
const VVCRefPic *ref0, const VVCRefPic *ref1, const MvField *mvf, const int x_off, const int y_off,
const int block_w, const int block_h)
{
const VVCFrameContext *fc = lc->fc;
const VVCRefPic *refps[] = { ref0, ref1 };
int16_t *tmp[] = { lc->tmp, lc->tmp1 };
int denom, w0, w1, o0, o1;
const int weight_flag = derive_weight(&denom, &w0, &w1, &o0, &o1, lc, mvf, LUMA, 0);
for (int i = L0; i <= L1; i++) {
const VVCRefPic *refp = refps[i];
const Mv *mv = mvf->mv + i;
if (refp->is_scaled)
mc_scaled(lc, tmp[i], refp, mv, x_off, y_off, block_w, block_h, LUMA);
else
luma_prof(lc, tmp[i], refp->ref, mv, x_off, y_off, block_w, block_h, i);
}
if (weight_flag)
fc->vvcdsp.inter.w_avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h, denom, w0, w1, o0, o1);
else
fc->vvcdsp.inter.avg(dst, dst_stride, tmp[L0], tmp[L1], block_w, block_h);
}
static int pred_get_refs(const VVCLocalContext *lc, VVCRefPic *refp[2], const MvField *mv)
{
RefPicList *rpl = lc->sc->rpl;
for (int mask = PF_L0; mask <= PF_L1; mask++) {
if (mv->pred_flag & mask) {
const int lx = mask - PF_L0;
refp[lx] = rpl[lx].refs + mv->ref_idx[lx];
if (!refp[lx]->ref)
return AVERROR_INVALIDDATA;
}
}
return 0;
}
#define POS(c_idx, x, y) \
&fc->frame->data[c_idx][((y) >> fc->ps.sps->vshift[c_idx]) * fc->frame->linesize[c_idx] + \
(((x) >> fc->ps.sps->hshift[c_idx]) << fc->ps.sps->pixel_shift)]
static void pred_gpm_blk(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const PredictionUnit *pu = &cu->pu;
const uint8_t angle_idx = ff_vvc_gpm_angle_idx[pu->gpm_partition_idx];
const uint8_t weights_idx = ff_vvc_gpm_angle_to_weights_idx[angle_idx];
const int w = av_log2(cu->cb_width) - 3;
const int h = av_log2(cu->cb_height) - 3;
const uint8_t off_x = ff_vvc_gpm_weights_offset_x[pu->gpm_partition_idx][h][w];
const uint8_t off_y = ff_vvc_gpm_weights_offset_y[pu->gpm_partition_idx][h][w];
const uint8_t mirror_type = ff_vvc_gpm_angle_to_mirror[angle_idx];
const uint8_t *weights;
const int c_end = fc->ps.sps->r->sps_chroma_format_idc ? 3 : 1;
int16_t *tmp[2] = {lc->tmp, lc->tmp1};
for (int c_idx = 0; c_idx < c_end; c_idx++) {
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int x = lc->cu->x0 >> hs;
const int y = lc->cu->y0 >> vs;
const int width = cu->cb_width >> hs;
const int height = cu->cb_height >> vs;
uint8_t *dst = POS(c_idx, lc->cu->x0, lc->cu->y0);
ptrdiff_t dst_stride = fc->frame->linesize[c_idx];
int step_x = 1 << hs;
int step_y = VVC_GPM_WEIGHT_SIZE << vs;
if (!mirror_type) {
weights = &ff_vvc_gpm_weights[weights_idx][off_y * VVC_GPM_WEIGHT_SIZE + off_x];
} else if (mirror_type == 1) {
step_x = -step_x;
weights = &ff_vvc_gpm_weights[weights_idx][off_y * VVC_GPM_WEIGHT_SIZE + VVC_GPM_WEIGHT_SIZE - 1- off_x];
} else {
