/*
* RKA decoder
* Copyright (c) 2023 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/channel_layout.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "bytestream.h"
#include "decode.h"
typedef struct ACoder {
GetByteContext gb;
uint32_t low, high;
uint32_t value;
} ACoder;
typedef struct FiltCoeffs {
int32_t coeffs[257];
unsigned size;
} FiltCoeffs;
typedef struct Model64 {
uint32_t zero[2];
uint32_t sign[2];
unsigned size;
int bits;
uint16_t val4[65];
uint16_t val1[65];
} Model64;
typedef struct AdaptiveModel {
int last;
int total;
int buf_size;
int16_t sum;
uint16_t aprob0;
uint16_t aprob1;
uint16_t *prob[2];
} AdaptiveModel;
typedef struct ChContext {
int cmode;
int cmode2;
int last_nb_decoded;
unsigned srate_pad;
unsigned pos_idx;
AdaptiveModel *filt_size;
AdaptiveModel *filt_bits;
uint32_t *bprob[2];
AdaptiveModel position;
AdaptiveModel fshift;
AdaptiveModel nb_segments;
AdaptiveModel coeff_bits[11];
Model64 mdl64[4][11];
int32_t buf0[131072+2560];
int32_t buf1[131072+2560];
} ChContext;
typedef struct RKAContext {
AVClass *class;
ACoder ac;
ChContext ch[2];
int bps;
int align;
int channels;
int correlated;
int frame_samples;
int last_nb_samples;
uint32_t total_nb_samples;
uint32_t samples_left;
uint32_t bprob[2][257];
AdaptiveModel filt_size;
AdaptiveModel filt_bits;
} RKAContext;
static int adaptive_model_init(AdaptiveModel *am, int buf_size)
{
am->buf_size = buf_size;
am->sum = 2000;
am->aprob0 = 0;
am->aprob1 = 0;
am->total = 0;
if (!am->prob[0])
am->prob[0] = av_malloc_array(buf_size + 5, sizeof(*am->prob[0]));
if (!am->prob[1])
am->prob[1] = av_malloc_array(buf_size + 5, sizeof(*am->prob[1]));
if (!am->prob[0] || !am->prob[1])
return AVERROR(ENOMEM);
memset(am->prob[0], 0, (buf_size + 5) * sizeof(*am->prob[0]));
memset(am->prob[1], 0, (buf_size + 5) * sizeof(*am->prob[1]));
return 0;
}
static void adaptive_model_free(AdaptiveModel *am)
{
av_freep(&am->prob[0]);
av_freep(&am->prob[1]);
}
static av_cold int rka_decode_init(AVCodecContext *avctx)
{
RKAContext *s = avctx->priv_data;
int cmode;
if (avctx->extradata_size < 16)
return AVERROR_INVALIDDATA;
s->bps = avctx->bits_per_raw_sample = avctx->extradata[13];
switch (s->bps) {
case 8:
avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
break;
case 16:
avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
break;
default:
return AVERROR_INVALIDDATA;
}
av_channel_layout_uninit(&avctx->ch_layout);
s->channels = avctx->ch_layout.nb_channels = avctx->extradata[12];
if (s->channels < 1 || s->channels > 2)
return AVERROR_INVALIDDATA;
s->align = (s->channels * (avctx->bits_per_raw_sample >> 3));
s->samples_left = s->total_nb_samples = (AV_RL32(avctx->extradata + 4)) / s->align;
s->frame_samples = 131072 / s->align;
s->last_nb_samples = s->total_nb_samples % s->frame_samples;
s->correlated = avctx->extradata[15] & 1;
cmode = avctx->extradata[14] & 0xf;
if ((avctx->extradata[15] & 4) != 0)
cmode = -cmode;
s->ch[0].cmode = s->ch[1].cmode = cmode < 0 ? 2 : cmode;
s->ch[0].cmode2 = cmode < 0 ? FFABS(cmode) : 0;
s->ch[1].cmode2 = cmode < 0 ? FFABS(cmode) : 0;
av_log(avctx, AV_LOG_DEBUG, "cmode: %d\n", cmode);
return 0;
}
static void model64_init(Model64 *m, unsigned bits)
