aboutsummaryrefslogblamecommitdiffstats
path: root/libavcodec/dca_lbr.c
blob: 342603c7d43941e339497b7c05733fa48e236c98 (plain) (tree)
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819


















                                                                               



















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                          
                         
                               
                                                           

                                                                    
                                                    

































































                                                                                                           
                                                













































































                                                                                                         
                      



















































































































































































































































































































































































































































































































































































































































































                                                                                              
/*
 * Copyright (C) 2016 foo86
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#define BITSTREAM_READER_LE

#include "libavutil/channel_layout.h"

#include "dcadec.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dca_syncwords.h"
#include "bytestream.h"

#define AMP_MAX     56

enum LBRHeader {
    LBR_HEADER_SYNC_ONLY    = 1,
    LBR_HEADER_DECODER_INIT = 2
};

enum LBRFlags {
    LBR_FLAG_24_BIT             = 0x01,
    LBR_FLAG_LFE_PRESENT        = 0x02,
    LBR_FLAG_BAND_LIMIT_2_3     = 0x04,
    LBR_FLAG_BAND_LIMIT_1_2     = 0x08,
    LBR_FLAG_BAND_LIMIT_1_3     = 0x0c,
    LBR_FLAG_BAND_LIMIT_1_4     = 0x10,
    LBR_FLAG_BAND_LIMIT_1_8     = 0x18,
    LBR_FLAG_BAND_LIMIT_NONE    = 0x14,
    LBR_FLAG_BAND_LIMIT_MASK    = 0x1c,
    LBR_FLAG_DMIX_STEREO        = 0x20,
    LBR_FLAG_DMIX_MULTI_CH      = 0x40
};

enum LBRChunkTypes {
    LBR_CHUNK_NULL              = 0x00,
    LBR_CHUNK_PAD               = 0x01,
    LBR_CHUNK_FRAME             = 0x04,
    LBR_CHUNK_FRAME_NO_CSUM     = 0x06,
    LBR_CHUNK_LFE               = 0x0a,
    LBR_CHUNK_ECS               = 0x0b,
    LBR_CHUNK_RESERVED_1        = 0x0c,
    LBR_CHUNK_RESERVED_2        = 0x0d,
    LBR_CHUNK_SCF               = 0x0e,
    LBR_CHUNK_TONAL             = 0x10,
    LBR_CHUNK_TONAL_GRP_1       = 0x11,
    LBR_CHUNK_TONAL_GRP_2       = 0x12,
    LBR_CHUNK_TONAL_GRP_3       = 0x13,
    LBR_CHUNK_TONAL_GRP_4       = 0x14,
    LBR_CHUNK_TONAL_GRP_5       = 0x15,
    LBR_CHUNK_TONAL_SCF         = 0x16,
    LBR_CHUNK_TONAL_SCF_GRP_1   = 0x17,
    LBR_CHUNK_TONAL_SCF_GRP_2   = 0x18,
    LBR_CHUNK_TONAL_SCF_GRP_3   = 0x19,
    LBR_CHUNK_TONAL_SCF_GRP_4   = 0x1a,
    LBR_CHUNK_TONAL_SCF_GRP_5   = 0x1b,
    LBR_CHUNK_RES_GRID_LR       = 0x30,
    LBR_CHUNK_RES_GRID_LR_LAST  = 0x3f,
    LBR_CHUNK_RES_GRID_HR       = 0x40,
    LBR_CHUNK_RES_GRID_HR_LAST  = 0x4f,
    LBR_CHUNK_RES_TS_1          = 0x50,
    LBR_CHUNK_RES_TS_1_LAST     = 0x5f,
    LBR_CHUNK_RES_TS_2          = 0x60,
    LBR_CHUNK_RES_TS_2_LAST     = 0x6f,
    LBR_CHUNK_EXTENSION         = 0x7f
};

typedef struct LBRChunk {
    int id, len;
    const uint8_t *data;
} LBRChunk;

static const int8_t channel_reorder_nolfe[7][5] = {
    { 0, -1, -1, -1, -1 },  // C
    { 0,  1, -1, -1, -1 },  // LR
    { 0,  1,  2, -1, -1 },  // LR C
    { 0,  1, -1, -1, -1 },  // LsRs
    { 1,  2,  0, -1, -1 },  // LsRs C
    { 0,  1,  2,  3, -1 },  // LR LsRs
    { 0,  1,  3,  4,  2 },  // LR LsRs C
};

static const int8_t channel_reorder_lfe[7][5] = {
    { 0, -1, -1, -1, -1 },  // C
    { 0,  1, -1, -1, -1 },  // LR
    { 0,  1,  2, -1, -1 },  // LR C
    { 1,  2, -1, -1, -1 },  // LsRs
    { 2,  3,  0, -1, -1 },  // LsRs C
    { 0,  1,  3,  4, -1 },  // LR LsRs
    { 0,  1,  4,  5,  2 },  // LR LsRs C
};

static const uint8_t lfe_index[7] = {
    1, 2, 3, 0, 1, 2, 3
};

static const uint8_t channel_counts[7] = {
    1, 2, 3, 2, 3, 4, 5
};

static const uint16_t channel_layouts[7] = {
    AV_CH_LAYOUT_MONO,
    AV_CH_LAYOUT_STEREO,
    AV_CH_LAYOUT_SURROUND,
    AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
    AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
    AV_CH_LAYOUT_2_2,
    AV_CH_LAYOUT_5POINT0
};

static float    cos_tab[256];
static float    lpc_tab[16];

static av_cold void init_tables(void)
{
    static int initialized;
    int i;

    if (initialized)
        return;

    for (i = 0; i < 256; i++)
        cos_tab[i] = cos(M_PI * i / 128);

    for (i = 0; i < 16; i++)
        lpc_tab[i] = sin((i - 8) * (M_PI / ((i < 8) ? 17 : 15)));

    initialized = 1;
}

static int parse_lfe_24(DCALbrDecoder *s)
{
    int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_24) - 1;
    int i, ps, si, code, step_i;
    float step, value, delta;

    ps = get_bits(&s->gb, 24);
    si = ps >> 23;

    value = (((ps & 0x7fffff) ^ -si) + si) * (1.0f / 0x7fffff);

    step_i = get_bits(&s->gb, 8);
    if (step_i > step_max) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
        return -1;
    }

    step = ff_dca_lfe_step_size_24[step_i];

    for (i = 0; i < 64; i++) {
        code = get_bits(&s->gb, 6);

        delta = step * 0.03125f;
        if (code & 16)
            delta += step;
        if (code & 8)
            delta += step * 0.5f;
        if (code & 4)
            delta += step * 0.25f;
        if (code & 2)
            delta += step * 0.125f;
        if (code & 1)
            delta += step * 0.0625f;

        if (code & 32) {
            value -= delta;
            if (value < -3.0f)
                value = -3.0f;
        } else {
            value += delta;
            if (value > 3.0f)
                value = 3.0f;
        }

        step_i += ff_dca_lfe_delta_index_24[code & 31];
        step_i = av_clip(step_i, 0, step_max);

        step = ff_dca_lfe_step_size_24[step_i];
        s->lfe_data[i] = value * s->lfe_scale;
    }

    return 0;
}

static int parse_lfe_16(DCALbrDecoder *s)
{
    int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_16) - 1;
    int i, ps, si, code, step_i;
    float step, value, delta;

    ps = get_bits(&s->gb, 16);
    si = ps >> 15;

    value = (((ps & 0x7fff) ^ -si) + si) * (1.0f / 0x7fff);

    step_i = get_bits(&s->gb, 8);
    if (step_i > step_max) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
        return -1;
    }

    step = ff_dca_lfe_step_size_16[step_i];

    for (i = 0; i < 64; i++) {
        code = get_bits(&s->gb, 4);

        delta = step * 0.125f;
        if (code & 4)
            delta += step;
        if (code & 2)
            delta += step * 0.5f;
        if (code & 1)
            delta += step * 0.25f;

        if (code & 8) {
            value -= delta;
            if (value < -3.0f)
                value = -3.0f;
        } else {
            value += delta;
            if (value > 3.0f)
                value = 3.0f;
        }

        step_i += ff_dca_lfe_delta_index_16[code & 7];
        step_i = av_clip(step_i, 0, step_max);

        step = ff_dca_lfe_step_size_16[step_i];
        s->lfe_data[i] = value * s->lfe_scale;
    }

    return 0;
}

static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk)
{
    if (!(s->flags & LBR_FLAG_LFE_PRESENT))
        return 0;

    if (!chunk->len)
        return 0;