step_y = -step_y;
weights = &ff_vvc_gpm_weights[weights_idx][(VVC_GPM_WEIGHT_SIZE - 1 - off_y) * VVC_GPM_WEIGHT_SIZE + off_x];
}
for (int i = 0; i < 2; i++) {
const MvField *mv = pu->gpm_mv + i;
const int lx = mv->pred_flag - PF_L0;
VVCRefPic *refp = lc->sc->rpl[lx].refs + mv->ref_idx[lx];
if (!refp->ref)
return;
if (refp->is_scaled)
mc_scaled(lc, tmp[i], refp, mv->mv + lx, x, y, width, height, c_idx);
else
mc(lc, tmp[i], refp->ref, mv->mv + lx, x, y, width, height, c_idx);
}
fc->vvcdsp.inter.put_gpm(dst, dst_stride, width, height, tmp[0], tmp[1], weights, step_x, step_y);
}
return;
}
static int ciip_derive_intra_weight(const VVCLocalContext *lc, const int x0, const int y0,
const int width, const int height)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int x0b = av_zero_extend(x0, sps->ctb_log2_size_y);
const int y0b = av_zero_extend(y0, sps->ctb_log2_size_y);
const int available_l = lc->ctb_left_flag || x0b;
const int available_u = lc->ctb_up_flag || y0b;
const int min_pu_width = fc->ps.pps->min_pu_width;
int w = 1;
if (available_u &&fc->tab.mvf[((y0 - 1) >> MIN_PU_LOG2) * min_pu_width + ((x0 - 1 + width)>> MIN_PU_LOG2)].pred_flag == PF_INTRA)
w++;
if (available_l && fc->tab.mvf[((y0 - 1 + height)>> MIN_PU_LOG2) * min_pu_width + ((x0 - 1) >> MIN_PU_LOG2)].pred_flag == PF_INTRA)
w++;
return w;
}
static void pred_regular(VVCLocalContext *lc, const MvField *mvf, const MvField *orig_mvf,
const int x0, const int y0, const int sbw, const int sbh, const int sb_bdof_flag, const int c_start)
{
const VVCFrameContext *fc = lc->fc;
const int c_end = fc->ps.sps->r->sps_chroma_format_idc ? CR : LUMA;
VVCRefPic *refp[2];
if (pred_get_refs(lc, refp, mvf) < 0)
return;
for (int c_idx = c_start; c_idx <= c_end; c_idx++) {
uint8_t *dst = POS(c_idx, x0, y0);
const ptrdiff_t dst_stride = fc->frame->linesize[c_idx];
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int x = x0 >> hs;
const int y = y0 >> vs;
const int w = sbw >> hs;
const int h = sbh >> vs;
const int is_luma = !c_idx;
const int do_ciip = lc->cu->ciip_flag && (is_luma || (w > 2));
uint8_t *inter = do_ciip ? (uint8_t *)lc->ciip_tmp : dst;
const ptrdiff_t inter_stride = do_ciip ? (MAX_PB_SIZE * sizeof(uint16_t)) : dst_stride;
const int do_bdof = is_luma && sb_bdof_flag;
if (mvf->pred_flag != PF_BI) {
const int lx = mvf->pred_flag - PF_L0;
if (refp[lx]->is_scaled) {
mc_uni_scaled(lc, inter, inter_stride, refp[lx], mvf,
x, y, w, h, c_idx);
} else {
mc_uni(lc, inter, inter_stride, refp[lx]->ref, mvf,
x, y, w, h, c_idx);
}
} else {
if (refp[L0]->is_scaled || refp[L1]->is_scaled) {
mc_bi_scaled(lc, inter, inter_stride, refp[L0], refp[L1], mvf,
x, y, w, h, c_idx);
} else {
mc_bi(lc, inter, inter_stride, refp[L0]->ref, refp[L1]->ref, mvf, orig_mvf,