{
unsigned x;
m->bits = bits;
m->size = 64;
m->zero[0] = 1;
x = (1 << (bits >> 1)) + 3;
x = FFMIN(x, 20);
m->zero[1] = x;
m->sign[0] = 1;
m->sign[1] = 1;
for (int i = 0; i < FF_ARRAY_ELEMS(m->val4); i++) {
m->val4[i] = 4;
m->val1[i] = 1;
}
}
static int chctx_init(RKAContext *s, ChContext *c,
int sample_rate, int bps)
{
int ret;
memset(c->buf0, 0, sizeof(c->buf0));
memset(c->buf1, 0, sizeof(c->buf1));
c->filt_size = &s->filt_size;
c->filt_bits = &s->filt_bits;
c->bprob[0] = s->bprob[0];
c->bprob[1] = s->bprob[1];
c->srate_pad = ((int64_t)sample_rate << 13) / 44100 & 0xFFFFFFFCU;
c->pos_idx = 1;
for (int i = 0; i < FF_ARRAY_ELEMS(s->bprob[0]); i++)
c->bprob[0][i] = c->bprob[1][i] = 1;
for (int i = 0; i < 11; i++) {
ret = adaptive_model_init(&c->coeff_bits[i], 32);
if (ret < 0)
return ret;
model64_init(&c->mdl64[0][i], i);
model64_init(&c->mdl64[1][i], i);
model64_init(&c->mdl64[2][i], i+1);
model64_init(&c->mdl64[3][i], i+1);
}
ret = adaptive_model_init(c->filt_size, 256);
if (ret < 0)
return ret;
ret = adaptive_model_init(c->filt_bits, 16);
if (ret < 0)
return ret;
ret = adaptive_model_init(&c->position, 16);
if (ret < 0)
return ret;
ret = adaptive_model_init(&c->nb_segments, 8);
if (ret < 0)
return ret;
return adaptive_model_init(&c->fshift, 32);
}
static void init_acoder(ACoder *ac)
{
ac->low = 0x0;
ac->high = 0xffffffff;
ac->value = bytestream2_get_be32(&ac->gb);
}
static int ac_decode_bool(ACoder *ac, int freq1, int freq2)
{
unsigned help, add, high, value;
int low;
low = ac->low;
help = ac->high / (unsigned)(freq2 + freq1);
value = ac->value;
add = freq1 * help;
ac->high = help;
if (value - low >= add) {
ac->low = low = add + low;
ac->high = high = freq2 * help;
while (1) {
if ((low ^ (high + low)) > 0xFFFFFF) {
if (high > 0xFFFF)
return 1;
ac->high = (uint16_t)-(int16_t)low;
}
if (bytestream2_get_bytes_left(&ac->gb) <= 0)
break;
ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8);
ac->high = high = ac->high << 8;
low = ac->low = ac->low << 8;
}
return -1;
}
ac->high = add;
while (1) {
if ((low ^ (add + low)) > 0xFFFFFF) {
if (add > 0xFFFF)
return 0;
ac->high = (uint16_t)-(int16_t)low;
}
if (bytestream2_get_bytes_left(&ac->gb) <= 0)
break;
ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8);
ac->high = add = ac->high << 8;
low = ac->low = ac->low << 8;
}
return -1;
}
static int decode_bool(ACoder *ac, ChContext *c, int idx)
{
uint32_t x;
int b;
x = c->bprob[0][idx];
if (x + c->bprob[1][idx] > 4096) {
c->bprob[0][idx] = (x >> 1) + 1;
c->bprob[1][idx] = (c->bprob[1][idx] >> 1) + 1;
}
b = ac_decode_bool(ac, c->bprob[0][idx], c->bprob[1][idx]);
if (b < 0)
return b;
c->bprob[b][idx]++;
return b;
}
static int ac_get_freq(ACoder *ac, unsigned freq, int *result)
{
uint32_t new_high;
if (freq == 0)
return -1;
new_high = ac->high / freq;
ac->high = new_high;
if (new_high == 0)
return -1;
*result = (ac->value - ac->low) / new_high;
return 0;
}
static int ac_update(ACoder *ac, int freq, int mul)
{
uint32_t low, high;
low = ac->low = ac->high * freq + ac->low;
high = ac->high = ac->high * mul;
while (1) {
if (((high + low) ^ low) > 0xffffff) {
if (high > 0xffff)
return 0;
ac->high = (uint16_t)-(int16_t)low;
}
if (bytestream2_get_bytes_left(&ac->gb) <= 0)