    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;

    // Determine bit depth from chunk size
    if (chunk->len >= 52)
        return parse_lfe_24(s);
    if (chunk->len >= 35)
        return parse_lfe_16(s);

    av_log(s->avctx, AV_LOG_ERROR, "LFE chunk too short\n");
    return -1;
}

static inline int parse_vlc(GetBitContext *s, VLC *vlc, int max_depth)
{
    int v = get_vlc2(s, vlc->table, vlc->bits, max_depth);
    if (v > 0)
        return v - 1;
    // Rare value
    return get_bits(s, get_bits(s, 3) + 1);
}

static int parse_tonal(DCALbrDecoder *s, int group)
{
    unsigned int amp[DCA_LBR_CHANNELS_TOTAL];
    unsigned int phs[DCA_LBR_CHANNELS_TOTAL];
    unsigned int diff, main_amp, shift;
    int sf, sf_idx, ch, main_ch, freq;
    int ch_nbits = av_ceil_log2(s->nchannels_total);

    // Parse subframes for this group
    for (sf = 0; sf < 1 << group; sf += diff ? 8 : 1) {
        sf_idx = ((s->framenum << group) + sf) & 31;
        s->tonal_bounds[group][sf_idx][0] = s->ntones;

        // Parse tones for this subframe
        for (freq = 1;; freq++) {
            if (get_bits_left(&s->gb) < 1) {
                av_log(s->avctx, AV_LOG_ERROR, "Tonal group chunk too short\n");
                return -1;
            }

            diff = parse_vlc(&s->gb, &ff_dca_vlc_tnl_grp[group], 2);
            if (diff >= FF_ARRAY_ELEMS(ff_dca_fst_amp)) {
                av_log(s->avctx, AV_LOG_ERROR, "Invalid tonal frequency diff\n");
                return -1;
            }

            diff = get_bitsz(&s->gb, diff >> 2) + ff_dca_fst_amp[diff];
            if (diff <= 1)
                break;  // End of subframe

            freq += diff - 2;
            if (freq >> (5 - group) > s->nsubbands * 4 - 5) {
                av_log(s->avctx, AV_LOG_ERROR, "Invalid spectral line offset\n");
                return -1;
            }

            // Main channel
            main_ch = get_bitsz(&s->gb, ch_nbits);
            main_amp = parse_vlc(&s->gb, &ff_dca_vlc_tnl_scf, 2)
                + s->tonal_scf[ff_dca_freq_to_sb[freq >> (7 - group)]]
                + s->limited_range - 2;
            amp[main_ch] = main_amp < AMP_MAX ? main_amp : 0;
            phs[main_ch] = get_bits(&s->gb, 3);

            // Secondary channels
            for (ch = 0; ch < s->nchannels_total; ch++) {
                if (ch == main_ch)
                    continue;
                if (get_bits1(&s->gb)) {
                    amp[ch] = amp[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_damp, 1);
                    phs[ch] = phs[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_dph,  1);
                } else {
                    amp[ch] = 0;
                    phs[ch] = 0;
                }
            }

            if (amp[main_ch]) {
                // Allocate new tone
                DCALbrTone *t = &s->tones[s->ntones];
                s->ntones = (s->ntones + 1) & (DCA_LBR_TONES - 1);

                t->x_freq = freq >> (5 - group);
                t->f_delt = (freq & ((1 << (5 - group)) - 1)) << group;
                t->ph_rot = 256 - (t->x_freq & 1) * 128 - t->f_delt * 4;

                shift = ff_dca_ph0_shift[(t->x_freq & 3) * 2 + (freq & 1)]
                    - ((t->ph_rot << (5 - group)) - t->ph_rot);

                for (ch = 0; ch < s->nchannels; ch++) {
                    t->amp[ch] = amp[ch] < AMP_MAX ? amp[ch] : 0;
                    t->phs[ch] = 128 - phs[ch] * 32 + shift;
                }
            }
        }

        s->tonal_bounds[group][sf_idx][1] = s->ntones;
    }

    return 0;
}

static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk)
{
    int sb, group;

    if (!chunk->len)
        return 0;

    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;

    // Scale factors
    if (chunk->id == LBR_CHUNK_SCF || chunk->id == LBR_CHUNK_TONAL_SCF) {
        if (get_bits_left(&s->gb) < 36) {
            av_log(s->avctx, AV_LOG_ERROR, "Tonal scale factor chunk too short\n");
            return -1;
        }
        for (sb = 0; sb < 6; sb++)
            s->tonal_scf[sb] = get_bits(&s->gb, 6);
    }

    // Tonal groups
    if (chunk->id == LBR_CHUNK_TONAL || chunk->id == LBR_CHUNK_TONAL_SCF)
        for (group = 0; group < 5; group++)
            if (parse_tonal(s, group) < 0)
                return -1;

    return 0;
}

static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk)
{
    if (!chunk->len)
        return 0;

    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;

    return parse_tonal(s, chunk->id);
}

/**
 * Check point to ensure that enough bits are left. Aborts decoding
 * by skipping to the end of chunk otherwise.
 */
static int ensure_bits(GetBitContext *s, int n)
{
    int left = get_bits_left(s);
    if (left < 0)
        return -1;
    if (left < n) {
        skip_bits_long(s, left);
        return 1;
    }
    return 0;
}

static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf)
{
    int i, sf, prev, next, dist;

    // Truncated scale factors remain zero
    if (ensure_bits(&s->gb, 20))
        return 0;

    // Initial scale factor
    prev = parse_vlc(&s->gb, &ff_dca_vlc_fst_rsd_amp, 2);

    for (sf = 0; sf < 7; sf += dist) {
        scf[sf] = prev; // Store previous value

        if (ensure_bits(&s->gb, 20))
            return 0;

        // Interpolation distance
        dist = parse_vlc(&s->gb, &ff_dca_vlc_rsd_apprx, 1) + 1;
        if (dist > 7 - sf) {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor distance\n");
            return -1;
        }

        if (ensure_bits(&s->gb, 20))
            return 0;

        // Final interpolation point
        next = parse_vlc(&s->gb, &ff_dca_vlc_rsd_amp, 2);

        if (next & 1)
            next = prev + ((next + 1) >> 1);
        else
            next = prev - ( next      >> 1);

        // Interpolate
        switch (dist) {
        case 2:
            if (next > prev)
                scf[sf + 1] = prev + ((next - prev) >> 1);
            else
                scf[sf + 1] = prev - ((prev - next) >> 1);
            break;

        case 4:
            if (next > prev) {
                scf[sf + 1] = prev + ( (next - prev)      >> 2);
                scf[sf + 2] = prev + ( (next - prev)      >> 1);
                scf[sf + 3] = prev + (((next - prev) * 3) >> 2);
            } else {
                scf[sf + 1] = prev - ( (prev - next)      >> 2);
                scf[sf + 2] = prev - ( (prev - next)      >> 1);
                scf[sf + 3] = prev - (((prev - next) * 3) >> 2);
            }
            break;

        default:
            for (i = 1; i < dist; i++)
                scf[sf + i] = prev + (next - prev) * i / dist;
            break;
        }

        prev = next;
    }

    scf[sf] = next; // Store final value

    return 0;
}

static int parse_st_code(GetBitContext *s, int min_v)
{
    unsigned int v = parse_vlc(s, &ff_dca_vlc_st_grid, 2) + min_v;

    if (v & 1)
        v = 16 + (v >> 1);
    else
        v = 16 - (v >> 1);

    if (v >= FF_ARRAY_ELEMS(ff_dca_st_coeff))
        v = 16;
    return v;
}

static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
    int ch, sb, sf, nsubbands;

    if (!chunk->len)
        return 0;