x, y, w, h, c_idx, do_bdof);
}
}
if (do_ciip) {
const int intra_weight = ciip_derive_intra_weight(lc, x0, y0, sbw, sbh);
fc->vvcdsp.intra.intra_pred(lc, x0, y0, sbw, sbh, c_idx);
if (!c_idx && lc->sc->sh.r->sh_lmcs_used_flag)
fc->vvcdsp.lmcs.filter(inter, inter_stride, w, h, &fc->ps.lmcs.fwd_lut);
fc->vvcdsp.inter.put_ciip(dst, dst_stride, w, h, inter, inter_stride, intra_weight);
}
}
}
// 8.5.3.5 Parametric motion vector refinement process
static int parametric_mv_refine(const int *sad, const int stride)
{
const int sad_minus = sad[-stride];
const int sad_center = sad[0];
const int sad_plus = sad[stride];
int dmvc;
int denom = (( sad_minus + sad_plus) - (sad_center << 1 ) ) << 3;
if (!denom)
dmvc = 0;
else {
if (sad_minus == sad_center)
dmvc = -8;
else if (sad_plus == sad_center)
dmvc = 8;
else {
int num = ( sad_minus - sad_plus ) * (1 << 4);
int sign_num = 0;
int quotient = 0;
int counter = 3;
if (num < 0 ) {
num = - num;
sign_num = 1;
}
while (counter > 0) {
counter = counter - 1;
quotient = quotient << 1;
if ( num >= denom ) {
num = num - denom;
quotient = quotient + 1;
}
denom = (denom >> 1);
}
if (sign_num == 1 )
dmvc = -quotient;
else
dmvc = quotient;
}
}
return dmvc;
}
#define SAD_ARRAY_SIZE 5
//8.5.3 Decoder-side motion vector refinement process
static void dmvr_mv_refine(VVCLocalContext *lc, MvField *mvf, MvField *orig_mv, int *sb_bdof_flag,
const VVCFrame *ref0, const VVCFrame *ref1, const int x_off, const int y_off, const int block_w, const int block_h)
{
const VVCFrameContext *fc = lc->fc;
const int sr_range = 2;
const VVCFrame *refs[] = { ref0, ref1 };
int16_t *tmp[] = { lc->tmp, lc->tmp1 };
int sad[SAD_ARRAY_SIZE][SAD_ARRAY_SIZE];
int min_dx, min_dy, min_sad, dx, dy;
*orig_mv = *mvf;
min_dx = min_dy = dx = dy = 2;
for (int i = L0; i <= L1; i++) {
const int pred_w = block_w + 2 * sr_range;
const int pred_h = block_h + 2 * sr_range;
const Mv *mv = mvf->mv + i;
const int mx = mv->x & 0xf;
const int my = mv->y & 0xf;
const int ox = x_off + (mv->x >> 4) - sr_range;
const int oy = y_off + (mv->y >> 4) - sr_range;
const VVCFrame *ref = refs[i];
ptrdiff_t src_stride = ref->frame->linesize[LUMA];
const uint8_t *src = ref->frame->data[LUMA];
const int wrap_enabled = fc->ps.pps->r->pps_ref_wraparound_enabled_flag;
MC_EMULATED_EDGE_BILINEAR(lc->edge_emu_buffer, &src, &src_stride, ox, oy);
fc->vvcdsp.inter.dmvr[!!my][!!mx](tmp[i], src, src_stride, pred_h, mx, my, pred_w);
}
min_sad = fc->vvcdsp.inter.sad(tmp[L0], tmp[L1], dx, dy, block_w, block_h);
min_sad -= min_sad >> 2;
sad[dy][dx] = min_sad;
if (min_sad >= block_w * block_h) {
int dmv[2];
// 8.5.3.4 Array entry selection process
for (dy = 0; dy < SAD_ARRAY_SIZE; dy++) {
for (dx = 0; dx < SAD_ARRAY_SIZE; dx++) {