break;
ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb);
low = ac->low = ac->low << 8;
high = ac->high = ac->high << 8;
}
return -1;
}
static void amdl_update_prob(AdaptiveModel *am, int val, int diff)
{
am->aprob0 += diff;
if (val <= 0) {
am->prob[0][0] += diff;
} else {
do {
am->prob[0][val] += diff;
val += (val & -val);
} while (val < am->buf_size);
}
}
static void update_ch_subobj(AdaptiveModel *am)
{
int idx2, idx = am->buf_size - 1;
if (idx >= 0) {
do {
uint16_t *prob = am->prob[0];
int diff, prob_idx = prob[idx];
idx2 = idx - 1;
if (idx > 0) {
int idx3 = idx - 1;
if ((idx2 & idx) != idx2) {
do {
prob_idx -= prob[idx3];
idx3 &= idx3 - 1;
} while ((idx2 & idx) != idx3);
}
}
diff = ((prob_idx > 0) - prob_idx) >> 1;
amdl_update_prob(am, idx, diff);
idx--;
} while (idx2 >= 0);
}
if (am->sum < 8000)
am->sum += 200;
am->aprob1 = (am->aprob1 + 1) >> 1;
}
static int amdl_decode_int(AdaptiveModel *am, ACoder *ac, unsigned *dst, unsigned size)
{
unsigned freq, size2, val, mul;
int j;
size = FFMIN(size, am->buf_size - 1);
if (am->aprob0 >= am->sum)
update_ch_subobj(am);
if (am->aprob1 && (am->total == am->buf_size ||
ac_decode_bool(ac, am->aprob0, am->aprob1) == 0)) {
if (am->total <= 1) {
dst[0] = am->last;
amdl_update_prob(am, dst[0], 1);
return 0;
}
if (size == am->buf_size - 1) {
freq = am->aprob0;
} else {
freq = am->prob[0][0];
for (int j = size; j > 0; j &= (j - 1) )
freq += am->prob[0][j];
}
ac_get_freq(ac, freq, &freq);
size2 = am->buf_size >> 1;
val = am->prob[0][0];
if (freq >= val) {
int sum = 0;
for (j = freq - val; size2; size2 >>= 1) {
unsigned v = am->prob[0][size2 + sum];
if (j >= v) {
sum += size2;
j -= v;
}
}
freq -= j;
val = sum + 1;
} else {
freq = 0;
val = 0;
}
dst[0] = val;
mul = am->prob[0][val];
if (val > 0) {
for (int k = val - 1; (val & (val - 1)) != k; k &= k - 1)
mul -= am->prob[0][k];
}
ac_update(ac, freq, mul);
amdl_update_prob(am, dst[0], 1);
return 0;
}
am->aprob1++;
if (size == am->buf_size - 1) {
ac_get_freq(ac, am->buf_size - am->total, &val);
} else {
freq = 1;
for (dst[0] = 0; dst[0] < size; dst[0]++) {
if (!am->prob[1][dst[0]])
freq++;
}
ac_get_freq(ac, freq, &val);
}
freq = 0;
dst[0] = 0;
if (val > 0 && am->buf_size > 0) {
for (dst[0] = 0; dst[0] < size & freq < val; dst[0]++) {
if (!am->prob[1][dst[0]])
freq++;
}
}
if (am->prob[1][dst[0]]) {
do {
val = dst[0]++;
} while (val + 1 < am->buf_size && am->prob[1][val + 1]);
}
ac_update(ac, freq, 1);
am->prob[1][dst[0]]++;
am->total++;
amdl_update_prob(am, dst[0], 1);
am->last = dst[0];
return 0;
}
static int decode_filt_coeffs(RKAContext *s, ChContext *ctx, ACoder *ac, FiltCoeffs *dst)
{
unsigned val, bits;
int idx = 0;
if (amdl_decode_int(ctx->filt_size, ac, &dst->size, 256) < 0)
return -1;
if (dst->size == 0)
return 0;
if (amdl_decode_int(ctx->filt_bits, ac, &bits, 10) < 0)
return -1;
do {
if (((idx == 8) || (idx == 20)) && (0 < bits))
bits--;
if (bits > 10)
return -1;
if (amdl_decode_int(&ctx->coeff_bits[bits], ac, &val, 31) < 0)
return -1;
if (val == 31) {
ac_get_freq(ac, 65536, &val);
ac_update(ac, val, 1);
}
if (val == 0) {
dst->coeffs[idx++] = 0;
} else {
unsigned freq = 0;
int sign;
if (bits > 0) {
ac_get_freq(ac, 1 << bits, &freq);