    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;

    // Scale factors
    nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
    for (sb = 2; sb < nsubbands; sb++) {
        if (parse_scale_factors(s, s->grid_1_scf[ch1][sb]) < 0)
            return -1;
        if (ch1 != ch2 && ff_dca_grid_1_to_scf[sb] < s->min_mono_subband
            && parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0)
            return -1;
    }

    if (get_bits_left(&s->gb) < 1)
        return 0;   // Should not happen, but a sample exists that proves otherwise

    // Average values for third grid
    for (sb = 0; sb < s->nsubbands - 4; sb++) {
        s->grid_3_avg[ch1][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
        if (ch1 != ch2) {
            if (sb + 4 < s->min_mono_subband)
                s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
            else
                s->grid_3_avg[ch2][sb] = s->grid_3_avg[ch1][sb];
        }
    }

    if (get_bits_left(&s->gb) < 0) {
        av_log(s->avctx, AV_LOG_ERROR, "First grid chunk too short\n");
        return -1;
    }

    // Stereo image for partial mono mode
    if (ch1 != ch2) {
        int min_v[2];

        if (ensure_bits(&s->gb, 8))
            return 0;

        min_v[0] = get_bits(&s->gb, 4);
        min_v[1] = get_bits(&s->gb, 4);

        nsubbands = (s->nsubbands - s->min_mono_subband + 3) / 4;
        for (sb = 0; sb < nsubbands; sb++)
            for (ch = ch1; ch <= ch2; ch++)
                for (sf = 1; sf <= 4; sf++)
                    s->part_stereo[ch][sb][sf] = parse_st_code(&s->gb, min_v[ch - ch1]);

        if (get_bits_left(&s->gb) >= 0)
            s->part_stereo_pres |= 1 << ch1;
    }

    // Low resolution spatial information is not decoded

    return 0;
}

static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2)
{
    int sb, nsubbands;

    // Scale factors
    nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
    for (sb = 2; sb < nsubbands; sb++) {
        if (ff_dca_grid_1_to_scf[sb] >= s->min_mono_subband
            && parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0)
            return -1;
    }

    // Average values for third grid
    for (sb = 0; sb < s->nsubbands - 4; sb++) {
        if (sb + 4 >= s->min_mono_subband) {
            if (ensure_bits(&s->gb, 20))
                return 0;
            s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
        }
    }

    return 0;
}

static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag)
{
    int i, ch;

    for (ch = ch1; ch <= ch2; ch++) {
        if ((ch != ch1 && sb + 4 >= s->min_mono_subband) != flag)
            continue;

        if (s->grid_3_pres[ch] & (1U << sb))
            continue;   // Already parsed

        for (i = 0; i < 8; i++) {
            if (ensure_bits(&s->gb, 20))
                return;
            s->grid_3_scf[ch][sb][i] = parse_vlc(&s->gb, &ff_dca_vlc_grid_3, 2) - 16;
        }

        // Flag scale factors for this subband parsed
        s->grid_3_pres[ch] |= 1U << sb;
    }
}

static float lbr_rand(DCALbrDecoder *s, int sb)
{
    s->lbr_rand = 1103515245U * s->lbr_rand + 12345U;
    return s->lbr_rand * s->sb_scf[sb];
}

/**
 * Parse time samples for one subband, filling truncated samples with randomness
 */
static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag)
{
    float *samples = s->time_samples[ch][sb];
    int i, j, code, nblocks, coding_method;

    if (ensure_bits(&s->gb, 20))
        return; // Too few bits left

    coding_method = get_bits1(&s->gb);

    switch (quant_level) {
    case 1:
        nblocks = FFMIN(get_bits_left(&s->gb) / 8, DCA_LBR_TIME_SAMPLES / 8);
        for (i = 0; i < nblocks; i++, samples += 8) {
            code = get_bits(&s->gb, 8);
            for (j = 0; j < 8; j++)
                samples[j] = ff_dca_rsd_level_2a[(code >> j) & 1];
        }
        i = nblocks * 8;
        break;

    case 2:
        if (coding_method) {
            for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 2; i++) {
                if (get_bits1(&s->gb))
                    samples[i] = ff_dca_rsd_level_2b[get_bits1(&s->gb)];
                else
                    samples[i] = 0;
            }
        } else {
            nblocks = FFMIN(get_bits_left(&s->gb) / 8, (DCA_LBR_TIME_SAMPLES + 4) / 5);
            for (i = 0; i < nblocks; i++, samples += 5) {
                code = ff_dca_rsd_pack_5_in_8[get_bits(&s->gb, 8)];
                for (j = 0; j < 5; j++)
                    samples[j] = ff_dca_rsd_level_3[(code >> j * 2) & 3];
            }
            i = nblocks * 5;
        }
        break;

    case 3:
        nblocks = FFMIN(get_bits_left(&s->gb) / 7, (DCA_LBR_TIME_SAMPLES + 2) / 3);
        for (i = 0; i < nblocks; i++, samples += 3) {
            code = get_bits(&s->gb, 7);
            for (j = 0; j < 3; j++)
                samples[j] = ff_dca_rsd_level_5[ff_dca_rsd_pack_3_in_7[code][j]];
        }
        i = nblocks * 3;
        break;

    case 4:
        for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 6; i++)
            samples[i] = ff_dca_rsd_level_8[get_vlc2(&s->gb, ff_dca_vlc_rsd.table, 6, 1)];
        break;

    case 5:
        nblocks = FFMIN(get_bits_left(&s->gb) / 4, DCA_LBR_TIME_SAMPLES);
        for (i = 0; i < nblocks; i++)
            samples[i] = ff_dca_rsd_level_16[get_bits(&s->gb, 4)];
        break;

    default:
        av_assert0(0);
    }

    if (flag && get_bits_left(&s->gb) < 20)
        return; // Skip incomplete mono subband

    for (; i < DCA_LBR_TIME_SAMPLES; i++)
        s->time_samples[ch][sb][i] = lbr_rand(s, sb);

    s->ch_pres[ch] |= 1U << sb;
}

static int parse_ts(DCALbrDecoder *s, int ch1, int ch2,
                    int start_sb, int end_sb, int flag)
{
    int sb, sb_g3, sb_reorder, quant_level;

    for (sb = start_sb; sb < end_sb; sb++) {
        // Subband number before reordering
        if (sb < 6) {
            sb_reorder = sb;
        } else if (flag && sb < s->max_mono_subband) {
            sb_reorder = s->sb_indices[sb];
        } else {
            if (ensure_bits(&s->gb, 28))
                break;
            sb_reorder = get_bits(&s->gb, s->limited_range + 3);
            if (sb_reorder < 6)
                sb_reorder = 6;
            s->sb_indices[sb] = sb_reorder;
        }
        if (sb_reorder >= s->nsubbands)
            return -1;

        // Third grid scale factors
        if (sb == 12) {
            for (sb_g3 = 0; sb_g3 < s->g3_avg_only_start_sb - 4; sb_g3++)
                parse_grid_3(s, ch1, ch2, sb_g3, flag);
        } else if (sb < 12 && sb_reorder >= 4) {
            parse_grid_3(s, ch1, ch2, sb_reorder - 4, flag);
        }