if (dx != sr_range || dy != sr_range) {
sad[dy][dx] = fc->vvcdsp.inter.sad(lc->tmp, lc->tmp1, dx, dy, block_w, block_h);
if (sad[dy][dx] < min_sad) {
min_sad = sad[dy][dx];
min_dx = dx;
min_dy = dy;
}
}
}
}
dmv[0] = (min_dx - sr_range) * (1 << 4);
dmv[1] = (min_dy - sr_range) * (1 << 4);
if (min_dx != 0 && min_dx != 4 && min_dy != 0 && min_dy != 4) {
dmv[0] += parametric_mv_refine(&sad[min_dy][min_dx], 1);
dmv[1] += parametric_mv_refine(&sad[min_dy][min_dx], SAD_ARRAY_SIZE);
}
for (int i = L0; i <= L1; i++) {
Mv *mv = mvf->mv + i;
mv->x += (1 - 2 * i) * dmv[0];
mv->y += (1 - 2 * i) * dmv[1];
ff_vvc_clip_mv(mv);
}
}
if (min_sad < 2 * block_w * block_h) {
*sb_bdof_flag = 0;
}
}
static void set_dmvr_info(VVCFrameContext *fc, const int x0, const int y0,
const int width, const int height, const MvField *mvf)
{
const VVCPPS *pps = fc->ps.pps;
for (int y = y0; y < y0 + height; y += MIN_PU_SIZE) {
for (int x = x0; x < x0 + width; x += MIN_PU_SIZE) {
const int idx = pps->min_pu_width * (y >> MIN_PU_LOG2) + (x >> MIN_PU_LOG2);
fc->ref->tab_dmvr_mvf[idx] = *mvf;
}
}
}
static void derive_sb_mv(VVCLocalContext *lc, MvField *mv, MvField *orig_mv, int *sb_bdof_flag,
const int x0, const int y0, const int sbw, const int sbh)
{
VVCFrameContext *fc = lc->fc;
const PredictionUnit *pu = &lc->cu->pu;
*orig_mv = *mv = *ff_vvc_get_mvf(fc, x0, y0);
if (pu->bdof_flag)
*sb_bdof_flag = 1;
if (pu->dmvr_flag) {
VVCRefPic *refp[2];
if (pred_get_refs(lc, refp, mv) < 0)
return;
dmvr_mv_refine(lc, mv, orig_mv, sb_bdof_flag, refp[L0]->ref, refp[L1]->ref, x0, y0, sbw, sbh);
set_dmvr_info(fc, x0, y0, sbw, sbh, mv);
}
}
static void pred_regular_blk(VVCLocalContext *lc, const int skip_ciip)
{
const CodingUnit *cu = lc->cu;
PredictionUnit *pu = &lc->cu->pu;
const MotionInfo *mi = &pu->mi;
MvField mv, orig_mv;
int sbw, sbh, sb_bdof_flag = 0;
if (cu->ciip_flag && skip_ciip)
return;
sbw = cu->cb_width / mi->num_sb_x;
sbh = cu->cb_height / mi->num_sb_y;
for (int sby = 0; sby < mi->num_sb_y; sby++) {
for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
const int x0 = cu->x0 + sbx * sbw;
const int y0 = cu->y0 + sby * sbh;
if (cu->ciip_flag)
ff_vvc_set_neighbour_available(lc, x0, y0, sbw, sbh);
derive_sb_mv(lc, &mv, &orig_mv, &sb_bdof_flag, x0, y0, sbw, sbh);
pred_regular(lc, &mv, &orig_mv, x0, y0, sbw, sbh, sb_bdof_flag, LUMA);
}
}
}
static void derive_affine_mvc(MvField *mvc, const VVCFrameContext *fc, const MvField *mv,
const int x0, const int y0, const int sbw, const int sbh)
{
const int hs = fc->ps.sps->hshift[1];
const int vs = fc->ps.sps->vshift[1];
const MvField* mv2 = ff_vvc_get_mvf(fc, x0 + hs * sbw, y0 + vs * sbh);
*mvc = *mv;
// Due to different pred_flag, one of the motion vectors may have an invalid value.