ac_update(ac, freq, 1);
}
dst->coeffs[idx] = freq + 1 + ((val - 1U) << bits);
sign = decode_bool(ac, ctx, idx);
if (sign < 0)
return -1;
if (sign == 1)
dst->coeffs[idx] = -dst->coeffs[idx];
idx++;
}
} while (idx < dst->size);
return 0;
}
static int ac_dec_bit(ACoder *ac)
{
uint32_t high, low;
low = ac->low;
ac->high = high = ac->high >> 1;
if (ac->value - low < high) {
do {
if (((high + low) ^ low) > 0xffffff) {
if (high > 0xffff)
return 0;
ac->high = (uint16_t)-(int16_t)low;
}
if (bytestream2_get_bytes_left(&ac->gb) <= 0)
break;
ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb);
ac->high = high = ac->high << 8;
ac->low = low = ac->low << 8;
} while (1);
return -1;
}
ac->low = low = low + high;
do {
if (((high + low) ^ low) > 0xffffff) {
if (high > 0xffff)
return 1;
ac->high = (uint16_t)-(int16_t)low;
}
if (bytestream2_get_bytes_left(&ac->gb) <= 0)
break;
ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb);
ac->high = high = ac->high << 8;
ac->low = low = ac->low << 8;
} while (1);
return -1;
}
static int mdl64_decode(ACoder *ac, Model64 *ctx, int *dst)
{
int sign, idx, bits;
unsigned val = 0;
if (ctx->zero[0] + ctx->zero[1] > 4000U) {
ctx->zero[0] = (ctx->zero[0] >> 1) + 1;
ctx->zero[1] = (ctx->zero[1] >> 1) + 1;
}
if (ctx->sign[0] + ctx->sign[1] > 4000U) {
ctx->sign[0] = (ctx->sign[0] >> 1) + 1;
ctx->sign[1] = (ctx->sign[1] >> 1) + 1;
}
sign = ac_decode_bool(ac, ctx->zero[0], ctx->zero[1]);
if (sign == 0) {
ctx->zero[0] += 2;
dst[0] = 0;
return 0;
} else if (sign < 0) {
return -1;
}
ctx->zero[1] += 2;
sign = ac_decode_bool(ac, ctx->sign[0], ctx->sign[1]);
if (sign < 0)
return -1;
ctx->sign[sign]++;
bits = ctx->bits;
if (bits > 0) {
if (bits < 13) {
ac_get_freq(ac, 1 << bits, &val);
ac_update(ac, val, 1);
} else {
int hbits = bits / 2;
ac_get_freq(ac, 1 << hbits, &val);
ac_update(ac, val, 1);
ac_get_freq(ac, 1 << (ctx->bits - (hbits)), &bits);
ac_update(ac, val, 1);
val += (bits << hbits);
}
}
bits = ctx->size;
idx = 0;
if (bits >= 0) {
do {
uint16_t *val4 = ctx->val4;
int b;
if (val4[idx] + ctx->val1[idx] > 2000U) {
val4[idx] = (val4[idx] >> 1) + 1;
ctx->val1[idx] = (ctx->val1[idx] >> 1) + 1;
}
b = ac_decode_bool(ac, ctx->val4[idx], ctx->val1[idx]);
if (b == 1) {
ctx->val1[idx] += 4;
break;
} else if (b < 0) {
return -1;
}
ctx->val4[idx] += 4;
idx++;
} while (idx <= ctx->size);
bits = ctx->size;
if (idx <= bits) {
dst[0] = val + 1 + (idx << ctx->bits);
if (sign)
dst[0] = -dst[0];
return 0;
}
}
bits++;
while (ac_dec_bit(ac) == 0)
bits += 64;
ac_get_freq(ac, 64, &idx);
ac_update(ac, idx, 1);
idx += bits;
dst[0] = val + 1 + (idx << ctx->bits);
if (sign)
dst[0] = -dst[0];
return 0;
}
static const uint8_t tab[16] = {
0, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
};
static int decode_filter(RKAContext *s, ChContext *ctx, ACoder *ac, int off, unsigned size)
{
FiltCoeffs filt;
Model64 *mdl64;
int m = 0, split, val, last_val = 0, ret;
unsigned idx = 3, bits = 0;
if (ctx->cmode == 0) {
if (amdl_decode_int(&ctx->fshift, ac, &bits, 15) < 0)
return -1;
bits &= 31U;
}
ret = decode_filt_coeffs(s, ctx, ac, &filt);
if (ret < 0)
return ret;
if (size < 512)
split = size / 2;
else
split = size >> 4;
if (size <= 1)