        // Secondary channel flags
        if (ch1 != ch2) {
            if (ensure_bits(&s->gb, 20))
                break;
            if (!flag || sb_reorder >= s->max_mono_subband)
                s->sec_ch_sbms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
            if (flag && sb_reorder >= s->min_mono_subband)
                s->sec_ch_lrms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
        }

        quant_level = s->quant_levels[ch1 / 2][sb];
        if (!quant_level)
            return -1;

        // Time samples for one or both channels
        if (sb < s->max_mono_subband && sb_reorder >= s->min_mono_subband) {
            if (!flag)
                parse_ch(s, ch1, sb_reorder, quant_level, 0);
            else if (ch1 != ch2)
                parse_ch(s, ch2, sb_reorder, quant_level, 1);
        } else {
            parse_ch(s, ch1, sb_reorder, quant_level, 0);
            if (ch1 != ch2)
                parse_ch(s, ch2, sb_reorder, quant_level, 0);
        }
    }

    return 0;
}

/**
 * Convert from reflection coefficients to direct form coefficients
 */
static void convert_lpc(float *coeff, const int *codes)
{
    int i, j;

    for (i = 0; i < 8; i++) {
        float rc = lpc_tab[codes[i]];
        for (j = 0; j < (i + 1) / 2; j++) {
            float tmp1 = coeff[    j    ];
            float tmp2 = coeff[i - j - 1];
            coeff[    j    ] = tmp1 + rc * tmp2;
            coeff[i - j - 1] = tmp2 + rc * tmp1;
        }
        coeff[i] = rc;
    }
}

static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb)
{
    int f = s->framenum & 1;
    int i, sb, ch, codes[16];

    // First two subbands have two sets of coefficients, third subband has one
    for (sb = start_sb; sb < end_sb; sb++) {
        int ncodes = 8 * (1 + (sb < 2));
        for (ch = ch1; ch <= ch2; ch++) {
            if (ensure_bits(&s->gb, 4 * ncodes))
                return 0;
            for (i = 0; i < ncodes; i++)
                codes[i] = get_bits(&s->gb, 4);
            for (i = 0; i < ncodes / 8; i++)
                convert_lpc(s->lpc_coeff[f][ch][sb][i], &codes[i * 8]);
        }
    }

    return 0;
}

static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
    int quant_levels[DCA_LBR_SUBBANDS];
    int sb, ch, ol, st, max_sb, profile;

    if (!chunk->len)
        return 0;

    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;

    // Quantizer profile
    profile = get_bits(&s->gb, 8);
    // Overall level
    ol = (profile >> 3) & 7;
    // Steepness
    st = profile >> 6;
    // Max energy subband
    max_sb = profile & 7;

    // Calculate quantization levels
    for (sb = 0; sb < s->nsubbands; sb++) {
        int f = sb * s->limited_rate / s->nsubbands;
        int a = 18000 / (12 * f / 1000 + 100 + 40 * st) + 20 * ol;
        if (a <= 95)
            quant_levels[sb] = 1;
        else if (a <= 140)
            quant_levels[sb] = 2;
        else if (a <= 180)
            quant_levels[sb] = 3;
        else if (a <= 230)
            quant_levels[sb] = 4;
        else
            quant_levels[sb] = 5;
    }

    // Reorder quantization levels for lower subbands
    for (sb = 0; sb < 8; sb++)
        s->quant_levels[ch1 / 2][sb] = quant_levels[ff_dca_sb_reorder[max_sb][sb]];
    for (; sb < s->nsubbands; sb++)
        s->quant_levels[ch1 / 2][sb] = quant_levels[sb];

    // LPC for the first two subbands
    if (parse_lpc(s, ch1, ch2, 0, 2) < 0)
        return -1;

    // Time-samples for the first two subbands of main channel
    if (parse_ts(s, ch1, ch2, 0, 2, 0) < 0)
        return -1;

    // First two bands of the first grid
    for (sb = 0; sb < 2; sb++)
        for (ch = ch1; ch <= ch2; ch++)
            if (parse_scale_factors(s, s->grid_1_scf[ch][sb]) < 0)
                return -1;

    return 0;
}

static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2,
                        int start_sb, int end_sb, int flag)
{
    int i, j, sb, ch, nsubbands;

    nsubbands = ff_dca_scf_to_grid_2[s->nsubbands - 1] + 1;
    if (end_sb > nsubbands)
        end_sb = nsubbands;

    for (sb = start_sb; sb < end_sb; sb++) {
        for (ch = ch1; ch <= ch2; ch++) {
            uint8_t *g2_scf = s->grid_2_scf[ch][sb];

            if ((ch != ch1 && ff_dca_grid_2_to_scf[sb] >= s->min_mono_subband) != flag) {
                if (!flag)
                    memcpy(g2_scf, s->grid_2_scf[ch1][sb], 64);
                continue;
            }

            // Scale factors in groups of 8
            for (i = 0; i < 8; i++, g2_scf += 8) {
                if (get_bits_left(&s->gb) < 1) {
                    memset(g2_scf, 0, 64 - i * 8);
                    break;
                }
                // Bit indicating if whole group has zero values
                if (get_bits1(&s->gb)) {
                    for (j = 0; j < 8; j++) {
                        if (ensure_bits(&s->gb, 20))
                            break;
                        g2_scf[j] = parse_vlc(&s->gb, &ff_dca_vlc_grid_2, 2);
                    }
                } else {
                    memset(g2_scf, 0, 8);
                }
            }
        }
    }

    return 0;
}

static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
    if (!chunk->len)
        return 0;
    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;
    if (parse_lpc(s, ch1, ch2, 2, 3) < 0)
        return -1;
    if (parse_ts(s, ch1, ch2, 2, 4, 0) < 0)
        return -1;
    if (parse_grid_2(s, ch1, ch2, 0, 1, 0) < 0)
        return -1;
    if (parse_ts(s, ch1, ch2, 4, 6, 0) < 0)
        return -1;
    return 0;
}

static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
    if (!chunk->len)
        return 0;
    if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
        return -1;
    if (parse_grid_2(s, ch1, ch2, 1, 3, 0) < 0)
        return -1;
    if (parse_ts(s, ch1, ch2, 6, s->max_mono_subband, 0) < 0)
        return -1;
    if (ch1 != ch2) {
        if (parse_grid_1_sec_ch(s, ch2) < 0)
            return -1;
        if (parse_grid_2(s, ch1, ch2, 0, 3, 1) < 0)
            return -1;
    }
    if (parse_ts(s, ch1, ch2, s->min_mono_subband, s->nsubbands, 1) < 0)
        return -1;
    return 0;
}

static int init_sample_rate(DCALbrDecoder *s)
{
    double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 - s->limited_range));
    int i, br_per_ch = s->bit_rate_scaled / s->nchannels_total;

    ff_mdct_end(&s->imdct);

    if (ff_mdct_init(&s->imdct, s->freq_range + 6, 1, scale) < 0)
        return -1;

    for (i = 0; i < 32 << s->freq_range; i++)
        s->window[i] = ff_dca_long_window[i << (2 - s->freq_range)];

    if (br_per_ch < 14000)
        scale = 0.85;
    else if (br_per_ch < 32000)
        scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85;
    else
        scale = 1.0;

    scale *= 1.0 / INT_MAX;

    for (i = 0; i < s->nsubbands; i++) {
        if (i < 2)
            s->sb_scf[i] = 0;   // The first two subbands are always zero
        else if (i < 5)
            s->sb_scf[i] = (i - 1) * 0.25 * 0.785 * scale;
        else
            s->sb_scf[i] = 0.785 * scale;
    }

    s->lfe_scale = (16 << s->freq_range) * 0.0000078265894;

    return 0;
}

static int alloc_sample_buffer(DCALbrDecoder *s)
{
    // Reserve space for history and padding
    int nchsamples = DCA_LBR_TIME_SAMPLES + DCA_LBR_TIME_HISTORY * 2;
    int nsamples = nchsamples * s->nchannels * s->nsubbands;
    int ch, sb;
    float *ptr;