// Cast them to an unsigned type to avoid undefined behavior.
mvc->mv[0].x += (unsigned int)mv2->mv[0].x;
mvc->mv[0].y += (unsigned int)mv2->mv[0].y;
mvc->mv[1].x += (unsigned int)mv2->mv[1].x;
mvc->mv[1].y += (unsigned int)mv2->mv[1].y;
ff_vvc_round_mv(mvc->mv + 0, 0, 1);
ff_vvc_round_mv(mvc->mv + 1, 0, 1);
}
static void pred_affine_blk(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const PredictionUnit *pu = &cu->pu;
const MotionInfo *mi = &pu->mi;
const int x0 = cu->x0;
const int y0 = cu->y0;
const int sbw = cu->cb_width / mi->num_sb_x;
const int sbh = cu->cb_height / mi->num_sb_y;
const int hs = fc->ps.sps->hshift[1];
const int vs = fc->ps.sps->vshift[1];
const int dst_stride = fc->frame->linesize[LUMA];
for (int sby = 0; sby < mi->num_sb_y; sby++) {
for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
const int x = x0 + sbx * sbw;
const int y = y0 + sby * sbh;
uint8_t *dst0 = POS(0, x, y);
const MvField *mv = ff_vvc_get_mvf(fc, x, y);
VVCRefPic *refp[2];
if (pred_get_refs(lc, refp, mv) < 0)
return;
if (mi->pred_flag != PF_BI) {
const int lx = mi->pred_flag - PF_L0;
if (refp[lx]->is_scaled) {
mc_uni_scaled(lc, dst0, dst_stride, refp[lx], mv, x, y, sbw, sbh, LUMA);
} else {
luma_prof_uni(lc, dst0, dst_stride, refp[lx]->ref,
mv, x, y, sbw, sbh, pu->cb_prof_flag[lx],
pu->diff_mv_x[lx], pu->diff_mv_y[lx]);
}
} else {
luma_prof_bi(lc, dst0, dst_stride, refp[L0], refp[L1], mv, x, y, sbw, sbh);
}
if (fc->ps.sps->r->sps_chroma_format_idc) {
if (!av_zero_extend(sby, vs) && !av_zero_extend(sbx, hs)) {
MvField mvc;
derive_affine_mvc(&mvc, fc, mv, x, y, sbw, sbh);
pred_regular(lc, &mvc, NULL, x, y, sbw << hs, sbh << vs, 0, CB);
}
}
}
}
}
static void predict_inter(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const PredictionUnit *pu = &cu->pu;
if (pu->merge_gpm_flag)
pred_gpm_blk(lc);
else if (pu->inter_affine_flag)
pred_affine_blk(lc);
else
pred_regular_blk(lc, 1); //intra block is not ready yet, skip ciip
if (lc->sc->sh.r->sh_lmcs_used_flag && !cu->ciip_flag) {
uint8_t* dst0 = POS(0, cu->x0, cu->y0);
fc->vvcdsp.lmcs.filter(dst0, fc->frame->linesize[LUMA], cu->cb_width, cu->cb_height, &fc->ps.lmcs.fwd_lut);
}
}
static int has_inter_luma(const CodingUnit *cu)
{
return (cu->pred_mode == MODE_INTER || cu->pred_mode == MODE_SKIP) && cu->tree_type != DUAL_TREE_CHROMA;
}
int ff_vvc_predict_inter(VVCLocalContext *lc, const int rs)
{
const VVCFrameContext *fc = lc->fc;
const CTU *ctu = fc->tab.ctus + rs;
CodingUnit *cu = ctu->cus;
while (cu) {
lc->cu = cu;
if (has_inter_luma(cu))
predict_inter(lc);
cu = cu->next;
}
return 0;
}
void ff_vvc_predict_ciip(VVCLocalContext *lc)
{
av_assert0(lc->cu->ciip_flag);
//todo: refact out ciip from pred_regular_blk
pred_regular_blk(lc, 0);
}
#undef POS