return 0;
for (int x = 0; x < size;) {
if (amdl_decode_int(&ctx->position, ac, &idx, 10) < 0)
return -1;
idx = (ctx->pos_idx + idx) % 11;
ctx->pos_idx = idx;
for (int y = 0; y < FFMIN(split, size - x); y++, off++) {
int midx, shift = idx, *src, sum = 16;
if (off >= FF_ARRAY_ELEMS(ctx->buf0))
return -1;
midx = FFABS(last_val) >> shift;
if (midx >= 15) {
mdl64 = &ctx->mdl64[3][idx];
} else if (midx >= 7) {
mdl64 = &ctx->mdl64[2][idx];
} else if (midx >= 4) {
mdl64 = &ctx->mdl64[1][idx];
} else {
mdl64 = &ctx->mdl64[0][idx];
}
ret = mdl64_decode(ac, mdl64, &val);
if (ret < 0)
return -1;
last_val = val;
src = &ctx->buf1[off + -1];
for (int i = 0; i < filt.size && i < 15; i++)
sum += filt.coeffs[i] * (unsigned)src[-i];
sum = sum * 2U;
for (int i = 15; i < filt.size; i++)
sum += filt.coeffs[i] * (unsigned)src[-i];
sum = sum >> 6;
if (ctx->cmode == 0) {
if (bits == 0) {
ctx->buf1[off] = sum + val;
} else {
ctx->buf1[off] = (val + (sum >> bits)) * (1U << bits) +
(((1U << bits) - 1U) & ctx->buf1[off + -1]);
}
ctx->buf0[off] = ctx->buf1[off] + (unsigned)ctx->buf0[off + -1];
} else {
val *= 1U << ctx->cmode;
sum += ctx->buf0[off + -1] + (unsigned)val;
switch (s->bps) {
case 16: sum = av_clip_int16(sum); break;
case 8: sum = av_clip_int8(sum); break;
}
ctx->buf1[off] = sum - ctx->buf0[off + -1];
ctx->buf0[off] = sum;
m += (unsigned)FFABS(ctx->buf1[off]);
}
}
if (ctx->cmode2 != 0) {
int sum = 0;
for (int i = (signed)((unsigned)m << 6) / split; i > 0; i = i >> 1)
sum++;
sum = sum - (ctx->cmode2 + 7);
ctx->cmode = FFMAX(sum, tab[ctx->cmode2]);
}
x += split;
}
return 0;
}
static int decode_samples(AVCodecContext *avctx, ACoder *ac, ChContext *ctx, int offset)
{
RKAContext *s = avctx->priv_data;
int segment_size, offset2, mode, ret;
ret = amdl_decode_int(&ctx->nb_segments, ac, &mode, 5);
if (ret < 0)
return ret;
if (mode == 5) {
ret = ac_get_freq(ac, ctx->srate_pad >> 2, &segment_size);
if (ret < 0)
return ret;
ac_update(ac, segment_size, 1);
segment_size *= 4;
ret = decode_filter(s, ctx, ac, offset, segment_size);
if (ret < 0)
return ret;
} else {
segment_size = ctx->srate_pad;
if (mode) {
if (mode > 2) {
ret = decode_filter(s, ctx, ac, offset, segment_size / 4);
if (ret < 0)
return ret;
offset2 = segment_size / 4 + offset;
ret = decode_filter(s, ctx, ac, offset2, segment_size / 4);
if (ret < 0)
return ret;
offset2 = segment_size / 4 + offset2;
} else {
ret = decode_filter(s, ctx, ac, offset, segment_size / 2);
if (ret < 0)
return ret;
offset2 = segment_size / 2 + offset;
}
if (mode & 1) {
ret = decode_filter(s, ctx, ac, offset2, segment_size / 2);
if (ret < 0)
return ret;
} else {
ret = decode_filter(s, ctx, ac, offset2, segment_size / 4);
if (ret < 0)
return ret;
ret = decode_filter(s, ctx, ac, segment_size / 4 + offset2, segment_size / 4);
if (ret < 0)
return ret;
}
} else {
ret = decode_filter(s, ctx, ac, offset, ctx->srate_pad);
if (ret < 0)
return ret;
}
}
return segment_size;
}
static int decode_ch_samples(AVCodecContext *avctx, ChContext *c)
{
RKAContext *s = avctx->priv_data;
ACoder *ac = &s->ac;
int nb_decoded = 0;
if (bytestream2_get_bytes_left(&ac->gb) <= 0)
return 0;
memmove(c->buf0, &c->buf0[c->last_nb_decoded], 2560 * sizeof(*c->buf0));