    // Reallocate time sample buffer
    av_fast_mallocz(&s->ts_buffer, &s->ts_size, nsamples * sizeof(float));
    if (!s->ts_buffer)
        return -1;

    ptr = s->ts_buffer + DCA_LBR_TIME_HISTORY;
    for (ch = 0; ch < s->nchannels; ch++) {
        for (sb = 0; sb < s->nsubbands; sb++) {
            s->time_samples[ch][sb] = ptr;
            ptr += nchsamples;
        }
    }

    return 0;
}

static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb)
{
    int old_rate = s->sample_rate;
    int old_band_limit = s->band_limit;
    int old_nchannels = s->nchannels;
    int version, bit_rate_hi;
    unsigned int sr_code;

    // Sample rate of LBR audio
    sr_code = bytestream2_get_byte(gb);
    if (sr_code >= FF_ARRAY_ELEMS(ff_dca_sampling_freqs)) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sample rate\n");
        return AVERROR_INVALIDDATA;
    }
    s->sample_rate = ff_dca_sampling_freqs[sr_code];
    if (s->sample_rate > 48000) {
        avpriv_report_missing_feature(s->avctx, "%d Hz LBR sample rate", s->sample_rate);
        return AVERROR_PATCHWELCOME;
    }

    // LBR speaker mask
    s->ch_mask = bytestream2_get_le16(gb);
    if (!(s->ch_mask & 0x7)) {
        avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
        return AVERROR_PATCHWELCOME;
    }
    if ((s->ch_mask & 0xfff0) && !(s->warned & 1)) {
        avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
        s->warned |= 1;
    }

    // LBR bitstream version
    version = bytestream2_get_le16(gb);
    if ((version & 0xff00) != 0x0800) {
        avpriv_report_missing_feature(s->avctx, "LBR stream version %#x", version);
        return AVERROR_PATCHWELCOME;
    }

    // Flags for LBR decoder initialization
    s->flags = bytestream2_get_byte(gb);
    if (s->flags & LBR_FLAG_DMIX_MULTI_CH) {
        avpriv_report_missing_feature(s->avctx, "LBR multi-channel downmix");
        return AVERROR_PATCHWELCOME;
    }
    if ((s->flags & LBR_FLAG_LFE_PRESENT) && s->sample_rate != 48000) {
        if (!(s->warned & 2)) {
            avpriv_report_missing_feature(s->avctx, "%d Hz LFE interpolation", s->sample_rate);
            s->warned |= 2;
        }
        s->flags &= ~LBR_FLAG_LFE_PRESENT;
    }

    // Most significant bit rate nibbles
    bit_rate_hi = bytestream2_get_byte(gb);

    // Least significant original bit rate word
    s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16);

    // Least significant scaled bit rate word
    s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12);

    // Setup number of fullband channels
    s->nchannels_total = ff_dca_count_chs_for_mask(s->ch_mask & ~DCA_SPEAKER_PAIR_LFE1);
    s->nchannels = FFMIN(s->nchannels_total, DCA_LBR_CHANNELS);

    // Setup band limit
    switch (s->flags & LBR_FLAG_BAND_LIMIT_MASK) {
    case LBR_FLAG_BAND_LIMIT_NONE:
        s->band_limit = 0;
        break;
    case LBR_FLAG_BAND_LIMIT_1_2:
        s->band_limit = 1;
        break;
    case LBR_FLAG_BAND_LIMIT_1_4:
        s->band_limit = 2;
        break;
    default:
        avpriv_report_missing_feature(s->avctx, "LBR band limit %#x", s->flags & LBR_FLAG_BAND_LIMIT_MASK);
        return AVERROR_PATCHWELCOME;
    }

    // Setup frequency range
    s->freq_range = ff_dca_freq_ranges[sr_code];

    // Setup resolution profile
    if (s->bit_rate_orig >= 44000 * (s->nchannels_total + 2))
        s->res_profile = 2;
    else if (s->bit_rate_orig >= 25000 * (s->nchannels_total + 2))
        s->res_profile = 1;
    else
        s->res_profile = 0;

    // Setup limited sample rate, number of subbands, etc
    s->limited_rate = s->sample_rate >> s->band_limit;
    s->limited_range = s->freq_range - s->band_limit;
    if (s->limited_range < 0) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR band limit for frequency range\n");
        return AVERROR_INVALIDDATA;
    }

    s->nsubbands = 8 << s->limited_range;

    s->g3_avg_only_start_sb = s->nsubbands * ff_dca_avg_g3_freqs[s->res_profile] / (s->limited_rate / 2);
    if (s->g3_avg_only_start_sb > s->nsubbands)
        s->g3_avg_only_start_sb = s->nsubbands;

    s->min_mono_subband = s->nsubbands *  2000 / (s->limited_rate / 2);
    if (s->min_mono_subband > s->nsubbands)
        s->min_mono_subband = s->nsubbands;

    s->max_mono_subband = s->nsubbands * 14000 / (s->limited_rate / 2);
    if (s->max_mono_subband > s->nsubbands)
        s->max_mono_subband = s->nsubbands;

    // Handle change of sample rate
    if ((old_rate != s->sample_rate || old_band_limit != s->band_limit) && init_sample_rate(s) < 0)
        return AVERROR(ENOMEM);

    // Setup stereo downmix
    if (s->flags & LBR_FLAG_DMIX_STEREO) {
        DCAContext *dca = s->avctx->priv_data;

        if (s->nchannels_total < 3 || s->nchannels_total > DCA_LBR_CHANNELS_TOTAL - 2) {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels for LBR stereo downmix\n");
            return AVERROR_INVALIDDATA;
        }

        // This decoder doesn't support ECS chunk
        if (dca->request_channel_layout != DCA_SPEAKER_LAYOUT_STEREO && !(s->warned & 4)) {
            avpriv_report_missing_feature(s->avctx, "Embedded LBR stereo downmix");
            s->warned |= 4;
        }

        // Account for extra downmixed channel pair
        s->nchannels_total += 2;
        s->nchannels = 2;
        s->ch_mask = DCA_SPEAKER_PAIR_LR;
        s->flags &= ~LBR_FLAG_LFE_PRESENT;
    }

    // Handle change of sample rate or number of channels
    if (old_rate != s->sample_rate
        || old_band_limit != s->band_limit
        || old_nchannels != s->nchannels) {
        if (alloc_sample_buffer(s) < 0)
            return AVERROR(ENOMEM);
        ff_dca_lbr_flush(s);
    }

    return 0;
}

int ff_dca_lbr_parse(DCALbrDecoder *s, uint8_t *data, DCAExssAsset *asset)
{
    struct {
        LBRChunk    lfe;
        LBRChunk    tonal;
        LBRChunk    tonal_grp[5];
        LBRChunk    grid1[DCA_LBR_CHANNELS / 2];
        LBRChunk    hr_grid[DCA_LBR_CHANNELS / 2];
        LBRChunk    ts1[DCA_LBR_CHANNELS / 2];
        LBRChunk    ts2[DCA_LBR_CHANNELS / 2];
    } chunk = { {0} };

    GetByteContext gb;

    int i, ch, sb, sf, ret, group, chunk_id, chunk_len;

    bytestream2_init(&gb, data + asset->lbr_offset, asset->lbr_size);

    // LBR sync word
    if (bytestream2_get_be32(&gb) != DCA_SYNCWORD_LBR) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sync word\n");
        return AVERROR_INVALIDDATA;
    }

    // LBR header type
    switch (bytestream2_get_byte(&gb)) {
    case LBR_HEADER_SYNC_ONLY:
        if (!s->sample_rate) {
            av_log(s->avctx, AV_LOG_ERROR, "LBR decoder not initialized\n");
            return AVERROR_INVALIDDATA;
        }
        break;
    case LBR_HEADER_DECODER_INIT:
        if ((ret = parse_decoder_init(s, &gb)) < 0) {
            s->sample_rate = 0;
            return ret;
        }
        break;
    default:
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR header type\n");
        return AVERROR_INVALIDDATA;
    }