memmove(c->buf1, &c->buf1[c->last_nb_decoded], 2560 * sizeof(*c->buf1));
nb_decoded = decode_samples(avctx, ac, c, 2560);
if (nb_decoded < 0)
return nb_decoded;
c->last_nb_decoded = nb_decoded;
return nb_decoded;
}
static int rka_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *avpkt)
{
RKAContext *s = avctx->priv_data;
ACoder *ac = &s->ac;
int ret;
bytestream2_init(&ac->gb, avpkt->data, avpkt->size);
init_acoder(ac);
for (int ch = 0; ch < s->channels; ch++) {
ret = chctx_init(s, &s->ch[ch], avctx->sample_rate,
avctx->bits_per_raw_sample);
if (ret < 0)
return ret;
}
frame->nb_samples = s->frame_samples;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
if (s->channels == 2 && s->correlated) {
int16_t *l16 = (int16_t *)frame->extended_data[0];
int16_t *r16 = (int16_t *)frame->extended_data[1];
uint8_t *l8 = frame->extended_data[0];
uint8_t *r8 = frame->extended_data[1];
for (int n = 0; n < frame->nb_samples;) {
ret = decode_ch_samples(avctx, &s->ch[0]);
if (ret == 0) {
frame->nb_samples = n;
break;
}
if (ret < 0 || n + ret > frame->nb_samples)
return AVERROR_INVALIDDATA;
ret = decode_ch_samples(avctx, &s->ch[1]);
if (ret == 0) {
frame->nb_samples = n;
break;
}
if (ret < 0 || n + ret > frame->nb_samples)
return AVERROR_INVALIDDATA;
switch (avctx->sample_fmt) {
case AV_SAMPLE_FMT_S16P:
for (int i = 0; i < ret; i++) {
int l = s->ch[0].buf0[2560 + i];
int r = s->ch[1].buf0[2560 + i];
l16[n + i] = (l * 2 + r + 1) >> 1;
r16[n + i] = (l * 2 - r + 1) >> 1;
}
break;
case AV_SAMPLE_FMT_U8P:
for (int i = 0; i < ret; i++) {
int l = s->ch[0].buf0[2560 + i];
int r = s->ch[1].buf0[2560 + i];
l8[n + i] = ((l * 2 + r + 1) >> 1) + 0x7f;
r8[n + i] = ((l * 2 - r + 1) >> 1) + 0x7f;
}
break;
default:
return AVERROR_INVALIDDATA;
}
n += ret;
}
} else {
for (int n = 0; n < frame->nb_samples;) {
for (int ch = 0; ch < s->channels; ch++) {
int16_t *m16 = (int16_t *)frame->data[ch];
uint8_t *m8 = frame->data[ch];
ret = decode_ch_samples(avctx, &s->ch[ch]);
if (ret == 0) {
frame->nb_samples = n;
break;
}
if (ret < 0 || n + ret > frame->nb_samples)
return AVERROR_INVALIDDATA;
switch (avctx->sample_fmt) {
case AV_SAMPLE_FMT_S16P:
for (int i = 0; i < ret; i++) {
int m = s->ch[ch].buf0[2560 + i];
m16[n + i] = m;
}
break;
case AV_SAMPLE_FMT_U8P:
for (int i = 0; i < ret; i++) {
int m = s->ch[ch].buf0[2560 + i];
m8[n + i] = m + 0x7f;
}
break;
default:
return AVERROR_INVALIDDATA;
}
}
n += ret;
}
}
*got_frame_ptr = 1;
return avpkt->size;
}
static av_cold int rka_decode_close(AVCodecContext *avctx)
{
RKAContext *s = avctx->priv_data;
for (int ch = 0; ch < 2; ch++) {
ChContext *c = &s->ch[ch];
for (int i = 0; i < 11; i++)
adaptive_model_free(&c->coeff_bits[i]);
adaptive_model_free(&c->position);
adaptive_model_free(&c->nb_segments);
adaptive_model_free(&c->fshift);
}
adaptive_model_free(&s->filt_size);
adaptive_model_free(&s->filt_bits);
return 0;
}
const FFCodec ff_rka_decoder = {
.p.name = "rka",
CODEC_LONG_NAME("RKA (RK Audio)"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_RKA,
.priv_data_size = sizeof(RKAContext),
.init = rka_decode_init,
.close = rka_decode_close,
FF_CODEC_DECODE_CB(rka_decode_frame),
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};