    // LBR frame chunk header
    chunk_id = bytestream2_get_byte(&gb);
    chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);

    if (chunk_len > bytestream2_get_bytes_left(&gb)) {
        chunk_len = bytestream2_get_bytes_left(&gb);
        av_log(s->avctx, AV_LOG_WARNING, "LBR frame chunk was truncated\n");
        if (s->avctx->err_recognition & AV_EF_EXPLODE)
            return AVERROR_INVALIDDATA;
    }

    bytestream2_init(&gb, gb.buffer, chunk_len);

    switch (chunk_id & 0x7f) {
    case LBR_CHUNK_FRAME:
        if (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) {
            int checksum = bytestream2_get_be16(&gb);
            uint16_t res = chunk_id;
            res += (chunk_len >> 8) & 0xff;
            res += chunk_len & 0xff;
            for (i = 0; i < chunk_len - 2; i++)
                res += gb.buffer[i];
            if (checksum != res) {
                av_log(s->avctx, AV_LOG_WARNING, "Invalid LBR checksum\n");
                if (s->avctx->err_recognition & AV_EF_EXPLODE)
                    return AVERROR_INVALIDDATA;
            }
        } else {
            bytestream2_skip(&gb, 2);
        }
        break;
    case LBR_CHUNK_FRAME_NO_CSUM:
        break;
    default:
        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR frame chunk ID\n");
        return AVERROR_INVALIDDATA;
    }

    // Clear current frame
    memset(s->quant_levels, 0, sizeof(s->quant_levels));
    memset(s->sb_indices, 0xff, sizeof(s->sb_indices));
    memset(s->sec_ch_sbms, 0, sizeof(s->sec_ch_sbms));
    memset(s->sec_ch_lrms, 0, sizeof(s->sec_ch_lrms));
    memset(s->ch_pres, 0, sizeof(s->ch_pres));
    memset(s->grid_1_scf, 0, sizeof(s->grid_1_scf));
    memset(s->grid_2_scf, 0, sizeof(s->grid_2_scf));
    memset(s->grid_3_avg, 0, sizeof(s->grid_3_avg));
    memset(s->grid_3_scf, 0, sizeof(s->grid_3_scf));
    memset(s->grid_3_pres, 0, sizeof(s->grid_3_pres));
    memset(s->tonal_scf, 0, sizeof(s->tonal_scf));
    memset(s->lfe_data, 0, sizeof(s->lfe_data));
    s->part_stereo_pres = 0;
    s->framenum = (s->framenum + 1) & 31;

    for (ch = 0; ch < s->nchannels; ch++) {
        for (sb = 0; sb < s->nsubbands / 4; sb++) {
            s->part_stereo[ch][sb][0] = s->part_stereo[ch][sb][4];
            s->part_stereo[ch][sb][4] = 16;
        }
    }

    memset(s->lpc_coeff[s->framenum & 1], 0, sizeof(s->lpc_coeff[0]));

    for (group = 0; group < 5; group++) {
        for (sf = 0; sf < 1 << group; sf++) {
            int sf_idx = ((s->framenum << group) + sf) & 31;
            s->tonal_bounds[group][sf_idx][0] =
            s->tonal_bounds[group][sf_idx][1] = s->ntones;
        }
    }

    // Parse chunk headers
    while (bytestream2_get_bytes_left(&gb) > 0) {
        chunk_id = bytestream2_get_byte(&gb);
        chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
        chunk_id &= 0x7f;

        if (chunk_len > bytestream2_get_bytes_left(&gb)) {
            chunk_len = bytestream2_get_bytes_left(&gb);
            av_log(s->avctx, AV_LOG_WARNING, "LBR chunk %#x was truncated\n", chunk_id);
            if (s->avctx->err_recognition & AV_EF_EXPLODE)
                return AVERROR_INVALIDDATA;
        }

        switch (chunk_id) {
        case LBR_CHUNK_LFE:
            chunk.lfe.len  = chunk_len;
            chunk.lfe.data = gb.buffer;
            break;

        case LBR_CHUNK_SCF:
        case LBR_CHUNK_TONAL:
        case LBR_CHUNK_TONAL_SCF:
            chunk.tonal.id   = chunk_id;
            chunk.tonal.len  = chunk_len;
            chunk.tonal.data = gb.buffer;
            break;

        case LBR_CHUNK_TONAL_GRP_1:
        case LBR_CHUNK_TONAL_GRP_2:
        case LBR_CHUNK_TONAL_GRP_3:
        case LBR_CHUNK_TONAL_GRP_4:
        case LBR_CHUNK_TONAL_GRP_5:
            i = LBR_CHUNK_TONAL_GRP_5 - chunk_id;
            chunk.tonal_grp[i].id   = i;
            chunk.tonal_grp[i].len  = chunk_len;
            chunk.tonal_grp[i].data = gb.buffer;
            break;

        case LBR_CHUNK_TONAL_SCF_GRP_1:
        case LBR_CHUNK_TONAL_SCF_GRP_2:
        case LBR_CHUNK_TONAL_SCF_GRP_3:
        case LBR_CHUNK_TONAL_SCF_GRP_4:
        case LBR_CHUNK_TONAL_SCF_GRP_5:
            i = LBR_CHUNK_TONAL_SCF_GRP_5 - chunk_id;
            chunk.tonal_grp[i].id   = i;
            chunk.tonal_grp[i].len  = chunk_len;
            chunk.tonal_grp[i].data = gb.buffer;
            break;

        case LBR_CHUNK_RES_GRID_LR:
        case LBR_CHUNK_RES_GRID_LR + 1:
        case LBR_CHUNK_RES_GRID_LR + 2:
            i = chunk_id - LBR_CHUNK_RES_GRID_LR;
            chunk.grid1[i].len  = chunk_len;
            chunk.grid1[i].data = gb.buffer;
            break;

        case LBR_CHUNK_RES_GRID_HR:
        case LBR_CHUNK_RES_GRID_HR + 1:
        case LBR_CHUNK_RES_GRID_HR + 2:
            i = chunk_id - LBR_CHUNK_RES_GRID_HR;
            chunk.hr_grid[i].len  = chunk_len;
            chunk.hr_grid[i].data = gb.buffer;
            break;

        case LBR_CHUNK_RES_TS_1:
        case LBR_CHUNK_RES_TS_1 + 1:
        case LBR_CHUNK_RES_TS_1 + 2:
            i = chunk_id - LBR_CHUNK_RES_TS_1;
            chunk.ts1[i].len  = chunk_len;
            chunk.ts1[i].data = gb.buffer;
            break;

        case LBR_CHUNK_RES_TS_2:
        case LBR_CHUNK_RES_TS_2 + 1:
        case LBR_CHUNK_RES_TS_2 + 2:
            i = chunk_id - LBR_CHUNK_RES_TS_2;
            chunk.ts2[i].len  = chunk_len;
            chunk.ts2[i].data = gb.buffer;
            break;
        }

        bytestream2_skip(&gb, chunk_len);
    }

    // Parse the chunks
    ret = parse_lfe_chunk(s, &chunk.lfe);

    ret |= parse_tonal_chunk(s, &chunk.tonal);

    for (i = 0; i < 5; i++)
        ret |= parse_tonal_group(s, &chunk.tonal_grp[i]);

    for (i = 0; i < (s->nchannels + 1) / 2; i++) {
        int ch1 = i * 2;
        int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);

        if (parse_grid_1_chunk (s, &chunk.grid1  [i], ch1, ch2) < 0 ||
            parse_high_res_grid(s, &chunk.hr_grid[i], ch1, ch2) < 0) {
            ret = -1;
            continue;
        }

        // TS chunks depend on both grids. TS_2 depends on TS_1.
        if (!chunk.grid1[i].len || !chunk.hr_grid[i].len || !chunk.ts1[i].len)
            continue;

        if (parse_ts1_chunk(s, &chunk.ts1[i], ch1, ch2) < 0 ||
            parse_ts2_chunk(s, &chunk.ts2[i], ch1, ch2) < 0) {
            ret = -1;
            continue;
        }
    }

    if (ret < 0 && (s->avctx->err_recognition & AV_EF_EXPLODE))
        return AVERROR_INVALIDDATA;

    return 0;
}

/**
 * Reconstruct high-frequency resolution grid from first and third grids
 */
static void decode_grid(DCALbrDecoder *s, int ch1, int ch2)
{
    int i, ch, sb;

    for (ch = ch1; ch <= ch2; ch++) {
        for (sb = 0; sb < s->nsubbands; sb++) {
            int g1_sb = ff_dca_scf_to_grid_1[sb];

            uint8_t *g1_scf_a = s->grid_1_scf[ch][g1_sb    ];
            uint8_t *g1_scf_b = s->grid_1_scf[ch][g1_sb + 1];

            int w1 = ff_dca_grid_1_weights[g1_sb    ][sb];
            int w2 = ff_dca_grid_1_weights[g1_sb + 1][sb];

            uint8_t *hr_scf = s->high_res_scf[ch][sb];

            if (sb < 4) {
                for (i = 0; i < 8; i++) {
                    int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
                    hr_scf[i] = scf >> 7;
                }
            } else {
                int8_t *g3_scf = s->grid_3_scf[ch][sb - 4];
                int g3_avg = s->grid_3_avg[ch][sb - 4];

                for (i = 0; i < 8; i++) {
                    int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
                    hr_scf[i] = (scf >> 7) - g3_avg - g3_scf[i];
                }
            }
        }
    }
}

/**
 * Fill unallocated subbands with randomness
 */
static void random_ts(DCALbrDecoder *s, int ch1, int ch2)
{
    int i, j, k, ch, sb;

    for (ch = ch1; ch <= ch2; ch++) {
        for (sb = 0; sb < s->nsubbands; sb++) {
            float *samples = s->time_samples[ch][sb];

            if (s->ch_pres[ch] & (1U << sb))
                continue;   // Skip allocated subband

            if (sb < 2) {
                // The first two subbands are always zero
                memset(samples, 0, DCA_LBR_TIME_SAMPLES * sizeof(float));
            } else if (sb < 10) {
                for (i = 0; i < DCA_LBR_TIME_SAMPLES; i++)
                    samples[i] = lbr_rand(s, sb);
            } else {
                for (i = 0; i < DCA_LBR_TIME_SAMPLES / 8; i++, samples += 8) {
                    float accum[8] = { 0 };

                    // Modulate by subbands 2-5 in blocks of 8
                    for (k = 2; k < 6; k++) {
                        float *other = &s->time_samples[ch][k][i * 8];
                        for (j = 0; j < 8; j++)
                            accum[j] += fabs(other[j]);
                    }

                    for (j = 0; j < 8; j++)
                        samples[j] = (accum[j] * 0.25f + 0.5f) * lbr_rand(s, sb);
                }
            }
        }
    }
}

static void predict(float *samples, const float *coeff, int nsamples)
{
    int i, j;

    for (i = 0; i < nsamples; i++) {
        float res = 0;
        for (j = 0; j < 8; j++)
            res += coeff[j] * samples[i - j - 1];
        samples[i] -= res;
    }
}

static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb)
{
    int f = s->framenum & 1;
    int ch;

    for (ch = ch1; ch <= ch2; ch++) {
        float *samples = s->time_samples[ch][sb];

        if (!(s->ch_pres[ch] & (1U << sb)))
            continue;

        if (sb < 2) {
            predict(samples,      s->lpc_coeff[f^1][ch][sb][1],  16);
            predict(samples + 16, s->lpc_coeff[f  ][ch][sb][0],  64);
            predict(samples + 80, s->lpc_coeff[f  ][ch][sb][1],  48);
        } else {
            predict(samples,      s->lpc_coeff[f^1][ch][sb][0],  16);
            predict(samples + 16, s->lpc_coeff[f  ][ch][sb][0], 112);
        }
    }
}

static void filter_ts(DCALbrDecoder *s, int ch1, int ch2)
{
    int i, j, sb, ch;

    for (sb = 0; sb < s->nsubbands; sb++) {
        // Scale factors
        for (ch = ch1; ch <= ch2; ch++) {
            float *samples = s->time_samples[ch][sb];
            uint8_t *hr_scf = s->high_res_scf[ch][sb];
            if (sb < 4) {
                for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++, samples += 16) {
                    unsigned int scf = hr_scf[i];
                    if (scf > AMP_MAX)
                        scf = AMP_MAX;
                    for (j = 0; j < 16; j++)
                        samples[j] *= ff_dca_quant_amp[scf];
                }
            } else {
                uint8_t *g2_scf = s->grid_2_scf[ch][ff_dca_scf_to_grid_2[sb]];
                for (i = 0; i < DCA_LBR_TIME_SAMPLES / 2; i++, samples += 2) {
                    unsigned int scf = hr_scf[i / 8] - g2_scf[i];
                    if (scf > AMP_MAX)
                        scf = AMP_MAX;
                    samples[0] *= ff_dca_quant_amp[scf];
                    samples[1] *= ff_dca_quant_amp[scf];
                }
            }
        }

        // Mid-side stereo
        if (ch1 != ch2) {
            float *samples_l = s->time_samples[ch1][sb];
            float *samples_r = s->time_samples[ch2][sb];
            int ch2_pres = s->ch_pres[ch2] & (1U << sb);

            for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++) {
                int sbms = (s->sec_ch_sbms[ch1 / 2][sb] >> i) & 1;
                int lrms = (s->sec_ch_lrms[ch1 / 2][sb] >> i) & 1;

                if (sb >= s->min_mono_subband) {
                    if (lrms && ch2_pres) {
                        if (sbms) {
                            for (j = 0; j < 16; j++) {
                                float tmp = samples_l[j];
                                samples_l[j] =  samples_r[j];
                                samples_r[j] = -tmp;
                            }
                        } else {
                            for (j = 0; j < 16; j++) {
                                float tmp = samples_l[j];
                                samples_l[j] =  samples_r[j];
                                samples_r[j] =  tmp;
                            }
                        }
                    } else if (!ch2_pres) {
                        if (sbms && (s->part_stereo_pres & (1 << ch1))) {
                            for (j = 0; j < 16; j++)
                                samples_r[j] = -samples_l[j];
                        } else {
                            for (j = 0; j < 16; j++)
                                samples_r[j] =  samples_l[j];
                        }
                    }
                } else if (sbms && ch2_pres) {
                    for (j = 0; j < 16; j++) {
                        float tmp = samples_l[j];
                        samples_l[j] = (tmp + samples_r[j]) * 0.5f;
                        samples_r[j] = (tmp - samples_r[j]) * 0.5f;
                    }
                }

                samples_l += 16;
                samples_r += 16;
            }
        }

        // Inverse prediction
        if (sb < 3)
            synth_lpc(s, ch1, ch2, sb);
    }
}

/**
 * Modulate by interpolated partial stereo coefficients
 */
static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2)
{
    int i, ch, sb, sf;

    for (ch = ch1; ch <= ch2; ch++) {
        for (sb = s->min_mono_subband; sb < s->nsubbands; sb++) {
            uint8_t *pt_st = s->part_stereo[ch][(sb - s->min_mono_subband) / 4];
            float *samples = s->time_samples[ch][sb];

            if (s->ch_pres[ch2] & (1U << sb))
                continue;

            for (sf = 1; sf <= 4; sf++, samples += 32) {
                float prev = ff_dca_st_coeff[pt_st[sf - 1]];
                float next = ff_dca_st_coeff[pt_st[sf    ]];

                for (i = 0; i < 32; i++)
                    samples[i] *= (32 - i) * prev + i * next;
            }
        }
    }
}

/**
 * Synthesise tones in the given group for the given tonal subframe
 */
static void synth_tones(DCALbrDecoder *s, int ch, float *values,
                        int group, int group_sf, int synth_idx)
{
    int i, start, count;

    if (synth_idx < 0)
        return;

    start =  s->tonal_bounds[group][group_sf][0];
    count = (s->tonal_bounds[group][group_sf][1] - start) & (DCA_LBR_TONES - 1);

    for (i = 0; i < count; i++) {
        DCALbrTone *t = &s->tones[(start + i) & (DCA_LBR_TONES - 1)];

        if (t->amp[ch]) {
            float amp = ff_dca_synth_env[synth_idx] * ff_dca_quant_amp[t->amp[ch]];
            float c = amp * cos_tab[(t->phs[ch]     ) & 255];
            float s = amp * cos_tab[(t->phs[ch] + 64) & 255];
            const float *cf = ff_dca_corr_cf[t->f_delt];
            int x_freq = t->x_freq;

            switch (x_freq) {
            case 0:
                goto p0;
            case 1:
                values[3] += cf[0] * -s;
                values[2] += cf[1] *  c;
                values[1] += cf[2] *  s;
                values[0] += cf[3] * -c;
                goto p1;
            case 2:
                values[2] += cf[0] * -s;
                values[1] += cf[1] *  c;
                values[0] += cf[2] *  s;
                goto p2;
            case 3:
                values[1] += cf[0] * -s;
                values[0] += cf[1] *  c;
                goto p3;
            case 4:
                values[0] += cf[0] * -s;
                goto p4;
            }

            values[x_freq - 5] += cf[ 0] * -s;
        p4: values[x_freq - 4] += cf[ 1] *  c;
        p3: values[x_freq - 3] += cf[ 2] *  s;
        p2: values[x_freq - 2] += cf[ 3] * -c;
        p1: values[x_freq - 1] += cf[ 4] * -s;
        p0: values[x_freq    ] += cf[ 5] *  c;
            values[x_freq + 1] += cf[ 6] *  s;
            values[x_freq + 2] += cf[ 7] * -c;
            values[x_freq + 3] += cf[ 8] * -s;
            values[x_freq + 4] += cf[ 9] *  c;
            values[x_freq + 5] += cf[10] *  s;
        }

        t->phs[ch] += t->ph_rot;
    }
}

/**
 * Synthesise all tones in all groups for the given residual subframe
 */
static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf)
{
    int group;

    // Tonal vs residual shift is 22 subframes
    for (group = 0; group < 5; group++) {
        int group_sf = (s->framenum << group) + ((sf - 22) >> (5 - group));
        int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1;

        synth_tones(s, ch, values, group, (group_sf - 1) & 31, 30 - synth_idx);
        synth_tones(s, ch, values, group, (group_sf    ) & 31,      synth_idx);
    }
}

static void transform_channel(DCALbrDecoder *s, int ch, float *output)
{
    LOCAL_ALIGNED_32(float, values, [DCA_LBR_SUBBANDS    ], [4]);
    LOCAL_ALIGNED_32(float, result, [DCA_LBR_SUBBANDS * 2], [4]);
    int sf, sb, nsubbands = s->nsubbands, noutsubbands = 8 << s->freq_range;

    // Clear inactive subbands
    if (nsubbands < noutsubbands)
        memset(values[nsubbands], 0, (noutsubbands - nsubbands) * sizeof(values[0]));

    for (sf = 0; sf < DCA_LBR_TIME_SAMPLES / 4; sf++) {
        // Hybrid filterbank
        s->dcadsp->lbr_bank(values, s->time_samples[ch],
                            ff_dca_bank_coeff, sf * 4, nsubbands);

        base_func_synth(s, ch, values[0], sf);

        s->imdct.imdct_calc(&s->imdct, result[0], values[0]);

        // Long window and overlap-add
        s->fdsp->vector_fmul_add(output, result[0], s->window,
                                 s->history[ch], noutsubbands * 4);
        s->fdsp->vector_fmul_reverse(s->history[ch], result[noutsubbands],
                                     s->window, noutsubbands * 4);
        output += noutsubbands * 4;
    }

    // Update history for LPC and forward MDCT
    for (sb = 0; sb < nsubbands; sb++) {
        float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
        memcpy(samples, samples + DCA_LBR_TIME_SAMPLES, DCA_LBR_TIME_HISTORY * sizeof(float));
    }
}

int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame)
{
    AVCodecContext *avctx = s->avctx;
    int i, ret, nchannels, ch_conf = (s->ch_mask & 0x7) - 1;
    const int8_t *reorder;

    avctx->channel_layout = channel_layouts[ch_conf];
    avctx->channels = nchannels = channel_counts[ch_conf];
    avctx->sample_rate = s->sample_rate;
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
    avctx->bits_per_raw_sample = 0;
    avctx->profile = FF_PROFILE_DTS_EXPRESS;
    avctx->bit_rate = s->bit_rate_scaled;

    if (s->flags & LBR_FLAG_LFE_PRESENT) {
        avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
        avctx->channels++;
        reorder = channel_reorder_lfe[ch_conf];
    } else {
        reorder = channel_reorder_nolfe[ch_conf];
    }

    frame->nb_samples = 1024 << s->freq_range;
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;

    // Filter fullband channels
    for (i = 0; i < (s->nchannels + 1) / 2; i++) {
        int ch1 = i * 2;
        int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);

        decode_grid(s, ch1, ch2);

        random_ts(s, ch1, ch2);

        filter_ts(s, ch1, ch2);

        if (ch1 != ch2 && (s->part_stereo_pres & (1 << ch1)))
            decode_part_stereo(s, ch1, ch2);

        if (ch1 < nchannels)
            transform_channel(s, ch1, (float *)frame->extended_data[reorder[ch1]]);

        if (ch1 != ch2 && ch2 < nchannels)
            transform_channel(s, ch2, (float *)frame->extended_data[reorder[ch2]]);
    }

    // Interpolate LFE channel
    if (s->flags & LBR_FLAG_LFE_PRESENT) {
        s->dcadsp->lfe_iir((float *)frame->extended_data[lfe_index[ch_conf]],
                           s->lfe_data, ff_dca_lfe_iir,
                           s->lfe_history, 16 << s->freq_range);
    }

    if ((ret = ff_side_data_update_matrix_encoding(frame, AV_MATRIX_ENCODING_NONE)) < 0)
        return ret;

    return 0;
}

av_cold void ff_dca_lbr_flush(DCALbrDecoder *s)
{
    int ch, sb;

    if (!s->sample_rate)
        return;

    // Clear history
    memset(s->part_stereo, 16, sizeof(s->part_stereo));
    memset(s->lpc_coeff, 0, sizeof(s->lpc_coeff));
    memset(s->history, 0, sizeof(s->history));
    memset(s->tonal_bounds, 0, sizeof(s->tonal_bounds));
    memset(s->lfe_history, 0, sizeof(s->lfe_history));
    s->framenum = 0;
    s->ntones = 0;

    for (ch = 0; ch < s->nchannels; ch++) {
        for (sb = 0; sb < s->nsubbands; sb++) {
            float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
            memset(samples, 0, DCA_LBR_TIME_HISTORY * sizeof(float));
        }
    }
}

av_cold int ff_dca_lbr_init(DCALbrDecoder *s)
{
    init_tables();

    if (!(s->fdsp = avpriv_float_dsp_alloc(0)))
        return -1;

    s->lbr_rand = 1;
    return 0;
}

av_cold void ff_dca_lbr_close(DCALbrDecoder *s)
{
    s->sample_rate = 0;

    av_freep(&s->ts_buffer);
    s->ts_size = 0;

    av_freep(&s->fdsp);
    ff_mdct_end(&s->imdct);
}